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1 What Do You Learn from This Note

In this lecture note, we are considering a very special matrix equation for
a given square matrix A:

AT = . (1)

This equation is very important for developing optimisation algorithm for
many engineering problems( K ZR KIS FIR 22 1R 0 FALAL in) B4R v] LA
VG5 Dby fi 3K A AIE ) 7 R ) (] ).

Basic Concept: Eigenvalue(#1E{H), Eigenvector(ffE [1] #2), Characteris-
tic equation(‘FF1IE /7 1)
2 Eigenvalue & Eigenvector

Definition 1 (EIGENVALUE(HFfE{f) AND EIGENVECTOR(FFME[M ). Let
A be a n x n square matrix. An eigenvalue \ of A is a scalar such that
AZ = A% for some non—zero vector Z, which is called an eigenvector of A
corresponding to A (or a A—eigenvector).

Example: For any ¥ € R™ and A € R, we have (Al,,)¥ = AZ. So A is an
eigenvalue of \I,, and any non—zero vector is a A—eigenvector.

Example: Let A € R™ be non-invertible, which is equivalent to Nul(A) —
{0} # 0. Then we have AZ = 0 = 0% for any & € Nul(4) — {0}. So 0 is an
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eigenvalue of A and any non-zero vector in Nul(A) — {0} is a 0-eigenvector.

Warning: By definition, eigenvalue can take zero scalar whereas eigen-
vector is restricted to non—zero vectors.(fFfIE{E 1] LL/ZO, {HARE ] S ANRE
e ) i)

Examples: Textbook P.303.

Theorem 2. Ifvy,--- U, are eigenvectors that correspond to distinct eigen-
values A1, -+ , A\, of an nxn matriz A, the set vy,--- , U, is linearly indepen-
dent.

Proof. We conduct the proof by contradiction (FA1H & 1E7%) and induction
method.

1. STEP 1: We first prove for two eigenvectors v;, and v;, that correspond
to different eigenvalues \;,, \;,, U;, and ;, must be linearly independent.
If not, then we have v;, = ctj, for some c # 0. Also, Av;, = cAuv,, hence
)\7;117@'1 = C>\i227i2. COIIlblIlg with )\ill_fil = C)\i117i27 SO ()\11 - )\1'2)171'2 = 6
Since \;; # A, hence v;, = 0, which is impossible, as an eigenvector
must be non-zero.

2. STEP 2: for any r-1 eigenvector, v;,,--- ,¥; _, corresponding to r — 1
distinct eigenvalues are linearly independent.

3. SETP 3: for given r eigenvectors, If these r vectors are linearly de-
pendent, then there exists a vector ¢; such that ¢; is a linear combi-
nation of the other eigenvectors, that is there are a series of weights
C1,Coy " ,Ci—1,Cix1," - , ¢ some of which are not zero having

Uy = Uy + -+ + C_1U;i_1 + Cip1Uip1 + -+ + ¢ U, (2)
Also by multiplying A on both side, we have
Nl = et Mt + -+ Nic1Gio1Uim1 + G i1 Uigr + - F e N (3)
In addition, by multiplying A; on both sides of Eq. (2), then we have
AT = LNV + -+ F G Nilioy + Cip Al + - F e AT (4)

Combining Eqgs. 3 and 5, then we have

0= (A=) 01+ a1 (Ni—Xim) Ui i (Ni— A1) Ui+ - (A=)

()

—
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As the r — 1 eigenvectors vy, - - - ,U;_1,U;y1, - - , U, are linearly indepen-
dent, and not all the weights ci,co,- -+ ,¢;_1,¢i11,- -+ , ¢ are zero, then
there must be some weight ¢, # 0 so that A\; — Ax. This contradicts
to the statement that all the eigenvectors are distinct. Hence all the
r eigenvectors that correspond to r different eigenvalues are linearly
independent.

