17. Standard Inner Product

Wei-Shi Zheng,
wszheng@ieee.org, 2011

November 21, 2011

1 What Do You Learn from This Note

Up to this point, the theory we have established can be applied to any vector space in general. However, vector spaces over \(\mathbb{R} \) have geometric structure on their own. You probably have already known concepts such as lengths, angles and distances of vectors in \(\mathbb{R}^2 \) and \(\mathbb{R}^3 \). Now we shall see how these geometric concepts can be generalized to vector spaces over \(\mathbb{R} \), particularly \(\mathbb{R}^n \).

Basic Concept: inner product (内积), length (长度), unit vector (单位向量), distance (距离), orthogonality (正交), orthogonal complements (正交补)

2 Inner Product & Length

2.1 Basic Concept

Definition 1 (inner product or dot product, 内积). Let \(\vec{u}, \vec{v} \in \mathbb{R}^n \). The standard inner product or dot product \(\vec{u} \cdot \vec{v} \) of \(\vec{u} \) and \(\vec{v} \) is defined to be the real number \(\vec{u}^T \vec{v} \).

Definition 2 (norm or length, 模或长度). Let \(\vec{v} \in \mathbb{R}^n \). The norm or length \(\| \vec{v} \| \) of \(\vec{v} \) is defined to be

\[
\| \vec{v} \| = \sqrt{\vec{v} \cdot \vec{v}},
\]
which is a non-negative real number.

Definition 3 (UNIT VECTOR, 单位向量). *is a vector whose norm is 1. If we are given any non-zero vector \(\vec{v} \), then \(\frac{\vec{v}}{||\vec{v}||} \) is a unit vector, which is called the unit vector in the same direction as \(\vec{v} \). The process of creating \(\frac{\vec{v}}{||\vec{v}||} \) is called normalisation.*

Definition 4 (ANGLE). Let \(\vec{u}, \vec{v} \in \mathbb{R}^n - \{\vec{0}\} \). The angle \(\theta \) between \(\vec{u} \) and \(\vec{v} \) is defined to be

\[
\theta = \arccos \frac{\vec{u} \cdot \vec{v}}{||\vec{u}|| ||\vec{v}||},
\]

which is a number in the interval \([0, \pi] \).

Definition 5 (DISTANCE). Let \(\vec{u}, \vec{v} \in \mathbb{R}^n \}. The distance \(d(\vec{u}, \vec{v}) \) between \(\vec{u} \) and \(\vec{v} \) is defined to be

\[
d(\vec{u}, \vec{v}) = ||\vec{u} - \vec{v}||.
\]

Definition 6 (ORTHOGONALITY). Two vectors \(\vec{u} \) and \(\vec{v} \) in \(\mathbb{R}^n \) are orthogonal if \(\vec{u} \cdot \vec{v} = 0 \).

2.2 Some Properties

Theorem 7. Let \(\vec{u}, \vec{v} \in \mathbb{R}^n \) and \(c \in \mathbb{R} \). Then

1. \(\vec{u} \cdot \vec{u} \geq 0 \) and \(\vec{u} \cdot \vec{u} = 0 \) iff \(\vec{u} = \vec{0} \);
2. \(\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u} \);
3. \(\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w} \);
4. \(\vec{u} \cdot c \vec{v} = c(\vec{u} \cdot \vec{v}) \).

(So we say \(\mathbb{R}^n \) equipped with dot product is an inner product space.)

Proof. Straightforward. \(\square \)

Remark: 1) 3. and 4. of Theorem 2 indicate that dot product is linear on the second operand, and 2. ensures that dot product is also linear on the first operand.
2) We have $\|v\| = 0$ iff $v = \vec{0}$.
3) For any scalar c, we have $\|cv\| = \sqrt{c^2} = \sqrt{c^2\|v\|^2} = |c|\|v\|$.

Example: Textbook P.377.

