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Abstract—Matching people across nonoverlapping camera views at different locations and different times, known as person

reidentification, is both a hard and important problem for associating behavior of people observed in a large distributed space over a

prolonged period of time. Person reidentification is fundamentally challenging because of the large visual appearance changes caused

by variations in view angle, lighting, background clutter, and occlusion. To address these challenges, most previous approaches aim to

model and extract distinctive and reliable visual features. However, seeking an optimal and robust similarity measure that quantifies a

wide range of features against realistic viewing conditions from a distance is still an open and unsolved problem for person

reidentification. In this paper, we formulate person reidentification as a relative distance comparison (RDC) learning problem in order to

learn the optimal similarity measure between a pair of person images. This approach avoids treating all features indiscriminately and

does not assume the existence of some universally distinctive and reliable features. To that end, a novel relative distance comparison

model is introduced. The model is formulated to maximize the likelihood of a pair of true matches having a relatively smaller distance

than that of a wrong match pair in a soft discriminant manner. Moreover, in order to maintain the tractability of the model in large scale

learning, we further develop an ensemble RDC model. Extensive experiments on three publicly available benchmarking datasets are

carried out to demonstrate the clear superiority of the proposed RDC models over related popular person reidentification techniques.

The results also show that the new RDC models are more robust against visual appearance changes and less susceptible to model

overfitting compared to other related existing models.

Index Terms—Person reidentification, feature quantification, feature selection, relative distance comparison

Ç

1 INTRODUCTION

FOR understanding behavior of people in a large area of
public space covered by multiple nonoverlapping

(disjoint) cameras, it is critical that when a target disappears
from one view, he/she can be reidentified in another view
at a different location among a crowd of people. Solving
this intercamera people association problem, known as
reidentification, enables tracking of the same person through
different camera views located at different physical sites
[26], [15], [32], [17], [8].

Despite the best efforts from computer vision researchers

in the past five years, the person reidentification problem

remains largely unsolved. This is due to a number of reasons.

First, in a busy uncontrolled environment monitored by

cameras from a distance, person verification relying upon

biometrics such as face and gait is infeasible and unreliable.

Second, as the transition time between disjoint cameras1

varies greatly from individual to individual with uncertainty,

it is hard to impose accurate temporal and spatial constraints.
Therefore, the person reidentification problem is made
harder still as a model can only rely on mostly appearance
features alone. Third, the visual appearance features, ex-
tracted mainly from the clothing and shapes of people, are
intrinsically indistinctive for matching people (e.g., most
people in winter wear dark clothes). In addition, a person’s
appearance often undergoes large variations across non-
overlapping camera views due to significant changes in view
angle, lighting, background clutter, and occlusion (see Fig. 1),
resulting in different people appearing more alike than that of
the same person across different camera views (see Figs. 6
and 7).

Given a query image of a person, in order to find the
correct match among a large number of candidate images
captured from different camera views, two steps need to be
taken. First, a feature representation is computed from both
the query and each of the gallery images. Second, the
distance between each pair of potential matches is measured,
which is then used to determine whether a gallery image
contains the same person as the query image. Most existing
studies have focused on the first step, that is, seeking a more
distinctive and reliable feature representation of people’s
appearance, ranging widely from color histogram [26], [15],
graph model [10], spatial co-occurrence representation
model [32], principal axis [17], rectangle region histogram
[6], part-based models [1], [4], to combinations of multiple
features [15], [8]. After feature extraction, these methods
simply choose a standard distance measure such as l1-norm
[32], l2-norm-based distance [17], or Bhattacharyya distance
[15]. However, under severe changes in viewing conditions
that can cause significant appearance variations (e.g., view
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1. The time gap between a person disappearing in one camera view and
reappearing in another.
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angle and lighting condition changes, occlusion), computing
a set of features that are both distinctive and reliable is
extremely hard if not implausible. Moreover, given that
certain features could be more reliable than others under a
certain condition, applying a standard distance measure is
undesirable as it essentially treats all features equally
without discarding bad features selectively in each indivi-
dual matching circumstance.

In this paper, we focus on the second step of person
reidentification. That is, given a set of features extracted
from each person image, we seek to quantify and differ-
entiate these features by learning the optimal distance
measure that is most likely to give correct matches. This is
significantly different from most existing approaches in that
it requires model learning from a set of training data. In
essence, images of each person in a training set form a class.
This learning problem can be framed as a distance learning
problem which always searches for a distance that mini-
mizes intraclass distances while maximizing interclass
distances. However, the person reidentification problem
has four characteristics.

