LECTURE NOTE ON LINEAR ALGEBRA 11. DETERMINANTS

Wei-Shi Zheng, wszheng@ieee.org, 2011

November 8, 2011

1 What Do You Learn from This Note

Recall the theorem 4 on page 119: For $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. If $ad - bc \neq 0$, then A is invertible and $A^{-1} = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$. So what is ad - bc? How to compute $\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

In fact ad - bc is called determinant and the matrix is computed by cofactor computation. Introducing them is the objective of this lecture note.

Basic concept: determinants (行列式), cofactor (余子式/余因子)

2 Determinants

Our study is on the following matrix

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{m2} & \cdots & a_{nn} \end{pmatrix}$$
(1)

Denote \overline{A}_{ij} be the rest submatrix formed by deleting the i^{th} row and j^{th} column of A. (注意:课本用 A_{ij} 表示,但这与前面矩阵分块 A_{ij} 的符号的含义不同,所以讲义中用 \overline{A}_{ij} 表示)

DEFINITION 1 (determinant (行列式)). A determinant of an $n \times n$ square matrix $A = [a_{ij}]$ is defined as follows:

$$\det A = a_{11} \det \overline{A}_{11} - a_{12} \det \overline{A}_{12} + \dots + (-1)^{1+n} a_{1n} \det \overline{A}_{1n} = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det \overline{A}_{1j}$$
(2)

Always, we also denote the determinant of matrix A by

$$|A| \tag{3}$$

注意:只有方阵才有行列式的定义。

DEFINITION 2 (cofactor (余子式/余因子)). $C_{ij} = (-1)^{i+j} \det \overline{A}_{ij}$ is called the (i, j)-cofactor of matrix A. We then call det $A = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det \overline{A}_{1j}$ as a cofactor expansion (余子式/余因子展开式) across the first row of A.

In fact, we can compute the determinant of a matrix in a more flexible way:

THEOREM 3. det $A = a_{i1} \det \overline{A}_{i1} - a_{i2} \det \overline{A}_{i2} + \dots + (-1)^{i+n} a_{in} \det \overline{A}_{in} = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det \overline{A}_{ij}.$

Also, we can compute the determinant by the cofactor expansion down the jth column of matrix A as follows:

THEOREM 4. det $A = a_{1j} \det \overline{A}_{1j} - a_{2j} \det \overline{A}_{2j} + \dots + (-1)^{n+j} a_{nj} \det \overline{A}_{nj} = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det \overline{A}_{ij}.$

注:以上证明本课程及教学大纲不作要求。具体证明可参见:《高等代数与解析几何》(上册),孟道骥著,91页定理一。

Examples: For n = 3, the determinant of matrix A is

$$\det A = a_{11} \det \overline{A}_{11} - a_{12} \det \overline{A}_{12} + a_{13} \det \overline{A}_{13}.$$
(4)
So when $A = \begin{pmatrix} 1 & 5 & 0 \\ 2 & 4 & -1 \\ 0 & -2 & 0 \end{pmatrix}, |A| = ?(\overline{K} \overrightarrow{+})$

THEOREM 5. If A is a triangular matrix, then $\det A$ is the product of the entries on the main diagonal of A.

3 Properties of Determinant

3.1 Determinant on Matrix Transpose

THEOREM 6. If A is an $n \times n$ matrix, then det $A^T = \det A$

Proof. We prove this theorem using induction method.

STEP 1: for n = 2 (e.g. $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$), it is true that det $A^T = \det A = ad - bc$.

STEP 2: for n > 2, the cofactor expansion across the first row of A^T is

$$\det A^{T} = \sum_{j=1}^{n} (-1)^{1+j} [A^{T}]_{1j} \det \overline{A^{T}}_{1j}$$

. Note that $[A^T]_{1j} = [A]_{j1}$, and det $\overline{A^T}_{1j} = \det \overline{A}_{j1}^T = \det \overline{A}_{j1}$ since \overline{A}_{j1}^T is a $(n-1) \times (n-1)$ matrix (因此根据归纳法,我们已经假设对于 $(n-1) \times (n-1)$)矩阵定理成立). Therefore, we have

$$\det A^{T} = \sum_{j=1}^{n} (-1)^{1+j} [A]_{j1} \det \overline{A}_{j1} = \det A$$

(注意,我们这里用到了定理3和4,即计算一个矩阵的行列式可以在列和行 不同方向展开). □

Remark: Since the *i*-th row of A is the transpose of the *i*-th column of A. det $A^T = \det A$ indicates that any properties and results of det A relating to columns of A also hold for rows of A.

