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1 What Do You Learn from This Note

In this lecture note, we are considering a very special matrix equation for
a given square matrix A:

Ax⃗ = λx⃗. (1)

This equation is very important for developing optimisation algorithm for
many engineering problems(大家将来遇到很多的科学计算优化问题都可以
归结为解这个特征向量方程的问题).

Basic Concept：Eigenvalue(特征值), Eigenvector(特征向量), Characteris-
tic equation(特征方程)

2 Eigenvalue & Eigenvector

Definition 1 (eigenvalue(特征值) and eigenvector(特征向量)). Let
A be a n × n square matrix. An eigenvalue λ of A is a scalar such that
Ax⃗ = λx⃗ for some non–zero vector x⃗, which is called an eigenvector of A
corresponding to λ (or a λ–eigenvector).

Example: For any x⃗ ∈ Rn and λ ∈ R, we have (λIn)x⃗ = λx⃗. So λ is an
eigenvalue of λIn and any non–zero vector is a λ–eigenvector.

Example: Let A ∈ Rn be non–invertible, which is equivalent to Nul(A) −
{⃗0} ̸= ∅. Then we have Ax⃗ = 0⃗ = 0x⃗ for any x⃗ ∈ Nul(A) − {⃗0}. So 0 is an
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eigenvalue of A and any non–zero vector in Nul(A)− {⃗0} is a 0–eigenvector.

Warning: By definition, eigenvalue can take zero scalar whereas eigen-
vector is restricted to non–zero vectors.(特征值可以是0，但特征向量不能
是零向量)

Examples: Textbook P.303.

Theorem 2. If v⃗1, · · · , v⃗r are eigenvectors that correspond to distinct eigen-
values λ1, · · · , λr of an n×n matrix A, the set v⃗1, · · · , v⃗r is linearly indepen-
dent.

Proof. We conduct the proof by contradiction (我们用反正法) and induction
method.

1. STEP 1: We first prove for two eigenvectors v⃗i1 and v⃗i2 that correspond
to different eigenvalues λi1 , λi2 , v⃗i1 and v⃗i2 must be linearly independent.
If not, then we have v⃗i1 = cv⃗i2 for some c ̸= 0. Also, Av⃗i1 = cAv⃗i2 , hence
λi1 v⃗i1 = cλi2 v⃗i2 . Combing with λi1 v⃗i1 = cλi1 v⃗i2 , so (λi1 − λi2)v⃗i2 = 0⃗.
Since λi1 ̸= λi2 , hence v⃗i2 = 0⃗, which is impossible, as an eigenvector
must be non-zero.

2. STEP 2: for any r-1 eigenvector, v⃗i1 , · · · , v⃗ir−1 corresponding to r − 1
distinct eigenvalues are linearly independent.

3. SETP 3: for given r eigenvectors, If these r vectors are linearly de-
pendent, then there exists a vector v⃗i such that v⃗i is a linear combi-
nation of the other eigenvectors, that is there are a series of weights
c1, c2, · · · , ci−1, ci+1, · · · , cr some of which are not zero having

v⃗i = c1v⃗1 + · · ·+ ci−1v⃗i−1 + ci+1v⃗i+1 + · · ·+ crv⃗r. (2)

Also by multiplying A on both side, we have

λiv⃗i = c1λ1v⃗1 + · · ·+ λi−1ci−1v⃗i−1 + ci+1λi+1v⃗i+1 + · · ·+ crλrv⃗r. (3)

In addition, by multiplying λi on both sides of Eq. (2), then we have

λiv⃗i = c1λiv⃗1 + · · ·+ ci−1λiv⃗i−1 + ci+1λiv⃗i+1 + · · ·+ crλiv⃗r. (4)

Combining Eqs. 3 and 5, then we have

0⃗ = c1(λi−λ1)v⃗1+· · ·+ci−1(λi−λi−1)v⃗i−1+ci+1(λi−λi+1)v⃗i+1+· · ·+cr(λi−λr)v⃗r.
(5)
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As the r−1 eigenvectors v⃗1, · · · , v⃗i−1, v⃗i+1, · · · , v⃗r are linearly indepen-
dent, and not all the weights c1, c2, · · · , ci−1, ci+1, · · · , cr are zero, then
there must be some weight ck ̸= 0 so that λi − λk. This contradicts
to the statement that all the eigenvectors are distinct. Hence all the
r eigenvectors that correspond to r different eigenvalues are linearly
independent.

