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1 What Do You Learn from This Note

In the last lecture, we have introduced the concept of determinant, but
we should ask ourselves the following questions (I think many of you are
already on this right track):

1. Why do we need to formulate determinant?
2. How can it be used for solving a matrix equation?
3. Any geometric interpretation about determinant?

We are now going to address all these questions.
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Basic concept: adjugate of A(¥FFFAMILYE)



2 Adjugate of A(GEPEARIIEH)

We first clarify a notation. Let A = (a; -+ d@; --- @,) be an X n square
matrix and b € R™. Then write A;(b) for the matrix (d; --- b --- d,), that

-

is, A;(b) is resulted from A by replacing the i—th column of A by b.

2.1 A formula for the inverse of a square matrix

Let A be the n x n square matrix. Define adjA, the adjugate of A(%H
FEARIILHE), to be the square matrix such that [adjA]; = Cj; (recall that
Cji is the (j,i)-th cofactor of A), i.e. Cj; = (—1)7*"det Aj;. That is:

Cll C(21 Cnl
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Let us compute the product (adjA)A. We have

n

. . - . det A ifi=j
[(adJA)A]” = Z[adJA]ikCij = Zaij'ki = det AZ'(CLJ‘) = { © e J

0 otherwise
k=1 k=1
That is
detA --- 0
(adjA)A = S = (det A)1,.
0 ..o detA

Similarly, AadjA = (det A)I,,. So for the case that A is invertible, we have

<de1A(ade>> A=A (detA(ade)) = I,.

T hllls we obtain that A™" = ———(adjA), which is a formula for computing
AL

Remark: This formula is used only in theoretical study in mathematics. It is
impractical to use it in practical computation of A~!, in which we normally
use the method introduced in LINEAR ALGEBRA 8.

Example: Textbook P.203.



2.2 Cramer’s Rule
We use the formula derived in the last section to give another formula

for the solution of A¥ = b where A is a n X n matrix and is invertible, and

b € R™. Since A is invertible, we know that the equation A¥ = b has a unique

solution, namely vecx = A~'b. So

1

et A (adjA)b.

F=A1=

Consider (adjA)b, we have

=,

[(adjA)D) :ZadJAmb _Zb Cji = det Ay (b),

which leads to . .
[(adjA)b];  det Ay(D)

= det A  detA
Thus we obtain the so called Cramer’s Rule:
det Ay (b)
7T=A"h= :
o b= qeta S
det A, (b)

which is only useful in theoretical study but not practical computation.
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2.3 Determinants as Area([Hi#1) and Volume(4&#)
Ve AR RN, AT .

We shall give a geometric interpretation on determinants of matrices.

THEOREM 1.

Let A = (d; d2) be a 2 X 2 square matrix and S(A) denote the area of the
parallelogram determined by vertices 0, @y, ds. Then

S(A) = | det A.

Proof. The proof is again done by factorizing A into elementary matrices.

1. A is not invertible: Then d;, dy are linearly dependent. The paral-
lelogram is degenerated to a line segment or a point. In this case,

S(A) = |det A = 0.

2. A is invertible. Firstly, it is easy to verify that for any 2 x 2 square
matrix A and any elementary matrix E of size 2, we have

S(EA) = | det B|S(A).

(WA PR Flllecture note 11 EHET)

Now A is invertible means A = E;--- E; where E1, ..., E; are elemen-

tary matrices. So

S(A) =

S(EZEI ]2)
S(E_y-+ Ey - )| det E)|

| det F| - - - | det E1|S(1>)

|det F| - - - |det Ey| [Obviously, S(I) = 1]
|det B} - - - det E4|

|det E; - - - B

| det Al.

Example: Find the area of the parallelogram with vertices day, @y, ds.
Solution S = S(&’l - 60 62 - 60) = |det(d’1 - 60 62 — C?o)|



For parallelepiped in R3, we have

THEOREM 2.
Let A = (d; dy d3) be a 3 x 3 matrix and V(A) denote the volume of the
parallelepiped determined by vertices 0, dy, ds, dz. Then

V(A) = |det Al.

The proof of THEOREM 2 is almost identical to that of THEOREM 1. We
shall omit it here.

Remark: The result of THEOREM 1 can be generalized to R™ for any n € Z*.
However, the concept of ‘volumn’ (or Lebesgue measure formally) in higher
dimensions need to be clarified in general. This is a big problem. Detailed
discussion will be found in Measure Theory.

2.4 Transformation and determinant

The determinant of the standard matrix for a linear transformation 7 :
R? — R? also gives a geometric property of T. We explain this fact as follows.

Let K denote a subset of R? for which the area of K is well-defined. (e.g.
region bounded by triangle, parallelogram, circle, etc.). Let T : R* — R? be
linear with standard matrix A. Then the area of the image T(K) of K is
also well-defined and satisfies

S(T(K)) = | det A|S(K).

The general proof of this result is out of the scope of this course. However,
the special case where K is the region bounded by the parallelogram deter-
mined by vertices dp, d; and @, can be shown using the result of Theorem 1
in the last section. Let us detail it in the following.

We obverse that the image T'(K') of K under T is also a region bounded
by the parallelogram determined by vertices T'(dy), T'(d1) and T'(ds). So
S(T(K)) = S(T(a) —T(a), T(az) —T(ao))
— S(Ac_il - Aao, AC_I:Q - AC?(])
S(A(dy — do, dy — dp))
| det A(@l - 0_:0, 62 - 60)|
= ’ det AH det(d’l — 6_7:0, 62 — a:())|
= |det A|S(K).

b}



Again this result can be generalised to any higher dimension. For in-
stance, for any subset K in R? for which the volume of K is well-defined.
Then

V(T(K)) = |det A|V(K),

where T is any linear transformation from R? to R and A the standard
matrix for T'. Again, the proof is out of scope.
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