15. Dimension and Rank

Wei-Shi Zheng,
wszheng@ieee.org, 2011

November 10, 2011

1 What Do You Learn from This Note

We still observe the unit vectors we have introduced in Chapter 1:

\[\vec{e}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \vec{e}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad \vec{e}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}. \] (1)

We know the above are the basis (specially the standard basis) of \(\mathbb{R}^3 \). However, we still have to answer the following question:

Question: Why there are three basis in \(\mathbb{R}^3 \)?

Basic Concept: dimension(维数), rank(秩)
2 Dimension

Theorem 1. Let V be a vector space with basis $\mathcal{B} = \{\vec{b}_1, \ldots, \vec{b}_n\}$. Then any subset of V containing more than n vectors is linearly dependent.

Proof. Let $p \in \mathbb{N}$ and $p > n$. Assume that $\{\vec{u}_1, \ldots, \vec{u}_p\} \subseteq V$. As \mathcal{B} is the basis, so we have for each \vec{u}_i there exists a coefficient vector $\vec{a}_i \in \mathbb{R}^n$ such that

$$\vec{u}_i = B\vec{a}_i, \quad B = [\vec{b}_1, \ldots, \vec{b}_n].$$

Let $A = [\vec{a}_1, \ldots, \vec{a}_p], U = [\vec{u}_1, \ldots, \vec{u}_p]$. Then

$$U = BA.$$

The if there is a series of weight c_1, \ldots, c_p such that $c_1\vec{u}_1 + \cdots + c_p\vec{u}_p = \vec{0}$, that is

$$U\vec{c} = \vec{0},$$

then we have

$$BA\vec{c} = \vec{0}.$$

As the number of rows is smaller than the number of columns of BA, so that is there are non-pivot columns in BA. This leads to the matrix equation $BA\vec{c}$ has non-trivial solution. So there exists non-zeros \vec{c} such that $U\vec{c} = \vec{0}$. That is $\vec{u}_1, \ldots, \vec{u}_p$ are linearly dependent.

Theorem 2. Let V be a vector space with bases \mathcal{B}, \mathcal{C} of sizes $m, n \in \mathbb{N}$ respectively. Then $m = n$. That is every basis of V has the same size.

Proof. Since \mathcal{C} is linearly independent, by **Theorem 1**, we must have $m \geq n$. Similarly, $n \geq m$. So $m = n$.

Definition 3 (dimension). Let V be a vector space with a finite subset as its basis. Then the size of its basis is called the dimension of V and is denoted by $\dim V$, and we say V is finite-dimensional. Otherwise, if V can not be spanned by a finite set then V is infinite-dimensional.

Remark:
(1) $\dim \mathbb{R}^n = n$.
(2) The space with all polynomials (多项式空间) is infinite-dimensional.
3 Subspace & Dimension

Theorem 4. Let \(V \) be a vector space of dimension \(n \in \mathbb{N} \). Then any linearly independent subset \(\{\vec{v}_1, \ldots, \vec{v}_m\} \) of \(V \) can be extended to a basis of \(V \).

Proof. We prove this theorem by the following steps:

1. When \(m = n \), because if Span\(\{\vec{v}_1, \ldots, \vec{v}_m\} = V \) then \(\{\vec{v}_1, \ldots, \vec{v}_m\} \) is a basis of \(V \).

2. When \(m < n \) Span\(\{\vec{v}_1, \ldots, \vec{v}_m\} \subset V \) and we can pick \(\vec{v}_{m+1} \in V - \text{Span}\{\vec{v}_1, \ldots, \vec{v}_m\} \). We claim that \(\{\vec{v}_1, \ldots, \vec{v}_m, \vec{v}_{m+1}\} \) is linearly independent. Assume this is not the case, then there exist \(c_1, \ldots, c_m, c_{m+1} \) which are not all zero such that \(c_1 \vec{v}_1 + \cdots + c_m \vec{v}_m + c_{m+1} \vec{v}_{m+1} = 0 \).

 If \(c_{m+1} = 0 \) then \(\{\vec{v}_1, \ldots, \vec{v}_m\} \) is linearly dependent, otherwise \(\vec{v}_{m+1} \in \text{Span}\{\vec{v}_1, \ldots, \vec{v}_m\} \). Both cases contradict the assumptions we made. So \(\{\vec{v}_1, \ldots, \vec{v}_m, \vec{v}_{m+1}\} \) is linearly independent.

3. If \(\{\vec{v}_1, \ldots, \vec{v}_m, \vec{v}_{m+1}\} \) spans \(V \) then we obtain a basis, otherwise repeat this process again and finally, we must obtain a linearly independent set containing \(\{\vec{v}_1, \ldots, \vec{v}_m\} \) spans \(V \), that is a basis.

Theorem 5. Let \(H \) be a subspace of a finite-dimension vector space \(V \). Any linearly independent set in \(H \) can be expanded, if necessary, to a basis for \(H \). Also, \(H \) is finite-dimensional and

\[
\dim H \leq \dim V
\]

Theorem 6. Let \(V \) be a vector space of dimension \(p \geq 1 \). Any linearly independent set of exactly \(p \) elements in \(V \) is automatically a basis for \(V \). Any set of exactly \(p \) elements that spans \(V \) is automatically a basis for \(V \).

Proof. By theorem 4, any linearly independent set \(S \) of size \(q \leq p \) can be expanded to the basis of \(V \). This implies, if \(q = p \), then \(S \) must be the basis of \(V \).

Theorem 7. The dimension of NuA is the number of free variables in the equation \(A\vec{x} = 0 \), and the dimension of ColA is the number of pivot columns in \(A \).
4 Rank of a Matrix A

4.1 Row Space

Definition 8 (Row Space). If A is an $m \times n$ matrix. The set of all linear combinations of the row vectors is called the row space of A, denoted by $\text{Row}A$.

