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1 Why Learning Linear Algebra(���555���êêê)?

Solving linear equation system is the heart of linear algebra. Linear al-
gebra is widely used in computer science and electronic engineering, e.g.
artificial intelligence (<ó�U), pattern recognition(�ª£O), computer
vision(O�ÅÀú), data mining(êâ�÷), machine learning(ÅìÆS). It
is fundamental of many other subjects/courses and research approaches.

2 What Do You Learn from This Note

Basic concept about linear equation(�5�§), system of linear equa-
tions(�5�§|), matrix(Ý
) and its solution()).

3 What Is System of Linear Equations?

Let us begin with an introduction of solving systems of linear equations.
We first show some examples of linear equations:

x = 0, −2x = −1, 3x = 4(y − 9), x1 − 1.1x2 =
1

3
(x3 + e).

In general, linear equation is defined as follows:

Definition 1 (linear equation(�5�§)). A linear equation with variables
x1, x2, . . . , xn is an equation that can be written in the form

a1x1 + · · ·+ anxn = b

∗The first version of this lecture note was edited by Dr. Jialun Huang.
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where b and the coefficients (Xê) a1, a2, . . . , an are real (¢ê) or complex
(Jê) numbers known in advance.

Definition 2 (system of linear equations(�5�§|)). A system of linear
equations with variables (Cþ) x1, x2, . . . , xn is a collection of finite linear
equations with variables x1, x2, . . . , xn.

Examples:
−2x1 −3x2 = 5
x1 +2x2 = 8

2x1 +4x2 = 0
,

{
x1 +4x2 −x3 = −1

2
5
x1 +5x2 −x3 = 0

.

The general form of a system of m linear equations with n variables is:
a11x1 +a12x2 + · · · +a1nxn = b1
a21x1 +a22x2 + · · · +a2nxn = b2
· · ·

am1x1 +am2x2 + · · · +amnxn = bm

(1)

4 Solution of System of Linear Equations

Definition 3 (solution())). A list (s1, s2, . . . , sn) of numbers is called a
solution of (1) iff (i.e. if and only if) all the equations in (1) are satisfied by
substituting s1, s2, . . . , sn for x1, x2, . . . , xn. The set of all solutions of (1) is
called the solution set ()8) of (1). Two systems of linear equations are
said to be equivalent (�d) if they have the same solution set.

Does a system of linear equations always have a solution? Let us investi-
gate some examples as follows:
Examples:{

x1 −2x2 = −1
−x1 +3x2 = 3

,

{
x1 −2x2 = −1
−x1 +2x2 = 3

,

{
x1 −2x2 = −1
−x1 +2x2 = 1

.
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From the above examples, we see that not all systems of linear equations
have a solution. Generally speaking, a system of linear equations has either:
1. no solutions (Ã)), i.e. the solution set is empty (empty set), or
2. exactly one solution(��)), i.e. the solution set contains only one ele-
ment (singleton set), or
3. infinitely many solutions(Ã�õ)), i.e. the solution set contains infinite-
ly many elements (infinite set).

Definition 4 (consistence (�N)). A system of linear equations is said
to be consistent if its solution set is non–empty (i.e. either one solution or
infinitely many solutions), otherwise it is inconsistent.

5 Matrix

Definition 5 (matrix (Ý
)). A table of numbers with m rows (1) and n
columns (�) as above is called an m× n matrix. we normally use a capital
letter such as A, B, X etc. to denote a matrix.

We define the m× (n+ 1) matrix
a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
. . .

...
...

am1 am2 · · · amn bm

 .

to be the corresponding augmented matrix (O2Ý
) of system (1),
where we call the corresponding m rows and n columns:

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 .

as the coefficient matrix (XêÝ
) of system (1).

Accordingly, we generate a one to one correspondence (��éA) be-
tween systems and matrices.
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Example:
x1 −2x2 +x3 = 0

2x2 −8x3 = 8
−4x1 +5x2 +9x3 = −9

←→

 1 −2 1 0
0 2 −8 8
−4 5 9 −9

 .