1. The intraclass variation can be large and, more
importantly, can vary significantly for different
classes as it is caused by large and unpredictable
viewing condition changes (see Fig. 1).

2. The interclass variation also varies drastically across
different pairs of classes and there are often severe
overlaps between classes in a feature space due to
similar appearance (e.g., clothing) of different people.

3. The training set for learning the model consists of
images of matched people across different camera
views. In order to capture the large intra and
intervariations, the number of classes is necessarily
large, typically on the order of hundreds. This
represents a large scale learning problem that
challenges existing machine learning algorithms.

4. Annotating a large number of matched people across
camera views is not only tedious, but also inherently
limited in its usefulness.

Typically, each annotated class contains only a handful of
images of a person from different camera views, i.e., the data
are inherently undersampled for building a representative
class distribution. Due to these intrinsic characteristics of the
reidentification problem, especially the problem of a large
number of undersampled classes, a learning model could
easily be overfitted and/or be intractable if it is learned by
minimizing intraclass distance and maximizing interclass

distance simultaneously by brute-force, as is typically done
by existing popular distance learning techniques.

To alleviate this inherently ill-posed distance learning
problem in person reidentification, we formulate the
problem as a relative distance comparison (RDC) problem.
That is, we perform feature quantification by learning a
relative distance comparison model. More specifically, a
novel relative distance comparison model is formulated in
order to differentiate the similarity score of a pair of true
match (i.e., two images of person A) from that of a pair of
related wrong match (i.e., two images of different people A
and B, respectively) so that the latter one can always be
smaller. In other words, the model aims to learn an optimal
distance in the sense that for a given query image, the true
match is desired to be ranked higher than the wrong
matches among the gallery image set. The model cares less
about how large the absolute distance between the pair of
images for the true match. This differs conceptually from a
conventional distance learning approach which aims to
minimize intraclass variation in an absolute sense (i.e.,
making all images of person A more similar or closer in a
features space) while maximizing interclass variation (i.e.,
making two images of person A and B more dissimilar). A
conventional approach thus attempts to maximize the
margin between two classes or, in the context of person
reidentification, enforces a harder discriminant constraint
that the true match is not only ranked higher but also has as
small a distance to the query image as possible compared to
that of wrong matches. One of the key advantages of our
relative distance comparison-based method is that our
model is not easily biased by large variations across many
undersampled classes as it aims to seek an optimized
individual comparison between any two data points rather
than comparison among data distribution boundaries or
among clusters of data. This alleviates the overfitting
problem in person identification given undersampled
training data.

Computationally, learning the proposed relative distance
comparison model can be a nonconvex optimization
problem. It is also a large scale learning problem even
given a moderate training data size. This is because the
distance between each pair of images in a training set needs
be compared exhaustively during model learning and the
feature space for person reidentification is typically of high
dimension. To address this problem, a novel iterative
optimization algorithm is developed in this work for
learning the RDC model. The algorithm is theoretically
validated and its convergence is guaranteed.

Furthermore, in order to alleviate the large space
complexity (memory usage cost) and the local optimum
learning problem due to the proposed iterative algorithm
for solving high-order nonlinear optimization criterion, we
develop an ensemble RDC in this work. The aim is to learn
a set of weak RDC models, each computed on a small subset
of data, and then combine them into a stronger RDC using
ensemble learning.

Extensive experiments are conducted on three publicly
available large person reidentification datasets, including
the ETHZ [7], i-LIDS [37], and VIPeR [14] datasets. The
results demonstrate that 1) by formulating the person
reidentification problem as a relative distance comparison
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Fig. 1. Typical examples of appearance changes caused by cross-view
variations in view angle, lighting, background clutter, and occlusion.
Each column shows two images of the same person from two different
camera views.
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learning problem based on logistic function modeling,
significant improvement on matching accuracy can be
obtained against related popular person reidentification
techniques; and 2) our RDC models outperform not only
related distance learning methods but also related learning
methods based on boosting and rank support vector
machines (SVMs), both in terms of matching accuracy
and tractability.