注:以上定理也表明对矩阵A^T做行变换等价于对矩阵A做列变换.我们 在课程中没有仔细介绍列变换,但实际上等价于对其转置矩阵的行变换。

3.2 Determinants of Elementary Matrix

THEOREM 7.

Let $A = (a_1 \cdots a_n)$ be a square matrix and E be an elementary matrix of size n. Then

$$\det EA = \det E \det A.$$

That is

- 1. If a multiple of one row of A is added to another row to produce a matrix B. Then det $B = \det A$ (i.e.(也就是) det E = 1 in this case).
- 2. If two rows of A are interchanged to produce matrix B, then det $B = -\det A$ (i.e. det E = -1).
- 3. If one row of A is multiplied by k to produce B, then det $B = k \cdot \det A$ (i.e. det E = k).

Proof. **Part 1**: We consider 3 types of elementary matrix separately. We first prove:

1. Interchange: $E = E_n(i, j)$ (交換第i和第j行). AE is obtained by exchanging the *i*-th and *j*-th columns of A. So

$$\det EA = -\det A.$$

2. Scaling: $E = E_n(i; \lambda)$ (第i行乘以k). AE is obtained by multiplying the *i*-th column of A by λ . So

$$\det EA = k \det A.$$

3. Replacement: $E = E_n(i, j; k)$ (第j行乘以k后加到第i行上去). So

$$\det EA = \det A.$$

STEP 1: Let us begin with a
$$2 \times 2(n = 2)$$
 matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. So

1. For row replacement, adding row one multiplied by k to row 2, we have $A' = \begin{pmatrix} a & b \\ ra+c & rb+d \end{pmatrix}$. Then we have E = A' in this case and det A' = rab + ad - rab - bc = ad - bc = det A. The same result can be obtained by adding a multiple of row two to row one.

- 2. For interchanging two rows in A, A becomes $A' = \begin{pmatrix} c & d \\ a & b \end{pmatrix}$. Hence, |A| = ad - bc = -(bc - ad) = -|A'|.
- 3. For scaling, it is easy to show that the determinant of $A' = \begin{pmatrix} ra & rb \\ c & d \end{pmatrix}$ is det $A' = k(ad bc) = k \det A$. The same results can be obtained by scaling the other row.

STEP 2: We now use induction method to prove the rest. Suppose that the theorem is true for determinants of $k \times k$ matrix with $k \ge 2$. Now let A be a $k \times k$ identity matrix. Note that the action is only on two rows or only one row. So we can expand det EA across a row that is unchanged by the action of E, say, row i. Then we have

$$\det EA = \sum_{j=1}^{n} (-1)^{i+j} [EA]_{ij} \det \overline{[EA]}_{ij} = \sum_{j=1}^{n} (-1)^{i+j} [A]_{ij} \det \overline{[EA]}_{ij} \qquad (5)$$

Note that the cofactor matrix $\overline{[EA]}_{ij}$ is obtained by performing the same elementary row operation on the cofactor matrix $\overline{[A]}_{ij}$. Hence, we should have: det $\overline{[EA]}_{ij} = \alpha \det \overline{[A]}_{ij}$, where $\alpha = -1, k, 1$ for interchange, scaling, replacement respectively.

Part 2: We then easily prove that:

- 1. det E = 1, if E is a row replacement matrix by adding a multiple of one row to another row on an identity matrix I.
- 2. det E = -1, if E is an interchange matrix by interchanging two rows of identity matrix I.
- 3. det E = k, if E is a scale matrix by multiplying a row of identity matrix I by a nonzero scalar k.

This is the simple generalization of the proof in Part 1 by setting $A = I_n$.

Part 3: Hence, we finally have det $EA = \det E \det A$.

As part of the proof in the above theorem, we have:

- THEOREM 8. 1. det E = 1, if E is a row replacement matrix by adding a multiple of one row to another row on an identity matrix I.
 - 2. det E = -1, if E is an interchange matrix by interchanging two rows of identity matrix I.
 - 3. det E = k, if E is a scale matrix by multiplying a row of identity matrix I by a nonzero scalar k.

Examples: Page 193 (见板书)

3.3 Determinants of the Product of Two General Matrices

We first need to prove the following theorem:

THEOREM 9. The square matrix $A \in \mathbb{R}_{n \times n}$ is invertible iff det $A \neq 0$.

