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1 What Do You Learn from This Note

Recall the theorem 4 on page 119: For A = ( CCL Z ) . If ad — be # 0,
then A is invertible and A~! = adibc < _dc _ab > So what is ad — bc? How
t mput b

o compute {

In fact ad — bc is called determinant and the matrix is computed by
cofactor computation. Introducing them is the objective of this lecture note.

Basic concept: determinants (17413\), cofactor (4&¥1-20/ R KT)

2 Determinants

Our study is on the following matrix

11 Q2 - Aip
Q21 Q22 -+ Ag

A= " (1)
An1 Am2 - Ann

Denote A;; be the rest submatrix formed by deleting the i** row and ;%
column of A. (ER: WA AR, (HIX 5 RTHIALFE > BLA;; MRS 155
SURT, R A, )



DEFINITION 1 (determinant (f743()). A determinant of an n x n square
matrix A = [a;;] is defined as follows:

n

det A = a1 det zn—alg det z12+' . '—i-(—l)H"aln det Zln = Z(—1)1+ja1j det ﬁlj.

j=1
(2)
Always, we also denote the determinant of matrix A by

|A] (3)
Ei: R AT 51 e .

DEFINITION 2 (cofactor (42 FzU/RHT)). Ciy = (=1)"7 det Ay; is called
the (i, j)-cofactor of matriz A. We then call det A = 7" (=1)"*/ay; det Ay
as a cofactor expansion (R T/ R THEIF) across the first row of A.

In fact, we can compute the determinant of a matrix in a more flexible
way:
THEOREM 3. det A_: a;1 det Zil — Q;9 det Zig + e+ (—I)H”am det Zm =
Zn 1(—1)i+jaij det A”

j=

Also, we can compute the determinant by the cofactor expansion down
the jth column of matrix A as follows:

THEOREM 4. det A_: ayj det le — Qg; det Zgj + o+ (—1)”+janj det ﬁnj =
Z?:l(—l)iJrjaij det AU

e DLEUEWIAPREE KA RWAEESR . BARIEII T 2 0. (AR
HEtr Uy CERD , BB, 91TUER—.

Examples: For n = 3, the determinant of matrix A is

det A = a1 det ZH — Q12 det 212 “+ a3 det Zlg. (4)
1 5 0
Sowhen A= [ 2 4 -1 |, A =2(k1))
0 -2 0

THEOREM 5. If A is a triangular matriz, then det A is the product of the
entries on the main diagonal of A.



3 Properties of Determinant

3.1 Determinant on Matrix Transpose

THEOREM 6. If A is an n x n matriz, then det AT = det A

Proof. We prove this theorem using induction method.

STEP 1: forn =2 (e.g. A= ( CCL 2 )), it is true that det AT = det A =
ad — be.

STEP 2: for n > 2, the cofactor expansion across the first row of AT is

det AT = Z(—1)1+j [AT]lj det Flj

Jj=1

. Note that [AT];; = [A];1, and det AT}; = det Z;'-Fl = det A;; since Z;'-Fl is a
(n—1) x (n—1) matrix (FUHARSEIHGNE, FATELERA T (n—1) X (n—
1)FE P 2 2R AT). Therefore, we have

det AT = Z(—1)1+j [A]jl dethl =det A

=1

(EE, FATXHRAR T @ B34, BvkE—AEREAT 5 AT ARSI FIAT
AR5 1) RETT). O

Remark: Since the i—th row of A is the transpose of the i—th column of A.
det AT = det A indicates that any properties and results of det A relating to
columns of A also hold for rows of A.

VE: DACb 5 B W B AT AT AR e S A 1 KRR AR AR e 3RAT]
FEPRRE AT A G52, (B Bs B 1ot A BB A4 T AL e



3.2 Determinants of Elementary Matrix

THEOREM 7.
Let A= (a; --- a,) be a square matrix and F be an elementary matrix of

size n. Then
det FA = det E det A.

That is

1. If a multiple of one row of A is added to another row to produce a
matrix B. Then det B = det A (i.e.(th5i/2&) det £ =1 in this case).

2. If two rows of A are interchanged to produce matrix B, then det B =
—det A (i.e. det E = —1).

3. If one row of A is multiplied by k to produce B, then det B = k - det A
(i.e. det E = k).

Proof. Part 1: We consider 3 types of elementary matrix separately. We
first prove:

1. Interchange:E = E,(i,7) (3 # 5iM 25j4T). AE is obtained by ex-
changing the i—th and j—th columns of A. So

det FA = —det A.

2. Scaling: E = E,(i; \) (T3 LAk). AE is obtained by multiplying the
i—th column of A by A. So

det FA = kdet A.

3. Replacement: E = E, (i, j; k) GRjAT IR LAk G M2 ZHi4T £2%). So

det FA = det A.

STEP 1: Let us begin with a 2 x 2(n = 2) matrix A = < OCL Z ) So

1. For row replacement, adding row one multiplied by k to row 2, we

;L a b
have A" = ra+c rb+d
det A’ = rab + ad — rab — be = ad — be = det A. The same result can

be obtained by adding a multiple of row two to row one.

. Then we have ' = A’ in this case and

4



2. For interchanging two rows in A, A becomes A’ = ( 2 z ) Hence,
|A| = ad — bc = —(be — ad) = —|A|.

ra rb

3. For scaling, it is easy to show that the determinant of A’ = . d

is det A" = k(ad — bc) = kdet A. The same results can be obtained by
scaling the other row.