Theorem 8 (the Cauchy–Schwarz inequality). Let $\vec{u}, \vec{v} \in \mathbb{R}^n$. Then

$$(\vec{u} \cdot \vec{v})^2 \leq (\vec{u} \cdot \vec{u})(\vec{v} \cdot \vec{v}), \text{ or equivalently, } |\vec{u} \cdot \vec{v}| \leq \|\vec{u}\|\|\vec{v}\|.$$

The equality holds if and only if \vec{u} and \vec{v} are linearly dependent.

Proof. Step 1. Suppose first that \vec{u} and \vec{v} are linearly independent. Then neither \vec{u} nor \vec{v} is $\vec{0}$. Let t be any scalar. Then $\vec{u} - tv \neq \vec{0}$, so we have

$$0 < (\vec{u} - tv) \cdot (\vec{u} - tv) \quad \text{[By 1. of Theorem 2.]}$$

$$= (\vec{u} \cdot \vec{u}) - t(\vec{u} \cdot \vec{v}) - t(\vec{v} \cdot \vec{u}) + t^2(\vec{v} \cdot \vec{v}) \quad \text{[By linearity.]}$$

$$= (\vec{u} \cdot \vec{u}) - 2t(\vec{u} \cdot \vec{v}) + t^2(\vec{v} \cdot \vec{v}) \quad \text{[By symmetry.]}$$

By the arbitrariness of t, we may take $t = \frac{(\vec{u} \cdot \vec{v})}{(\vec{v} \cdot \vec{v})}$ and substitute it into the above inequality to obtain

$$0 < (\vec{u} \cdot \vec{u}) - 2\frac{(\vec{u} \cdot \vec{v})^2}{(\vec{v} \cdot \vec{v})}(\vec{v} \cdot \vec{v}) + (\vec{u} \cdot \vec{v})^2$$

$$= (\vec{u} \cdot \vec{u}) - 2\frac{(\vec{u} \cdot \vec{v})^2}{(\vec{v} \cdot \vec{v})} + (\vec{u} \cdot \vec{v})^2$$

$$= (\vec{u} \cdot \vec{u}) - (\vec{u} \cdot \vec{v})^2.$$

Multiply $(\vec{v} \cdot \vec{v})$ on both side, we get

$$0 < (\vec{u} \cdot \vec{u})(\vec{v} \cdot \vec{v}) - (\vec{u} \cdot \vec{v})^2.$$

So $(\vec{u} \cdot \vec{v})^2 < (\vec{u} \cdot \vec{u})(\vec{v} \cdot \vec{v})$.

Step 2. If \vec{u} and \vec{v} are linearly dependent then either $\vec{u} = \lambda \vec{v}$ or $\vec{v} = \lambda \vec{u}$. For both cases, it is obvious that $(\vec{u} \cdot \vec{v})^2 = (\vec{u} \cdot \vec{u})(\vec{v} \cdot \vec{v})$.

By the Cauchy–Schwarz inequality, for any $\vec{u}, \vec{v} \in \mathbb{R}^n - \{\vec{0}\}$ we have

$$-1 \leq \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|\|\vec{v}\|} \leq 1.$$

3
Remarks:
1. By definition, we have $\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \theta$.
2. By Cauchy–Schwarz inequality, $\theta = 0$ or π iff \vec{u} and \vec{v} are linearly dependent. It is not hard to see that $\theta = 0$ if \vec{u} and \vec{v} are in the same direction and $\theta = \pi$ if \vec{u} and \vec{v} are in the opposite direction.

Theorem 9. Let $\vec{u}, \vec{v} \in \mathbb{R}^n$ and $c \in \mathbb{R}$. Then
1. $|\vec{u}| \geq 0$ and $|\vec{u}| = 0$ iff $\vec{u} = \vec{0}$;
2. $|c\vec{u}| = |c||\vec{u}|$;
3. $|\vec{u} + \vec{v}| \leq |\vec{u}| + |\vec{v}|$ and the equality holds iff \vec{u} and \vec{v} are in the same direction.
(So we say \mathbb{R}^n equipped with $\| \cdot \|$ is a normed space.)

