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1 What Do You Learn from This Note

We still observe the unit vectors we have introduced in Chapter 1:

1 0 0
= 0], &=(1],&=(0]. (1)
(2) <= (2) =~ (2)

We know the above are the basis (specially the standard basis) of R®. How-
ever, we still have to answer the following question:

Question: Why there are three basis in R3?

Basic Concept: dimension(4E%Y), rank(Fk)



2 Dimension

Theorem 1. Let V be a vector space with basis B = {by,...,b,}. Then
any subset of V' containing more than n vectors is linearly dependent.

Proof. Let p € N and p > n. Assume that {@,...,4,} C V. As B is the
basis, so we have for each u; there exists a coefficient vector a; € R™ such
that

-

’ZZZ:Bd‘Z, B:[gl,,bn]
Let A = [61,...,6,,],(]2 [ﬁh...,ﬁp]. Then

U = BA.
The if there is a series of weight ¢4, -+ , ¢, such that ciu; + - -+ + ¢, = 0,
that is

Ueé=0,
then we have

BAZ=0.

As the number of rows is smaller than the number of columns of BA, so that
is there are non-pivot columns in BA. This leads to the matrix equation
BAG has non-trivial solution. So there exists non-zeros & such that U¢ = 0.
That is 4y, ..., U, are linearly dependent. ]

Theorem 2. Let V be a vector space with bases B, C of sizes m, n € N
respectively. Then m = n. That is every basis of V' has the same size.

Proof. Since C is linearly independent, by THEOREM 1, we must have m > n.
Similarly, n > m. So m = n. O

Definition 3 (dimension). Let V' be a vector space with a finite subset
as its basis. Then the size of its basis is called the dimension of V' and is
denoted by dim V', and we say V is finite-dimensional. Otherwise, if V' can
not be spanned by a finite set then V' is infinite-dimensional.

Remark:
(1) dimR™ = n.
(2) The space with all polynomials (2 3iz\*#[d]) is infinite-dimensional.



3 Subspace & Dimension

Theorem 4. Let V be a vector space of dimension n € N. Then any

linearly independent subset {vy,..., 4, } of V can be extended to a basis of
V.

Proof. We prove this theorem by the following steps:

1. When m = n, because if Span{#,...,#,} =V then {#},...,0,} is a

basis of V.

2. When m < n Span{#i,...,7,,} C V and we can pick ¢j,,41 € V —
Span{vy,...,U,}. We claim that {¥,..., Uy, U1} is linearly inde-
pendent. Assume this is not the case, then there exist c¢i,...,¢n, Cnat
which are not all zero such that c;v) + -+ + U + Cma1Umer = 0.
If ¢;pr1 = 0 then {¢,...,0,} is linearly dependent, otherwise 41 €
Span{vy, ..., u,}. Both cases contradict the assumptions we made. So
{V1,...,Un, Uns1} is linearly independent.

3. If {¥,...,Upm, Uny1} spans V then we obtain a basis, otherwise repeat
this process again and finally, we must obtain a linearly independent
set containing {7y, ..., ¥, } spans V, that is a basis.

]

Theorem 5. Let H be a subspace of a finite-dimension vector space V. Any
linearly independent set in H can be expanded, if necessary, to a basis for H.
Also, H is finite-dimensional and

dimH < dimV

Theorem 6. Let V' be a vector space of dimension p(> 1). Any linearly
independent set of exactly p elements in V' is automatically a basis for V.
Any set of exactly p elements that spans V' is automatically a basis for V.

Proof. By theorem 4, any linearly independent set S of size ¢(< p) can be
expanded to the basis of V. This implies, if ¢ = p, then S must be the basis
of V. O

Theorem 7. The dimension of NulA is the number of free variables in the
equation AT = 0, and the dimension of ColA is the number of pivot columns

m A.



4 Rank of a Matrix A

4.1 Row Space

Definition 8 (Row Space). If A is an m x n matriz. The set of all linear
combinations of the row wvectors is called the row space of A, denoted by
RowA.