- *Proof.* 1. **STEP 1**: If A is invertible, A is equivalent to the identity matrix. That is, there is a series of elementary matrices E_l, E_{l-1}, \dots, E_1 such that $E_l E_{l-1} \cdots E_1 A = I$. So that det $E_l \det E_{l-1} \cdots \det E_1 \det A = I$. As det $E_i \neq 0$, hence det $A \neq 0$.
 - 2. STEP 2: If det $A \neq 0$, we now prove A is invertible. Assume that A can be reduced to a reduced echelon matrix U. That is, there is a series of elementary matrices E_l, E_{l-1}, \dots, E_1 such that $E_lE_{l-1} \dots E_1A = U$. So that det E_l det $E_{l-1} \dots$ det E_1 det $A = \det U$. As det $E_i \neq 0$ and det $A \neq 0$, so det $U \neq 0$. Hence each column of U must be a pivot column. As A is a square matrix, so U must be an identity matrix. That is $A \sim I$, and therefore A is invertible. (注意: 这里如果U存在 一列是非主元列,这意味着那一列是全0,那么可以直接在那一列展 开计算U的行列式,从而可以得到U的行列为0的矛盾结果)

Now, we reach the main theorem in this subsection.

Theorem 10.

Let A and B are $n \times n$ matrices. Then det $AB = \det A \det B$.

Proof. If A is not invertible then neither AB nor A^T is invertible. So det $AB = \det A \det B = 0$ and det $A^T = \det A = 0$.

Otherwise, $A \sim I$, so that $A = E_l \cdots E_2 E_1 I$ where E_1, \ldots, E_l are elementary matrices. Then we have

$$\det AB = E_l \cdots E_2 E_1 \det B$$

$$= E_l \cdots E_2 \det E_1 \det B$$

$$\cdots$$

$$= \det E_l \cdots \det E_2 \det E_1 \det B$$

$$\cdots$$

$$= \det E_l \cdots E_2 \det E_1 \det B$$

$$= \det E_l \cdots E_2 E_1 \det B$$

$$= \det E_l \cdots E_2 E_1 \det B$$

$$= \det A \det B.$$

3.4 More Properties

THEOREM 11. det $A^{-1} = \frac{1}{\det A}$ in the case that A is invertible.

Proof. We have $1 = \det I = \det AA^{-1} = \det A \det A^{-1}$. So $\det A \neq 0$ and $\det A^{-1} = \frac{1}{\det A}$.

The following theorem reveal the connection between a determinant function and a linear transformation.

THEOREM 12. Suppose that the j^{th} column of A is allowed to vary and write

$$A = [\vec{a}_1, \cdots, \vec{a}_{j-1}, \vec{x}, \vec{a}_{j+1}, \cdots, \vec{a}_n].$$

Define a transformation T from \mathbb{R}^n to \mathbb{R} :

$$T(\vec{x}) = \det[\vec{a}_1, \cdots, \vec{a}_{j-1}, \vec{x}, \vec{a}_{j+1}, \cdots, \vec{a}_n].$$

Then we have

$$T(c\vec{x}) = cT(\vec{x})$$

$$T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v}), \text{ for all } \vec{u}, \vec{v}in\mathbb{R}^n$$

Proof. Sketch proof: Compute the determinant from a cofactor expansion of det A down the j^{th} column.

4 Computation of Determinants

The final issue we concern with is how to compute the determinant of a given square matrix A. In the following, we give ideas on this computational issue.

1. The determinants of some matrices can be computed readily using properties given in DEFINITION 1 and THEOREM 3&4. Note that these properties and results also held for rows.

Examples: Textbook P193.

2. We can use any cofactor expansion of a matrix directly to compute the determinant of that matrix, especially, when most of entries of that matrix are zeros.

Examples: Textbook P.188, P.189.

However, this method is not efficient in general. It is easy to show that the number of terms of the complete expansion of a determinant of an $n \times n$ matrix is equal to n!, which makes the computation impractical when n is large (e.g. n = 100).

3. Recall that if A is an $n \times n$ matrix and invertible then $A = E_l \cdots E_1$ where E_1, \ldots, E_l are elementary matrices, otherwise det A = 0. Factorizing an invertible matrix A into $A = E_l \cdots E_1$ can be achieved by transforming A into Reduced Echelon Form (REF) which is I_n . Once we find E_1, \ldots, E_l , we have det $A = \det E_l \cdots \det E_1$.

Young Hare, by Dürer