3 Computation of Eigenvalues and Eigenvec-

tors

Lemma 3. Let A be a n × n square matrix. Then for any scalar λ, we
have

{x⃗ |Ax⃗ = λx⃗} = Nul(λIn − A).

Proof.

{x⃗ |Ax⃗ = λx⃗} = {x⃗ |λx⃗− Ax⃗ = 0⃗}
= {x⃗ | (λIn)x⃗− Ax⃗ = 0⃗}
= {x⃗ | (λIn − A)x⃗ = 0⃗}
= Nul(λIn − A).

Theorem 4. Let λ be an eigenvalue of a matrix A. Then all the λ–
eigenvectors of A together with the zero vector form a subspace, which is
called the eigenspace of A corresponding to λ (or the λ–eigenspace).

Proof. Since the set of all λ–eigenvectors together with 0⃗ is exactly {x⃗ |Ax⃗ =
λx⃗} = Nul(λIn − A), which is of course a subspace.

Example: Textbook P.304.
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Question? How to compute the eigenvalues?

Theorem 5. Let A be an n× n square matrix. Then the following state-
ments are equivalent:
1. A scalar λ is an eigenvalue of A.
2. Nul(λIn − A) ̸= {⃗0}.
3. dimNul(λIn − A) > 1.
4. λIn − A is not invertible.
5. det(λIn − A) = 0.

Proof. Since λ is an eigenvalue of A iff Nul(λIn − A) contains a non–zero
vector iff Nul(λIn − A) ̸= {⃗0}. So 1. ⇔ 2., and 2. ⇔ 3. ⇔ 4. ⇔ 5. is
straightforward.

Example: Find all the eigenvalues of A =

(
3 −1
2 0

)
and the corresponding

eigenspaces.

Solution. Suppose that λ is an eigenvalue of A. Then by Theorem 4,

det(λIn − A) = 0, that is det

(
λ− 3 1
−2 λ

)
= 0. By expanding this deter-

minant, we get a quadratic equation λ2 − 3λ + 2 = 0 in λ. By solving this
equation, we obtain all the eigenvalues of A are 1 and 2.
The 1–eigenspace is Nul(I2 −A), that is the solution set of the homogenous
equation (I2−A)x⃗ = 0⃗. By solving this equation, we obtain the 1–eigenspace
is Span{(1 2)T}.
Similarly, we can find the 2–eigenspace, which is Span{(1 1)T}.

By the Theorem 5, we can easily have:

Theorem 6. The eigenvalues of a triangular matrix are the entries on its
main diagonal.

Motivated by the above example of finding eigenvalues, we have

Definition 7 (characteristic equation(特征方程)). Let A be a n× n
square matrix. The characteristic equation of A is defined to be det(λIn −
A) = 0.
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Remarks: The eigenvalues of A are precisely the roots of cA(λ) in the set of
scalars. Hence the number of distinct eigenvalues must be lest than n.

Example: Textbook P.313.

Example: Find all the eigenvalues of A =

(
0 −1
1 0

)
and the corresponding

eigenspaces over R and C respectively.

Solution. 1. A ∈ R2×2.

The characteristic polynomial cA(λ) = det

(
λ 1
−1 λ

)
= λ2+1. Since cA(λ)

has no real root, so no eigenvalue exists in R.
2. A ∈ C2×2.
In this case, cA has roots i and −i, which are all eigenvalues of A.
The i–eigenspace is Nul(iI2−A), which can be computed by solving equation
(iI2 − A)x⃗ = 0 and the result is Span{(i 1)T}. Similarly, we can obtain the
(−i)–eigenspace Span{(−i 1)T}.
This example illustrates that the existence of eigenvalues depends on the set
of scalars (which is in fact a field).

Summary of the procedure of computing eigenvalues.
For a given square matrixA, its eigenvalues and the corresponding eigenspaces

are computed as follows:
1. Expand cA(λ) = det(λIn − A);
2. Solve cA(λ) = 0 in the set of scalars (R or C in this course) to obtain all
the eigenvalues, say λ1, . . . , λr.
3. For each i = 1, . . . , r, solve the homogenous equation (λiIn −A)x⃗ = 0⃗ and
the solution set is the λi–eigenspace.
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4 Diagonalization

We are now considering a special matrix factorization for some square
matrix using eigenvectors and eigenvalues, which has the following forms

A = PDP−1. (6)

where P is an invertible matrix andD is a diagonal matrix. This factorization
enables us to compute Ak by

Ak = PDkP−1. (7)

We are now formally introducing the diagonalization processing.