]

3 Computation of Eigenvalues and Eigenvec-

tors
Lemma 3. Let A be a n x n square matrix. Then for any scalar A\, we
have
{Z| AZ = Az} = Nul(A\I,, — A).
Proof.

{Z|AZ = T} = {Z| M — AT =0}
= {Z|(\,)T — AZ = 0}
= {Z|(\, — A)Z =0}
= Nul(Al, — A).

Theorem 4. Let A be an eigenvalue of a matrix A. Then all the A\—
eigenvectors of A together with the zero vector form a subspace, which is
called the eigenspace of A corresponding to A (or the A\—eigenspace).

Proof. Since the set of all A-eigenvectors together with 0 is exactly {# | A% =
AT} = Nul(A, — A), which is of course a subspace. O

Example: Textbook P.304.



Question? How to compute the eigenvalues?

Theorem 5. Let A be an n X n square matrix. Then the following state-
ments are equivalent:

1. A scalar ) is an eigenvalue of A.

2. Nul(\l,, — A) # {0}.

3. dim Nul(\/,, — A) > 1.

4. M,, — A is not invertible.

5. det(Al, — A) = 0.

Proof. Since A is an eigenvalue of A iff Nul(Al,, — A) contains a non-zero
vector iff Nul(Al, — A) # {0}. So1l. & 2., and 2. & 3. & 4. & 5. is
straightforward. m
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Example: Find all the eigenvalues of A = ( 9

_01 ) and the corresponding
eigenspaces.

Solution. Suppose that A\ is an eigenvalue of A. Then by THEOREM 4,
det(A, — A) = 0, that is det ( A__23 i
minant, we get a quadratic equation A2 — 3\ + 2 = 0 in \. By solving this
equation, we obtain all the eigenvalues of A are 1 and 2.

The 1-eigenspace is Nul(/; — A), that is the solution set of the homogenous
equation (I — A)Z = 0. By solving this equation, we obtain the 1-eigenspace
is Span{(1 2)7}.

Similarly, we can find the 2-eigenspace, which is Span{(1 1)}.

= 0. By expanding this deter-

By the Theorem 5, we can easily have:

Theorem 6. The eigenvalues of a triangular matriz are the entries on its
main diagonal.

Motivated by the above example of finding eigenvalues, we have

Definition 7 (CHARACTERISTIC EQUATION($FEJ7#2)). Let Abeanxn

square matrix. The characteristic equation of A is defined to be det(AI,, —
A)=0.



Remarks: The eigenvalues of A are precisely the roots of ¢4(\) in the set of
scalars. Hence the number of distinct eigenvalues must be lest than n.

Example: Textbook P.313.

Example: Find all the eigenvalues of A = (1) _01 ) and the corresponding
eigenspaces over R and C respectively.

Solution. 1. A € R?*2,

The characteristic polynomial c4(\) = det _)\1 /1\ ) = A2+ 1. Since c4(\)

has no real root, so no eigenvalue exists in R.

2. A e C*2

In this case, ¢4 has roots i and —i, which are all eigenvalues of A.

The i—eigenspace is Nul(il; — A), which can be computed by solving equation
(il — A)Z = 0 and the result is Span{(i 1)”}. Similarly, we can obtain the
(—i)—eigenspace Span{(—i 1)7}.

This example illustrates that the existence of eigenvalues depends on the set
of scalars (which is in fact a field).

Summary of the procedure of computing eigenvalues.

For a given square matrix A, its eigenvalues and the corresponding eigenspaces

are computed as follows:

1. Expand ca(\) = det(A\, — A);

2. Solve c4(A) = 0 in the set of scalars (R or C in this course) to obtain all
the eigenvalues, say i, ..., A,

3. For each i = 1,...,r, solve the homogenous equation (\;I,, — A)¥ = 0 and
the solution set is the \;—eigenspace.



4 Diagonalization

We are now considering a special matrix factorization for some square
matrix using eigenvectors and eigenvalues, which has the following forms

A=PDP". (6)

where P is an invertible matrix and D is a diagonal matrix. This factorization
enables us to compute A¥ by

A¥ = pDFp~ (7)

We are now formally introducing the diagonalization processing.