6 Solving a Linear System

We are now introducing a procedure for solving systems of linear equa-
tions.

Basic strategy (ÄÄÄ���üüüÑÑÑ). The basic strategy is to replace one system
with an equivalent system (i.e. one with the same solution set) that is easier
to solve. For example, if a linear system consists of three variables x1, x2 and
x3, then use the x1 term in the first equation of a system to eliminate the x1
terms in the other equations. Then use the xx term in the second equation
of a system to eliminate the x1 terms in the other equations, and so on, until
you finally obtain a very simple equivalent system of equations.

A system can be transformed into another equivalent system such that
some variable is eliminated in some equation by applying an elementary
operation(Ð�C�). After applying a series of elementary operations to
the original system, the original system is transformed into an easy–to–solve
system. The following is a special example:

3x1 +x2 +x3 = 5
2x2 +x3 = 3

x3 = 1
.

Furthermore, by applying elementary operations, the above system can be
transformed into the trivial system

x1 = 1
x2 = 1

x3 = 1
.

Operations. Formally, three types of elementary operations on systems of
linear equations are necessary for us to realize the above transformation. Let
S bs a linear system consists of m equations and n variables. Let ei denote
the i–th equation of S. The three types of elementary operations are defined
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as follows:
1. Interchange(é�C�): Perform exchange between the i–th equation and
the j–th equation of S (ei ↔ ej);
2. Scaling(�¦C�): Multiply the i–th equation by a nonzero number λ
(ei := λei);
3. Replacement(�\C�): Add the result of multiplying the j–th equation
by a number λ to the i–th equation (ei := ei + λej).

To solve the linear system S, we shall perform a sequence of elementary
operations, resulting in a set of equivalent linear systems

S = S0
op1−→ S1

op2−→ · · · opl−→ Sl

systematically, such that Sl is an easy–to–solve or even a trivial system.

Example:
x1 −2x2 +x3 = 0

2x2 −8x3 = 8
−4x1 +5x2 +9x3 = −9

e3:=e3+4e1−→


x1 −2x2 +x3 = 0

2x2 −8x3 = 8
−3x2 +13x3 = −9

e3:=e3+
3
2
e1−→


x1 −2x2 +x3 = 0

2x2 −8x3 = 8
x3 = 3

e2:=e2+8e3−→


x1 −2x2 +x3 = 0

2x2 = 32
x3 = 3

e2:=
1
2
e2−→


x1 −2x2 +x3 = 0

x2 = 16
x3 = 3

e1:=e1−e3−→


x1 −2x2 = −3

x2 = 16
x3 = 3

e1:=e1+2e2−→


x1 = 29

x2 = 16
x3 = 3.

Theorem 6. Elementary operations are reversible(�_�). That is, if

S1
op−→ S2 where S1, S2 are systems and op is an elementary operation, then

there is another elementary operation op−1 such that S2
op−1

−→ S1.

Proof. Exercise.

Connection to Row Operations. In terms of matrix representation for
a linear system of equations, the corresponding to elementary operations on
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linear systems can be directly performed as elementary row operations (1
C�) on matrices as follows:
1. Interchange: Exchange the i–th row and the j–th row of a matrix (ri ↔ rj);
2. Scaling : Multiply the i–th row of a matrix by a nonzero number λ (ri :=
λri);
3. Replacement : Add the result of multiplying the j–th row by a number λ
to the i–th row of a matrix (ri := ri + λrj).

Definition 7 (Row Equivalence (1�d)). If matrix A can be transformed
into matrix B by applying a series of elementary row operations on A then
we say A is row equivalent to B and denote this equivalence by A ∼ B.

Obviously, A ∼ B if and only if their corresponding systems are equiva-
lent.

From now on, we always represent a system of linear equations by its
corresponding augmented matrix. We shall use the more convenient matrix
language in the remaining part of this course.
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