Proof. 1. and 2. have been shown already. For 3. we have

$$|\vec{u} + \vec{v}|^2 = \vec{u} \cdot \vec{u} + \vec{v} \cdot \vec{v} + 2(\vec{u} \cdot \vec{v}) \leq |\vec{u}|^2 + |\vec{v}|^2 + 2|\vec{u}||\vec{v}| \quad \text{[by Cauchy–Schwarz inequality.]}
$$

$$= (|\vec{u}| + |\vec{v}|)^2
$$

So $|\vec{u} + \vec{v}| \leq |\vec{u}| + |\vec{v}|$ and the equality holds iff $\vec{u} \cdot \vec{v} = |\vec{u}||\vec{v}|$ iff \vec{u} and \vec{v} are in the same direction. \(\square\)

Example: Textbook P.378.

Theorem 10. Let \vec{u}, \vec{v} and $\vec{w} \in \mathbb{R}^n$. Then
1. $d(\vec{u}, \vec{v}) \geq 0$ and $d(\vec{u}, \vec{v}) = 0$ iff $\vec{u} = \vec{v}$;
2. $d(\vec{u}, \vec{v}) = d(\vec{v}, \vec{u})$;
3. **Triangle inequality:** $d(\vec{u}, \vec{w}) \leq d(\vec{u}, \vec{v}) + d(\vec{v}, \vec{w})$.
(So we say \mathbb{R}^n equipped with $d(\cdot, \cdot)$ is a metric space.)

Proof. 1. and 2. are obvious. For 3., we have

$$d(\vec{u}, \vec{w}) = \|\vec{u} - \vec{w}\| = \|(\vec{u} - \vec{v}) + (\vec{v} - \vec{w})\| \leq \|\vec{u} - \vec{v}\| + \|\vec{v} - \vec{w}\| = d(\vec{u}, \vec{v}) + d(\vec{v}, \vec{w}).$$

\(\square\)

3 Orthogonality: More

Definition 11 (orthogonality,正交). Vectors \vec{u} and \vec{v} are said to be **orthogonal**, written as $\vec{u} \perp \vec{v}$, iff $\vec{u} \cdot \vec{v} = 0$. If neither \vec{u} nor \vec{v} is $\vec{0}$, then $\vec{u} \perp \vec{v}$ is equivalent to $\theta = \frac{\pi}{2}$.

4
Theorem 12. Let $\vec{u}, \vec{v} \in \mathbb{R}^n$.
1. the Cosine Theorem: If neither \vec{u} nor \vec{v} is $\vec{0}$, then
 $$\|\vec{u} - \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 - 2\|\vec{u}\|\|\vec{v}\|\cos \theta.$$
2. the Pythagorean Theorem: If $\vec{u} \perp \vec{v}$, then
 $$\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2.$$

Proof. 1.
$$\|\vec{u} - \vec{v}\|^2 = (\vec{u} - \vec{v}) \cdot (\vec{u} - \vec{v}) = \vec{u} \cdot \vec{u} + \vec{v} \cdot \vec{v} - 2(\vec{u} \cdot \vec{v}) = \|\vec{u}\|^2 + \|\vec{v}\|^2 - 2\|\vec{u}\|\|\vec{v}\|\cos \theta.$$
2.
$$\|\vec{u} + \vec{v}\|^2 = \vec{u} \cdot \vec{u} + \vec{v} \cdot \vec{v} + 2(\vec{u} \cdot \vec{v}) = \|\vec{u}\|^2 + \|\vec{v}\|^2.$$

Definition 13 (orthogonal complements, 正交补). If a vector \vec{z} is orthogonal to every vector in a subspace W of \mathbb{R}^n, then \vec{z} is said to be orthogonal to W. The set of all vector \vec{z} that are orthogonal to W is called the orthogonal complement of W and is denoted by W^\perp.

Theorem 14. Let W be a subspace of \mathbb{R}^n. Then W^\perp is a subspace.

Proof. Exercise.

Theorem 15. Let A be an $m \times n$ matrix. Then $(\text{Row}A)^\perp = \text{Nul}A$ and $(\text{Col}A)^\perp = \text{Nul}A^T$