From another point of view, the rows of A are identical to the columns of
AT so0 the row space of A can also be written as ColAT.

Theorem 9. If two m x n matrices A and B are row equivalent, their row
spaces are the same.

Proof. Since A and B are row equivalent, there exists a invertible matrix G
such that
B =GA.

That is
BT = ATGT = ATF, F=(G".
By using the matrix partition theory, let AT = [Col; AT, .-  Col,,AT], F =
[Coly F, - - -, Col,, F], then
[Col, BY,--- ,Col; B, --- ,Col,, A"]
=BT
=ATF
=[ATCol,F,--- ATCol;F,--- , ATCol,, F].
That is
Col; B"
=ATCol, F
=[Col; AT, - Col,, AT|([F1s, - -+ [Flmi) "
=[F]1;Co AT + -+ 4 [F],,;Col,, AT
Since (Row; A)T = Col; AT and (Row;B)? = Col; BT, so
Row; B = [F];Rowi A + - -« + [F],;Row,,, A.

That is RowB C RowA.
Conversely, by changing the roles of A and B in the above, we can also
have RowB C RowA. So, RowB = RowA. O]

Theorem 10. If two m x n matrices A and B are row equivalent, and B 1is
in echelon form, then the nonzero rows of B form a basis for the row space

of A as well as for that of B



4.2 Definition and Properties of Rank

Definition 11 (column & row rank). Let A be a m x n matrix. The
column rank of A is defined to be dim Col(A) and the row rank of A to be
dim Row(A).

Remark: The dimension of the null space is sometimes called the nullity of

A.

Theorem 12 (Rank Theorem). The dimensions of the column space and
the row space of an m x n matriz A are equal. Also, it holds that:

rankA + dim NulA = n. (4)

Proof. We know

(1) rankA is the number of pivot columns in A. That is if B is an echelon
form of A. i.e. rankA is the number of pivot positions in B.

(2) Each pivot position corresponds to a nonzero row, and these rows form
a basis for the row space of A, so the rank of A is also the dimension of the
row space.

(3) The dimension of NulA equals the number of free variables in the equation
AZ = 0. That is the dimension of NulA is the number of columns of A that
are not pivot columns.

(4) Number of pivot columns + number of non-pivot columns = number of

columns, i.e.
rankA + dim Nuld = n.



5 Computation of Null Space and Rang S-
pace

We are now discussing how to compute bases of Col(A) and Nul(A) given
A e Rmxn_

Computation of Column Space: Let A = (a@; --- d@,) € R™". Then
there exists an invertible matrix B € R™*™ such that BA is in REF. Let
Bd;,, ..., Bd; be all the pivot columns of BA. Then it is obvious that
{Bd;,,...,Bd; } is a basis of Col(BA). Since B is invertible and by THE-
OREM 15.4, {d;,,...,d; } forms a basis of Col(A), that is the set of pivot
columns of A is a basis of Col(A).

Computation of Null Space: We also know that Nul(A) is exactly the
solution set of the equation AZ = 0. So by solving Az = 0 using Row RE-
DUCTION ALGORITHM, we obtain vy, ..., t,,—, € Nul(A), such that Nul(A4) =
{z;;00 + -+, Upy|zjy,...,2;, ., € R} = Span{vy,...,0,_.}, where
Zj,,..., %, correspond to the free variables of Az = 0. But by THE RANK
THEOREM, dim Nul(A) =n —dim Col(A) =n —r. Thus {¢,...,0,_.} isa
basis of Nul(A) by THEOREM 5.

Examples: Textbook P.240, P.241, P.264.



6 Rank & Matrix Inverse

Theorem 13 (The Invertible Matrix Theorem). Let A be an n x n matriz.
The following statements are each equivalent to the statement that A is an
invertible matriz:

(1) The columns of A form a basis of R™;

(2) ColA =R";

(3) dim ColA = R";

(4) rankA = n;

(5) NulA = {0};

(6) dim NulA = 0;
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