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1 What Do You Learn from This Note

Recall the theorem 4 on page 119: For A =

(
a b
c d

)
. If ad − bc ̸= 0,

then A is invertible and A−1 = 1
ad−bc

(
d −b
−c a

)
. So what is ad− bc? How

to compute

(
d −b
−c a

)
In fact ad − bc is called determinant and the matrix is computed by

cofactor computation. Introducing them is the objective of this lecture note.

Basic concept：determinants (行列式), cofactor (余子式/余因子)

2 Determinants

Our study is on the following matrix

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
· · · · · · · · · · · ·
an1 am2 · · · ann

 (1)

Denote Aij be the rest submatrix formed by deleting the ith row and jth

column of A. (注意：课本用Aij表示，但这与前面矩阵分块Aij的符号的含
义不同，所以讲义中用Aij表示)
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Definition 1 (determinant (行列式)). A determinant of an n × n square
matrix A = [aij] is defined as follows:

detA = a11 detA11−a12 detA12+· · ·+(−1)1+na1n detA1n =
n∑

j=1

(−1)1+ja1j detA1j.

(2)
Always, we also denote the determinant of matrix A by

|A| (3)

注意：只有方阵才有行列式的定义。

Definition 2 (cofactor (余子式/余因子)). Cij = (−1)i+j detAij is called
the (i, j)-cofactor of matrix A. We then call detA =

∑n
j=1(−1)1+ja1j detA1j

as a cofactor expansion (余子式/余因子展开式) across the first row of A.

In fact, we can compute the determinant of a matrix in a more flexible
way:

Theorem 3. detA = ai1 detAi1 − ai2 detAi2 + · · · + (−1)i+nain detAin =∑n
j=1(−1)i+jaij detAij.

Also, we can compute the determinant by the cofactor expansion down
the jth column of matrix A as follows:

Theorem 4. detA = a1j detA1j − a2j detA2j + · · · + (−1)n+janj detAnj =∑n
i=1(−1)i+jaij detAij.

注：以上证明本课程及教学大纲不作要求。具体证明可参见：《高等代
数与解析几何》（上册），孟道骥著，91页定理一。

Examples: For n = 3, the determinant of matrix A is

detA = a11 detA11 − a12 detA12 + a13 detA13. (4)

So when A =

 1 5 0
2 4 −1
0 −2 0

, |A| =?(板书)

Theorem 5. If A is a triangular matrix, then detA is the product of the
entries on the main diagonal of A.
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3 Properties of Determinant

3.1 Determinant on Matrix Transpose

Theorem 6. If A is an n× n matrix, then detAT = detA

Proof. We prove this theorem using induction method.

STEP 1: for n = 2 (e.g. A =

(
a b
c d

)
), it is true that detAT = detA =

ad− bc.

STEP 2: for n > 2, the cofactor expansion across the first row of AT is

detAT =
n∑

j=1

(−1)1+j[AT ]1j detAT
1j

. Note that [AT ]1j = [A]j1, and detAT
1j = detA

T

j1 = detAj1 since A
T

j1 is a
(n−1)× (n−1) matrix (因此根据归纳法，我们已经假设对于(n−1)× (n−
1)矩阵定理成立). Therefore, we have

detAT =
n∑

j=1

(−1)1+j[A]j1 detAj1 = detA

(注意，我们这里用到了定理3和4，即计算一个矩阵的行列式可以在列和行
不同方向展开).

Remark: Since the i–th row of A is the transpose of the i–th column of A.
detAT = detA indicates that any properties and results of detA relating to
columns of A also hold for rows of A.

注：以上定理也表明对矩阵AT做行变换等价于对矩阵A做列变换.我们
在课程中没有仔细介绍列变换，但实际上等价于对其转置矩阵的行变换。
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3.2 Determinants of Elementary Matrix

Theorem 7.
Let A = (a1 · · · an) be a square matrix and E be an elementary matrix of
size n. Then

detEA = detE detA.

That is

1. If a multiple of one row of A is added to another row to produce a
matrix B. Then detB = detA (i.e.(也就是) detE = 1 in this case).

2. If two rows of A are interchanged to produce matrix B, then detB =
− detA (i.e. detE = −1).

3. If one row of A is multiplied by k to produce B, then detB = k · detA
(i.e. detE = k).

Proof. Part 1: We consider 3 types of elementary matrix separately. We
first prove:

1. Interchange:E = En(i, j)(交换第i和第j行). AE is obtained by ex-
changing the i–th and j–th columns of A. So

detEA = − detA.

2. Scaling: E = En(i;λ)(第i行乘以k). AE is obtained by multiplying the
i–th column of A by λ. So

detEA = k detA.

3. Replacement: E = En(i, j; k)(第j行乘以k后加到第i行上去). So

detEA = detA.

STEP 1: Let us begin with a 2× 2(n = 2) matrix A =

(
a b
c d

)
. So

1. For row replacement, adding row one multiplied by k to row 2, we

have A′ =

(
a b

ra+ c rb+ d

)
. Then we have E = A′ in this case and

detA′ = rab + ad − rab − bc = ad − bc = detA. The same result can
be obtained by adding a multiple of row two to row one.
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2. For interchanging two rows in A, A becomes A′ =

(
c d
a b

)
. Hence,

|A| = ad− bc = −(bc− ad) = −|A′|.

3. For scaling, it is easy to show that the determinant of A′ =

(
ra rb
c d

)
is detA′ = k(ad− bc) = k detA. The same results can be obtained by
scaling the other row.