Definition 8 (Similarity). Two square matrix A and B are similar if there
is an invertible matrix P such that P−1AP = B, or say equivalently A =
PBP−1. Changing A into P−1AP is called a similarity transformation.

Definition 9 (Diagonalizable Matrix). Let A be a square matrix. A is
said to be diagonalisable if A is similar to a diagonal matrixD or equivalently,
there exists an invertible matrix P such that P−1AP is diagonal.

Theorem 10. If two n × n matrices A and B are similar, they have the
same characteristic polynomial and hence the same eigenvalues.

Proof. Since A and B are similar, there exists an invertible matrix P such
that B = P−1AP . Therefore, we have

B − λI = P−1AP − λP−1IP = P−1(A− λI)P,

So

detB = det(P−1(A− λI)P )

= detP−1 det(A− λI) detP

= detP−1 detP det(A− λI)

= det(P−1P ) det(A− λI)

= det I det(A− λI)

= det(A− λI).

(8)
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Not all square matrices are diagonalisable, then we have the following
question:

Question: When can a square matrix A be diagonalized?

Theorem 11. Let A ∈ Rn×n. A is diagonalisable iff there exists a basis
B = {v⃗1, . . . , v⃗n} such that v⃗1, . . . , v⃗n are linearly independent eigenvectors
of A.

Proof. We prove the theorem by the following steps:
STEP 1. Suppose that A is diagonalisable. Then there exists an invertible
matrix P = (v⃗1 · · · v⃗n) and a diagonal matrix D = diag(λ1, . . . , λn) such
that AP = PD. So

(Av⃗1 · · · Av⃗n) = AP = PD = (λ1v⃗1 · · · λnv⃗n).

So for all i, v⃗i is a λi–eigenvector of A, also the invertibility of P ensures that
{v⃗1, . . . , v⃗n} forms a basis.
STEP 2. Conversely, let P = (v⃗1 · · · v⃗n). For i = 1, . . . , n, let λi be the
eigenvalue with eigenvector v⃗i. Thus we have

AP = Pdiag(λ1, . . . , λn).

Since the eigenvectors are linearly independent, P is invertible, thus we have:

A = Pdiag(λ1, . . . , λn)P
−1.

Remark: The basis v⃗1 · · · v⃗n in the above theorem is called an eigenvector
basis.

Corollary 12. If A ∈ Rn×n has n distinct eigenvalues then A is diagonal-
isable.

Proof. By Theorem 2, {v⃗1, . . . , v⃗n} is linearly independent, where for i =
1, . . . , n, v⃗i is some λi–eigenvector. So {v⃗1, . . . , v⃗n} is a basis and A is diago-
nalisable by by Theorem 9.
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Question: Can we still perform diagonalization when not all eigenvalues are
distinct?

Theorem 13. Let λ1, . . . , λr be distinct eigenvalues of A ∈ Rn×n. For
i = 1, . . . , r, let Si = {v⃗i1, . . . , v⃗ini

} be a linearly independent set of λi–
eigenspace. Then S =

∪r
i=1 Si is linearly independent.

Proof. For i = 1, . . . , r, let ci1, . . . , cini
be scalars and w⃗i = ci1v⃗i1 + · · · +

cini
v⃗ini

. Suppose that w⃗1+ · · ·+w⃗r = 0⃗. We need to show ci1 = · · · = cini
= 0

for all i = 1, . . . , r. Now for i = 1, . . . , r, w⃗i is either 0⃗ or a λi–eigenvector.
But {w⃗1, . . . , w⃗r} is linearly dependent, which forces that w⃗1 = · · · = w⃗r = 0⃗,
otherwise contradicting the result of Theorem 2. So for all i = 1, . . . , r,
ci1 = · · · = cini

= 0 since Si is linearly independent.

Corollary 14. Let λ1, . . . , λr be all distinct eigenvalues of A ∈ Rn×n and
ni the dimension of λi–eigenspace for i = 1, . . . , r. Then A is diagonalisable
iff

∑r
i=1 ni = n.

Proof. Suppose A is similar to D, where D is diagonal. Then it is not hard
to see that A and D have the same set of eigenvalues and the dimensions of
the corresponding eigenspaces are equal (Exercise). But for D, hence for A,
we have

∑r
i=1 ni = n.