Definition 8 (Similarity). Two square matriz A and B are similar if there
is an invertible matriz P such that P~'AP = B, or say equivalently A =
PBP~t. Changing A into P~YAP is called a similarity transformation.

Definition 9 (DIAGONALIZABLE MATRIX). Let A be a square matrix. A is
said to be diagonalisable if A is similar to a diagonal matrix D or equivalently,
there exists an invertible matrix P such that P~'AP is diagonal.

Theorem 10. If two n X n matrices A and B are similar, they have the
same characteristic polynomial and hence the same eigenvalues.

Proof. Since A and B are similar, there exists an invertible matrix P such
that B = P~ AP. Therefore, we have

B—X =P AP - AP 'IP =P ' (A- )P,
So
det B = det(P~'(A — AI)P)
= det P~' det(A — \I) det P
= det P! det Pdet(A — \)
= det(P~'P)det(A — )
= det I det(A — )
= det(A — \I).



Not all square matrices are diagonalisable, then we have the following
question:

Question: When can a square matrix A be diagonalized?

Theorem 11. Let A € R™". A is diagonalisable iff there exists a basis
B = {vy,...,9,} such that ¢},...,0, are linearly independent eigenvectors
of A.

Proof. We prove the theorem by the following steps:

STEP 1. Suppose that A is diagonalisable. Then there exists an invertible
matrix P = (¥, --- ¥,) and a diagonal matrix D = diag(Ay,...,\,) such
that AP = PD. So

(AVy -+ Al,) = AP = PD = (MU -+ \i).

So for all 7, v; is a \;—eigenvector of A, also the invertibility of P ensures that
{?1,...,1,} forms a basis.

STEP 2. Conversely, let P = (v --- 9,). Fori =1,...,n, let \; be the
eigenvalue with eigenvector v;. Thus we have

AP = Pdiag(\1, ..., \y).
Since the eigenvectors are linearly independent, P is invertible, thus we have:
A = Pdiag(\y, ..., \,) P
m
Remark: The basis v} --- #, in the above theorem is called an eigenvector
basis.

Corollary 12. If A € R™" has n distinct eigenvalues then A is diagonal-
isable.

Proof. By THEOREM 2, {7},...,¥,} is linearly independent, where for i =
1,...,n, U; is some \;—eigenvector. So {#,...,,} is a basis and A is diago-
nalisable by by THEOREM 9. [



Question: Can we still perform diagonalization when not all eigenvalues are
distinct?

Theorem 13. Let A{,..., A, be distinct eigenvalues of A € R™"™. For
i=1,...,r, let S; = {Ui,...,Un,} be a linearly independent set of \,—
eigenspace. Then S = |J;_, S; is linearly independent.

Proof. For ¢« = 1,...,r, let ¢;1,..., ¢y, be scalars and w; = cyv;1 + -+ +
Cin, Uin,; - Suppose that wh +- - -+, = 0. We need to show ¢;; = - -+ = Cin; = 0
foralli=1,...,7. Now for i = 1,...,r, ; is either 0 or a A;i—eigenvector.
But {d,...,w,} is linearly dependent, which forces that w; = - - - = W, = 0,
otherwise contradicting the result of THEOREM 2. So for all ¢ = 1,...,r,
Ci1 =+ = Cin, = 0 since 5; is linearly independent. O

Corollary 14. Let Aq,..., )\, be all distinct eigenvalues of A € R™*" and
n; the dimension of \,—eigenspace for ¢ = 1,...,r. Then A is diagonalisable

iff >, n; =n.