STEP 2: We now use induction method to prove the rest. Suppose that the
theorem is true for determinants of k× k matrix with k > 2. Now let A be a
k × k identity matrix. Note that the action is only on two rows or only one
row. So we can expand detEA across a row that is unchanged by the action
of E, say, row i. Then we have

detEA =
n∑

j=1

(−1)i+j[EA]ij det [EA]ij =
n∑

j=1

(−1)i+j[A]ij det [EA]ij (5)

Note that the cofactor matrix [EA]ij is obtained by performing the same

elementary row operation on the cofactor matrix [A]ij. Hence, we should

have: det [EA]ij = α det [A]ij, where α = −1, k, 1 for interchange, scaling,
replacement respectively.

Part 2: We then easily prove that:

1. detE = 1, if E is a row replacement matrix by adding a multiple of
one row to another row on an identity matrix I.

2. detE = −1, if E is an interchange matrix by interchanging two rows
of identity matrix I.

3. detE = k, if E is a scale matrix by multiplying a row of identity matrix
I by a nonzero scalar k.

This is the simple generalization of the proof in Part 1 by setting A = In.

Part 3: Hence, we finally have detEA = detE detA.
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As part of the proof in the above theorem, we have:

Theorem 8. 1. detE = 1, if E is a row replacement matrix by adding a
multiple of one row to another row on an identity matrix I.

2. detE = −1, if E is an interchange matrix by interchanging two rows
of identity matrix I.

3. detE = k, if E is a scale matrix by multiplying a row of identity matrix
I by a nonzero scalar k.

Examples: Page 193 (见板书)
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3.3 Determinants of the Product of Two General Ma-
trices

We first need to prove the following theorem:

Theorem 9. The square matrix A ∈ Rn×n is invertible iff detA ̸= 0.

Proof. 1. STEP 1: If A is invertible, A is equivalent to the identity ma-
trix. That is, there is a series of elementary matrices El, El−1, · · · , E1

such that ElEl−1 · · ·E1A = I. So that detEl detEl−1 · · · detE1 detA =
1. As detEi ̸= 0, hence detA ̸= 0.

2. STEP 2: If detA ̸= 0, we now prove A is invertible. Assume that A
can be reduced to a reduced echelon matrix U . That is, there is a series
of elementary matrices El, El−1, · · · , E1 such that ElEl−1 · · ·E1A = U .
So that detEl detEl−1 · · · detE1 detA = detU . As detEi ̸= 0 and
detA ̸= 0, so detU ̸= 0. Hence each column of U must be a pivot
column. As A is a square matrix, so U must be an identity matrix.
That is A ∼ I, and therefore A is invertible. (注意：这里如果U存在
一列是非主元列，这意味着那一列是全0，那么可以直接在那一列展
开计算U的行列式，从而可以得到U的行列为0的矛盾结果)

Now, we reach the main theorem in this subsection.

Theorem 10.
Let A and B are n× n matrices. Then detAB = detA detB.

Proof. If A is not invertible then neither AB nor AT is invertible. So
detAB = detA detB = 0 and detAT = detA = 0.

Otherwise, A ∼ I, so that A = El · · ·E2E1I where E1, . . . , El are elemen-
tary matrices. Then we have

detAB = El · · ·E2E1 detB

= El · · ·E2 detE1 detB

· · ·
= detEl · · · detE2 detE1 detB

· · ·
= detEl · · ·E2 detE1 detB

= detEl · · ·E2E1 detB

= detA detB.
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3.4 More Properties

Theorem 11. detA−1 = 1
detA

in the case that A is invertible.

Proof. We have 1 = det I = detAA−1 = detA detA−1. So detA ̸= 0 and
detA−1 = 1

detA
.

The following theorem reveal the connection between a determinant func-
tion and a linear transformation.

Theorem 12. Suppose that the jth column of A is allowed to vary and write

A = [⃗a1, · · · , a⃗j−1, x⃗, a⃗j+1, · · · , a⃗n].

Define a transformation T from Rn to R:

T (x⃗) = det[⃗a1, · · · , a⃗j−1, x⃗, a⃗j+1, · · · , a⃗n].

Then we have

T (cx⃗) = cT (x⃗)

T (u⃗+ v⃗) = T (u⃗) + T (v⃗), for all u⃗, v⃗inRn.

Proof. Sketch proof: Compute the determinant from a cofactor expansion of
detA down the jth column.

4 Computation of Determinants

The final issue we concern with is how to compute the determinant of a
given square matrix A. In the following, we give ideas on this computational
issue.

1. The determinants of some matrices can be computed readily using prop-
erties given in Definition 1 and Theorem 3&4. Note that these
properties and results also held for rows.

Examples: Textbook P193.
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2. We can use any cofactor expansion of a matrix directly to compute the
determinant of that matrix, especially, when most of entries of that
matrix are zeros.

Examples: Textbook P.188, P.189.

However, this method is not efficient in general. It is easy to show that
the number of terms of the complete expansion of a determinant of an
n× n matrix is equal to n!, which makes the computation impractical
when n is large (e.g. n = 100).

3. Recall that if A is an n × n matrix and invertible then A = El · · ·E1

where E1, . . . , El are elementary matrices, otherwise detA = 0. Fac-
torizing an invertible matrix A into A = El · · ·E1 can be achieved by
transforming A into Reduced Echelon Form (REF) which is In. Once
we find E1, . . . , El, we have detA = detEl · · · detE1.

Young Hare, by Dürer
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