From another point of view, the rows of A are identical to the columns of A^T, so the row space of A can also be written as $\text{Col}A^T$.

Theorem 9. If two $m \times n$ matrices A and B are row equivalent, their row spaces are the same.

Proof. Since A and B are row equivalent, there exists an invertible matrix G such that

$$B = GA.\tag{1}$$

That is

$$B^T = A^T G^T = A^T F, \quad F = G^T.\tag{2}$$

By using the matrix partition theory, let $A^T = [\text{Col}_1 A^T, \ldots, \text{Col}_m A^T]$, $F = [\text{Col}_1 F, \ldots, \text{Col}_m F]$, then

$$\begin{align*}
[\text{Col}_1 B^T, \ldots, \text{Col}_i B^T, \ldots, \text{Col}_m A^T] \\
= B^T \\
= A^T F \\
= [A^T \text{Col}_1 F, \ldots, A^T \text{Col}_i F, \ldots, A^T \text{Col}_m F].
\end{align*}$$

That is

$$\text{Col}_i B^T = A^T \text{Col}_i F.\tag{3}$$

Since $(\text{Row}_i A)^T = \text{Col}_i A^T$ and $(\text{Row}_i B)^T = \text{Col}_i B^T$, so

$$\text{Row}_i B = [F]_{1i} \text{Row}_i A + \cdots + [F]_{mi} \text{Row}_m A.$$

That is $\text{Row}B \subseteq \text{Row}A$.

Conversely, by changing the roles of A and B in the above, we can also have $\text{Row}B \subseteq \text{Row}A$. So, $\text{Row}B = \text{Row}A$.

Theorem 10. If two $m \times n$ matrices A and B are row equivalent, and B is in echelon form, then the nonzero rows of B form a basis for the row space of A as well as for that of B.
4.2 Definition and Properties of Rank

Definition 11 (column & row rank). Let A be a $m \times n$ matrix. The column rank of A is defined to be $\dim \text{Col}(A)$ and the row rank of A to be $\dim \text{Row}(A)$.

Remark: The dimension of the null space is sometimes called the **nullity** of A.

Theorem 12 (Rank Theorem). The dimensions of the column space and the row space of an $m \times n$ matrix A are equal. Also, it holds that:

\[\text{rank} A + \dim \text{Nul} A = n. \] (4)

Proof. We know

1. rankA is the number of pivot columns in A. That is if B is an echelon form of A, i.e. rankA is the number of pivot positions in B.
2. Each pivot position corresponds to a nonzero row, and these rows form a basis for the row space of A, so the rank of A is also the dimension of the row space.
3. The dimension of NulA equals the number of free variables in the equation $A\vec{x} = \vec{0}$. That is the dimension of NulA is the number of columns of A that are not pivot columns.
4. Number of pivot columns + number of non-pivot columns = number of columns, i.e.

\[\text{rank} A + \dim \text{Nul} A = n. \]
5 Computation of Null Space and Rang Space

We are now discussing how to compute bases of \(\text{Col}(A) \) and \(\text{Nul}(A) \) given \(A \in \mathbb{R}^{m \times n} \).

Computation of Column Space: Let \(A = (\vec{a}_1 \ldots \vec{a}_n) \in \mathbb{R}^{m \times n} \). Then there exists an invertible matrix \(B \in \mathbb{R}^{m \times m} \) such that \(BA \) is in REF. Let \(B\vec{a}_i_1, \ldots, B\vec{a}_i_r \) be all the pivot columns of \(BA \). Then it is obvious that \(\{B\vec{a}_i_1, \ldots, B\vec{a}_i_r\} \) is a basis of \(\text{Col}(BA) \). Since \(B \) is invertible and by Theorem 15.4, \(\{\vec{a}_i_1, \ldots, \vec{a}_i_r\} \) forms a basis of \(\text{Col}(A) \), that is the set of pivot columns of \(A \) is a basis of \(\text{Col}(A) \).

Computation of Null Space: We also know that \(\text{Nul}(A) \) is exactly the solution set of the equation \(Ax = \vec{0} \). So by solving \(Ax = \vec{0} \) using Row Reduction Algorithm, we obtain \(\vec{v}_1, \ldots, \vec{v}_{n-r} \in \text{Nul}(A) \), such that \(\text{Nul}(A) = \{x_{j_1}\vec{v}_1 + \cdots + x_{j_{n-r}}\vec{v}_{n-r} \mid x_{j_1}, \ldots, x_{j_{n-r}} \in \mathbb{R}\} = \text{Span}\{\vec{v}_1, \ldots, \vec{v}_{n-r}\} \), where \(x_{j_1}, \ldots, x_{j_{n-r}} \) correspond to the free variables of \(Ax = \vec{0} \). But by the Rank Theorem, \(\dim \text{Nul}(A) = n - \dim \text{Col}(A) = n - r \). Thus \(\{\vec{v}_1, \ldots, \vec{v}_{n-r}\} \) is a basis of \(\text{Nul}(A) \) by Theorem 5.

6 Rank & Matrix Inverse

Theorem 13 (The Invertible Matrix Theorem). Let A be an $n \times n$ matrix. The following statements are each equivalent to the statement that A is an invertible matrix:

1. The columns of A form a basis of \mathbb{R}^n;
2. $\text{Col} A = \mathbb{R}^n$;
3. $\dim \text{Col} A = \mathbb{R}^n$;
4. $\text{rank} A = n$;
5. $\text{Nul} A = \{0\}$;
6. $\dim \text{Nul} A = 0$;

Flora, by Titian