Proof. Suppose A is similar to D, where D is diagonal. Then it is not hard
to see that A and D have the same set of eigenvalues and the dimensions of
the corresponding eigenspaces are equal (Exercise). But for D, hence for A,
we have Y7, n; = n.

Conversely, suppose that B; is a basis of \;—eigenspace for : = 1,...,r. Then
B = J;_, B; is linearly independent by THEOREM 13. Also |B| =3/, n; =
n. So B is a basis consisting of eigenvectors. So A is diagonalisable by
THEOREM 11. [l

According to COROLLARY 14, the following procedure can be used to
determined whether or not a given A € M,, is diagonalisable and in the af-
firmative case, a matrix P such that P~'AP is diagonal is computed.

STEP 1: Compute all eigenvalues Ay, ..., A, of A.

STEP 2: For each ¢ = 1,...,r, compute a basis B; of the \;—eigenspace.
STEP 3: If Y. | |Bi] # n, then A is not diagonalisable. Otherwise, the
matrix P = (¢} --- 4,), where {¢y,...,9,} = J;_, B, satisfies that P~ AP
is diagonal.

Example: Textbook P.324.



4.1 A Linear Transformation View of Diagolization

Objective: We aim to understand the diagonalization of matrix A from the
linear transformation view of point (FEASTYY, AT FH 4 1AL 0 fid R
X RERE ATRNS UG ERATE).

STEP 1: Linear Transformation between Vector Space V' gngl W
Let T be the linear transformation between V and W. Let B = {by,bo,- -+ ,b,}

be a basis of vector space V. Let C = {¢}, ¢, ,¢n} be a basis of vector
space W.

Then any Z € V can be represented by a linear combination of I;l, 52, cee I;n
with weight ry, 79, -+, 7, as follows:

f:T161+"'+Tngn:B[f]3.

T1

where B = [by, by, - ,by] and [T]g = : | . Then by the definition of
'n

linear transformation, we have

—

T(&) = T(riby + -+ + ruby)
=T (by) + - +r.T(by)
So, the coordinate of T'(Z) under basis C' in W is

([T(F)]e = ri[T(by)le + - - + ralT(ba)lc

= M|zl (10)

where M = ([T(0)]e, -, [T(bn)le).
We call matrix M as the matrix for T relative to the bases B to C.

STEP 2: Linear Transformation from V to V (i.e. W = V). In
this case, the M matrix is called the matrix for T relative to B, or the
B-matrix for T. We re-denote this B-matrix by [T]z as follows:

-

[T)5 = ([T(5)]s, -+, [T(bn)]s).
Then, for all ¥ € V', we have

[T'(7)]s = [T]s]]5 (11)

STEP 3: Diagonal Matrix Representation. Now, we reach the main
result of this part.



Theorem 15. Suppose two square matrices A and C are similar, that is
there exists an invertible matriz P such that A = PCP~!, where C isn x n
matriz. Let B be the basis for R™ formed from the columns of P, then C s
the B— matriz for the transformation T : ¥ — AZ.

Proof. Let P = [51, e ,l;n], so B = {l;l, e ,gn} Note that
i = PlX]pg — P'7=[1]5.
Also, since we are discussing the linear transformation in R", so we have
T(%) = AZ.
Now we investigate the form of B—matrix. That is
(7] = (T(b1)]s, -, [T(5n)]5)
= ([Abi]s, -, [Abu]s)
= (P~ Aby,--- , P71 Ab,)

. . (12)
=P Ay, ba)
=P lAP
=C.
O

Remark. When C' = D in the last theorem, it means diagolizing A amounts
to finding a diagonal matrix representation of T : & — AZ.

5 Complex Eigenvalues

Actually all our preceding introduction can be straightforwardly extended
to the complex domain, by changing R™ to C" and changing R™*" to C"*".
When the eigenvalue A is a complex value, we call it the complex eigenvalue
and its corresponding vect ;

RHOMBICUBOCTAHEDRON, by Da Vinct
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