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1 What Do You Learn from This Note

We still observe the unit vectors we have introduced in Chapter 1:

e⃗1 =

 1
0
0

 , e⃗2 =

 0
1
0

 , e⃗3 =

 0
0
1

 . (1)

We know the above are the basis (specially the standard basis) of R3. How-
ever, we still have to answer the following question:

Question: Why there are three basis in R3?

Basic Concept：dimension(维数), rank(秩)
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2 Dimension

Theorem 1. Let V be a vector space with basis B = {⃗b1, . . . , b⃗n}. Then
any subset of V containing more than n vectors is linearly dependent.

Proof. Let p ∈ N and p > n. Assume that {u⃗1, . . . , u⃗p} ⊆ V . As B is the
basis, so we have for each u⃗i there exists a coefficient vector a⃗i ∈ Rn such
that

u⃗i = Ba⃗i, B = [⃗b1, . . . , b⃗n].

Let A = [⃗a1, . . . , a⃗p], U = [u⃗1, . . . , u⃗p]. Then

U = BA.

The if there is a series of weight c1, · · · , cp such that c1u⃗1 + · · · + cpu⃗p = 0⃗,
that is

Uc⃗ = 0⃗,

then we have
BAc⃗ = 0⃗.

As the number of rows is smaller than the number of columns of BA, so that
is there are non-pivot columns in BA. This leads to the matrix equation
BAc⃗ has non-trivial solution. So there exists non-zeros c⃗ such that Uc⃗ = 0⃗.
That is u⃗1, . . . , u⃗p are linearly dependent.

Theorem 2. Let V be a vector space with bases B, C of sizes m, n ∈ N
respectively. Then m = n. That is every basis of V has the same size.

Proof. Since C is linearly independent, by Theorem 1, we must havem > n.
Similarly, n > m. So m = n.

Definition 3 (dimension). Let V be a vector space with a finite subset
as its basis. Then the size of its basis is called the dimension of V and is
denoted by dimV , and we say V is finite-dimensional. Otherwise, if V can
not be spanned by a finite set then V is infinite-dimensional.

Remark:
(1) dimRn = n.
(2) The space with all polynomials (多项式空间) is infinite-dimensional.
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3 Subspace & Dimension

Theorem 4. Let V be a vector space of dimension n ∈ N. Then any
linearly independent subset {v⃗1, . . . , v⃗m} of V can be extended to a basis of
V .

Proof. We prove this theorem by the following steps:

1. When m = n, because if Span{v⃗1, . . . , v⃗m} = V then {v⃗1, . . . , v⃗m} is a
basis of V .

2. When m < n Span{v⃗1, . . . , v⃗m} ⊂ V and we can pick v⃗m+1 ∈ V −
Span{v⃗1, . . . , v⃗m}. We claim that {v⃗1, . . . , v⃗m, v⃗m+1} is linearly inde-
pendent. Assume this is not the case, then there exist c1, . . . , cm, cm+1

which are not all zero such that c1v⃗1 + · · · + cmv⃗m + cm+1v⃗m+1 = 0.
If cm+1 = 0 then {v⃗1, . . . , v⃗m} is linearly dependent, otherwise v⃗m+1 ∈
Span{v⃗1, . . . , v⃗m}. Both cases contradict the assumptions we made. So
{v⃗1, . . . , v⃗m, v⃗m+1} is linearly independent.

3. If {v⃗1, . . . , v⃗m, v⃗m+1} spans V then we obtain a basis, otherwise repeat
this process again and finally, we must obtain a linearly independent
set containing {v⃗1, . . . , v⃗m} spans V , that is a basis.

Theorem 5. Let H be a subspace of a finite-dimension vector space V . Any
linearly independent set in H can be expanded, if necessary, to a basis for H.
Also, H is finite-dimensional and

dimH 6 dimV

Theorem 6. Let V be a vector space of dimension p(> 1). Any linearly
independent set of exactly p elements in V is automatically a basis for V .
Any set of exactly p elements that spans V is automatically a basis for V .

Proof. By theorem 4, any linearly independent set S of size q(6 p) can be
expanded to the basis of V . This implies, if q = p, then S must be the basis
of V .

Theorem 7. The dimension of NulA is the number of free variables in the
equation Ax⃗ = 0⃗, and the dimension of ColA is the number of pivot columns
in A.
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4 Rank of a Matrix A

4.1 Row Space

Definition 8 (Row Space). If A is an m × n matrix. The set of all linear
combinations of the row vectors is called the row space of A, denoted by
RowA.
From another point of view, the rows of A are identical to the columns of
AT , so the row space of A can also be written as ColAT .