STEP 2: We now use induction method to prove the rest. Suppose that the
theorem is true for determinants of k X k matrix with £ > 2. Now let A be a
k x k identity matrix. Note that the action is only on two rows or only one
row. So we can expand det EF'A across a row that is unchanged by the action
of E, say, row i. Then we have

det EA = Z 1) [EA]; det [EA], i(—l)”j[A]ijdetmij (5)

7j=1

Note that the cofactor matrix [EA];; is obtained by performing the same

elementary row operation on the cofactor matrix m” Hence, we should

have: det [EA]Z.j = «adet Wij’ where o = —1,k, 1 for interchange, scaling,
replacement respectively.

Part 2: We then easily prove that:

1. det E = 1, if F is a row replacement matrix by adding a multiple of
one row to another row on an identity matrix /.

2. det E = —1, if E is an interchange matrix by interchanging two rows
of identity matrix I.

3. det E = k, if F is a scale matrix by multiplying a row of identity matrix
I by a nonzero scalar k.

This is the simple generalization of the proof in Part 1 by setting A = [,,.

Part 3: Hence, we finally have det EA = det E det A. m



As part of the proof in the above theorem, we have:

THEOREM 8. 1. det E =1, if E is a row replacement matrixz by adding a
multiple of one row to another row on an identity matriz I.

2. det E = —1, if E is an interchange matrix by interchanging two rows
of identity matrix I.

3. det E =k, if F is a scale matrixz by multiplying a row of identity matriz
I by a nonzero scalar k.

Examples: Page 193 (ML)



3.3 Determinants of the Product of Two General Ma-
trices

We first need to prove the following theorem:
THEOREM 9. The square matrix A € R,,«,, s invertible iff det A # 0.

Proof. 1. STEP 1: If A is invertible, A is equivalent to the identity ma-
trix. That is, there is a series of elementary matrices Fy, Ej_q,--- , F}
such that EjF;_1--- E4A = 1. So that det E;det E;_; - - - det E/y det A =
1. As det E; # 0, hence det A # 0.

2. STEP 2: If det A # 0, we now prove A is invertible. Assume that A
can be reduced to a reduced echelon matrix U. That is, there is a series
of elementary matrices Ej, E;_1,--- , Fy such that B, F,_;--- E{A="U.
So that det Eydet Ej_1---det Eydet A = detU. As det E; # 0 and
det A # 0, so det U # 0. Hence each column of U must be a pivot
column. As A is a square matrix, so U must be an identity matrix.
That is A ~ I, and therefore A is invertible. (¥ & : XHUWIRUAFAE
—HEAEETCY, XEWE R HE 420, AR LA 21 e
TR URATAIZ, AT A] LIS BIURIAT U 0 A JE 45 )

m

Now, we reach the main theorem in this subsection.

THEOREM 10.
Let A and B are n x n matrices. Then det AB = det Adet B.

Proof. If A is not invertible then neither AB nor AT is invertible. So
det AB = det Adet B = 0 and det AT =det A= 0.

Otherwise, A ~ I, so that A = E;--- ExE1 I where E, ..., E; are elemen-
tary matrices. Then we have

det AB = El---EgEldetB
= Lj---Eydet Eydet B

= det E;---det Fydet £y det B
det Bj--- Eydet By det B

= det El cee E2E1 det B
= det Adet B.



3.4 More Properties

THEOREM 11. det A~ ! = ﬁ in the case that A 1s invertible.

Proof. We have 1 = det I = det AA™! = det Adet A=!. So det A # 0 and

11
det A = %

O

The following theorem reveal the connection between a determinant func-
tion and a linear transformation.

THEOREM 12. Suppose that the j*" column of A is allowed to vary and write

—

A= [ala A1, T, A1, 7an]-

Define a transformation T from R™ to R:

T(f) = det[d’l, s ,&};1,3?, 5j+1, e ,(_I'n].
Then we have
T(cz) = (%)
Tw+v) = T(u)+ T (), for all 4, vinR".

Proof. Sketch proof: Compute the determinant from a cofactor expansion of
det A down the j** column. O

4 Computation of Determinants

The final issue we concern with is how to compute the determinant of a
given square matrix A. In the following, we give ideas on this computational
issue.

1. The determinants of some matrices can be computed readily using prop-
erties given in DEFINITION 1 and THEOREM 3&4. Note that these
properties and results also held for rows.

Examples: Textbook P193.



2. We can use any cofactor expansion of a matrix directly to compute the
determinant of that matrix, especially, when most of entries of that
matrix are zeros.

Examples: Textbook P.188, P.189.

However, this method is not efficient in general. It is easy to show that
the number of terms of the complete expansion of a determinant of an
n X n matrix is equal to n!, which makes the computation impractical
when n is large (e.g. n = 100).

3. Recall that if A is an n X n matrix and invertible then A = E;--- E;
where Fi,..., E; are elementary matrices, otherwise det A = 0. Fac-
torizing an invertible matrix A into A = Ej--- F; can be achieved by
transforming A into Reduced Echelon Form (REF) which is 7,,. Once
we find Ey, ..., E;, we have det A = det E; - - - det E}.

!
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