Conversely, suppose that Bi is a basis of λi–eigenspace for i = 1, . . . , r. Then
B =

∪r
i=1 Bi is linearly independent by Theorem 13. Also |B| =

∑r
i=1 ni =

n. So B is a basis consisting of eigenvectors. So A is diagonalisable by
Theorem 11.

According to Corollary 14, the following procedure can be used to
determined whether or not a given A ∈ Mn is diagonalisable and in the af-
firmative case, a matrix P such that P−1AP is diagonal is computed.
Step 1: Compute all eigenvalues λ1, . . . , λr of A.
Step 2: For each i = 1, . . . , r, compute a basis Bi of the λi–eigenspace.
Step 3: If

∑r
i=1 |Bi| ̸= n, then A is not diagonalisable. Otherwise, the

matrix P = (v⃗1 · · · v⃗n), where {v⃗1, . . . , v⃗n} =
∪r

i=1 Bi, satisfies that P
−1AP

is diagonal.

Example: Textbook P.324.
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4.1 A Linear Transformation View of Diagolization

Objective: We aim to understand the diagonalization of matrix A from the
linear transformation view of point (在本节，我们尝试利用线性变换解释
对矩阵A的对角话操作).

STEP 1: Linear Transformation between Vector Space V and W
Let T be the linear transformation between V andW . Let B = {⃗b1, b⃗2, · · · , b⃗n}

be a basis of vector space V . Let C = {c⃗1, c⃗2, · · · , c⃗m} be a basis of vector
space W .

Then any x⃗ ∈ V can be represented by a linear combination of b⃗1, b⃗2, · · · , b⃗n
with weight r1, r2, · · · , rn as follows:

x⃗ = r1⃗b1 + · · ·+ rn⃗bn = B[x⃗]B.

where B = [⃗b1, b⃗2, · · · , b⃗n] and [x⃗]B =

 r1
...
rn

 . Then by the definition of

linear transformation, we have

T (x⃗) = T (r1⃗b1 + · · ·+ rn⃗bn)

= r1T (⃗b1) + · · ·+ rnT (⃗bn)
(9)

So, the coordinate of T (x⃗) under basis C in W is

[T (x⃗)]C = r1[T (⃗b1)]C + · · ·+ rn[T (⃗bn)]C

= M [x]B,
(10)

where M =
(
[T (⃗b1)]C, · · · , [T (⃗bn)]C

)
.

We call matrix M as the matrix for T relative to the bases B to C.

STEP 2: Linear Transformation from V to V (i.e. W = V ). In
this case, the M matrix is called the matrix for T relative to B, or the
B-matrix for T. We re-denote this B-matrix by [T ]B as follows:

[T ]B =
(
[T (⃗b1)]B, · · · , [T (⃗bn)]B

)
.

Then, for all x⃗ ∈ V , we have

[T (x⃗)]B = [T ]B[x⃗]B (11)

STEP 3: Diagonal Matrix Representation. Now, we reach the main
result of this part.
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Theorem 15. Suppose two square matrices A and C are similar, that is
there exists an invertible matrix P such that A = PCP−1, where C is n× n
matrix. Let B be the basis for Rn formed from the columns of P , then C is
the B− matrix for the transformation T : x⃗ −→ Ax⃗.

Proof. Let P = [⃗b1, · · · , b⃗n], so B = {⃗b1, · · · , b⃗n}. Note that

x⃗ = P [x⃗]B −→ P−1x⃗ = [x⃗]B.

Also, since we are discussing the linear transformation in Rn, so we have

T (x⃗) = Ax⃗.

Now we investigate the form of B−matrix. That is

[T ]B =
(
[T (⃗b1)]B, · · · , [T (⃗bn)]B

)
=

(
[A⃗b1]B, · · · , [A⃗bn]B

)
=

(
P−1A⃗b1, · · · , P−1A⃗bn

)
= P−1A

(⃗
b1, · · · , b⃗n

)
= P−1AP

= C.

(12)

Remark. When C = D in the last theorem, it means diagolizing A amounts
to finding a diagonal matrix representation of T : x⃗ −→ Ax⃗.

5 Complex Eigenvalues

Actually all our preceding introduction can be straightforwardly extended
to the complex domain, by changing Rn to Cn and changing Rn×n to Cn×n.
When the eigenvalue λ is a complex value, we call it the complex eigenvalue
and its corresponding vector as complex eigenvector.

Rhombicuboctahedron, by Da Vinci
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