Theorem 9. If two m× n matrices A and B are row equivalent, their row
spaces are the same.

Proof. Since A and B are row equivalent, there exists a invertible matrix G
such that

B = GA.

That is
BT = ATGT = ATF, F = GT .

By using the matrix partition theory, let AT = [Col1A
T , · · · ,ColmAT ], F =

[Col1F, · · · ,ColmF ], then

[Col1B
T , · · · ,ColiBT , · · · ,ColmAT ]

=BT

=ATF

=[ATCol1F, · · · ATColiF, · · · , ATColmF ].

(2)

That is

ColiB
T

=ATColiF

=[Col1A
T , · · · ,ColmAT ]([F ]1i, · · · , [F ]mi)

T

=[F ]1iCol1A
T + · · ·+ [F ]miColmA

T .

(3)

Since (RowiA)
T = ColiA

T and (RowiB)T = ColiB
T , so

RowiB = [F ]1iRow1A+ · · ·+ [F ]miRowmA.

That is RowB ⊆ RowA.
Conversely, by changing the roles of A and B in the above, we can also

have RowB ⊆ RowA. So, RowB = RowA.

Theorem 10. If two m×n matrices A and B are row equivalent, and B is
in echelon form, then the nonzero rows of B form a basis for the row space
of A as well as for that of B
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4.2 Definition and Properties of Rank

Definition 11 (column & row rank). Let A be a m × n matrix. The
column rank of A is defined to be dimCol(A) and the row rank of A to be
dimRow(A).

Remark: The dimension of the null space is sometimes called the nullity of
A.

Theorem 12 (Rank Theorem). The dimensions of the column space and
the row space of an m× n matrix A are equal. Also, it holds that:

rankA+ dim NulA = n. (4)

Proof. We know
(1) rankA is the number of pivot columns in A. That is if B is an echelon
form of A. i.e. rankA is the number of pivot positions in B.
(2) Each pivot position corresponds to a nonzero row, and these rows form

a basis for the row space of A, so the rank of A is also the dimension of the
row space.
(3) The dimension of NulA equals the number of free variables in the equation

Ax⃗ = 0⃗. That is the dimension of NulA is the number of columns of A that
are not pivot columns.
(4) Number of pivot columns + number of non-pivot columns = number of

columns, i.e.
rankA+ dim NulA = n.
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5 Computation of Null Space and Rang S-

pace

We are now discussing how to compute bases of Col(A) and Nul(A) given
A ∈ Rm×n.

Computation of Column Space: Let A = (⃗a1 · · · a⃗n) ∈ Rm×n. Then
there exists an invertible matrix B ∈ Rm×m such that BA is in REF. Let
Ba⃗i1 , . . . , Ba⃗ir be all the pivot columns of BA. Then it is obvious that
{Ba⃗i1 , . . . , Ba⃗ir} is a basis of Col(BA). Since B is invertible and by The-
orem 15.4, {a⃗i1 , . . . , a⃗ir} forms a basis of Col(A), that is the set of pivot
columns of A is a basis of Col(A).

Computation of Null Space: We also know that Nul(A) is exactly the
solution set of the equation Ax⃗ = 0⃗. So by solving Ax = 0⃗ using Row Re-
duction Algorithm, we obtain v⃗1, . . . , v⃗n−r ∈ Nul(A), such that Nul(A) =
{xj1 v⃗1 + · · · + xjn−r v⃗n−r | xj1 , . . . , xjn−r ∈ R} = Span{v⃗1, . . . , v⃗n−r}, where

xj1 , . . . , xjn−r correspond to the free variables of Ax = 0⃗. But by the Rank
Theorem, dimNul(A) = n− dimCol(A) = n− r. Thus {v⃗1, . . . , v⃗n−r} is a
basis of Nul(A) by Theorem 5.

Examples: Textbook P.240, P.241, P.264.
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6 Rank & Matrix Inverse

Theorem 13 (The Invertible Matrix Theorem). Let A be an n× n matrix.
The following statements are each equivalent to the statement that A is an
invertible matrix:
(1) The columns of A form a basis of Rn;
(2) ColA = Rn;
(3) dim ColA = Rn;
(4) rankA = n;
(5) NulA = {⃗0};
(6) dim NulA = 0;

Flora, by Titian
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