2 RELATED WORKS

The problem of matching people across disjoint camera
views has received increasing attention in recent years.
Existing works predominantly focus on the problem of
feature extraction and representation with a bag-of-word
representation of color and texture features being the most
common choice. Table 1 summarizes the features and
representations employed by existing methods reported in
the literature. In addition to matching based on similarity of
visual appearance, contextual cues can also be exploited.
Brightness transfer function is introduced to explicitly
compensate for the lighting condition changes between
cameras [3], [27], [18]. However, to learn a brightness
transfer function one has to not only annotate a set of
matched people but also segment each person from the
image, which significantly increases the already large
annotation cost. The temporal relationships between camera
views can be exploited for object tagging. By modeling the
transition time between two camera views one can reduce
the number of potential matches while also using the
probability distribution of transition time as a feature [12],
[25], [24], [22]. However, transition time information could
be unreliable when camera views are significantly disjoint
or feature a large number of moving objects. Nevertheless,
when it can be obtained reliably, it has been exploited to
good effect (see Table 1, column 4). Such contextual
constraints can also be easily employed to the proposed
RDC models either as part of the representation or a
postprocessing step.

Since not all features are equally reliable and informative
for person reidentification, Gray and Tao [15] propose a
boosting approach based on Adaboost to select a subset of
optimal features for matching people. However, in a
boosting framework, good features are only selected

individually and independently in the original feature space
where different classes can be heavily overlapped. Such
selection may not be globally optimal. Rather than selecting
features individually and independently (local selection), we
consider instead quantifying all features jointly (global
selection). Critically, the Adaboost-based feature selection
method in [15] could be biased by large variations between
the appearance of people as its modeling shares similar spirit
with a typical discriminant model that tries to maximize the
difference between two images of different people. It is thus
prone to model overfitting, as shown in our experiments (see
Section 6). In contrast, the proposed RDC model can be seen
as a soft discriminant approach. Our model thus is less
susceptible to overfitting and more tolerant to intra and
interclass variations and severe overlapping of different
classes in a multidimensional feature space.

Relative distance comparison is a special case of learning
to rank or machine-learned ranking. Ranking techniques
such as RankSVM [16] and RankBoost [9] have been widely
used in text document analysis and information retrieval. In
our early work [28], the primal RankSVM [2] is applied to
solve the problem of global feature quantification for person
reidentification. The primal RankSVM solves the high
computational cost problem for large scale constraint
optimization in a standard RankSVM formulation. Com-
pared to RankSVM and RankBoost, the proposed new model
in this paper is more principled and tractable in three
aspects: 1) RDC is a second-order feature quantification
model, taking into account the joined effect between
different features, whereas both RankSVM [2] and Rank-
Boost [9] are a first-order model unable to exploit correla-
tions among different features. 2) RDC utilizes a logistic
function to provide a soft margin measure between the
difference vectors of different types while RankSVM does
not, and such a formulation of our objective function makes
RDC more tolerant to large intra and interclass variations
and better suited for coping with data undersampling.
3) Using a primal RankSVM, one must determine the weight
between the margin function and the ranking error cost
function, which is computationally costly. In contrast, our
RDC model does not suffer from such a problem, leading to
lower computational cost. A more detailed discussion on the
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Main Development of Person Reidentification
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differences between RDC and related ranking models is
given in Section 5. Extensive experiments are presented in
Section 6.6 to validate the advantages of RDC over RankSVM
and RankBoost.

Although it has not previously been exploited for person
reidentification, distance learning in general is a well-
studied problem [35], [13], [36], [34], [15], [29], [33], [20], [5].
The proposed RDC model is related to several existing
distance learning methods. In particular, our model shares
the same spirit with a number of recent works that exploit
the idea of relative distance comparison [29], [33], [20].
However, the relative distance comparison formulations in
these works are not quantified using logistic function for
soft measure, and crucially they are used as an optimization
constraint rather than an objective function. Therefore, as
analyzed in more detail in Section 5, these approaches,
either implicitly [29], [20] or explicitly [33], still aim to learn
a distance by which each class becomes more compact
while being more separable from each other in an absolute
sense. We demonstrate through extensive experiments that,
in practice, they remain susceptible to model overfitting
and poor tractability for person reidentification.

In summary, the main contributions of this work are
three-fold.

1. For the first time, the person reidentification
problem is formulated as a relative distance compar-
ison learning problem, with strong rationale both
conceptually and computationally.

2. We propose a novel logistic function-based relative
distance comparison model for feature quantifica-
tion which overcomes the limitations of existing
distance learning techniques given undersampled
data with large intra and interclass variations.

3. A novel iterative optimization algorithm and an
ensemble RDC model are proposed to improve the
tractability of the RDC model and make it more
suitable for large scale learning.

An early version of this work appeared in [38]. In
addition to giving a more detailed description of the RDC
model, the main changes include 1) an ensemble RDC
model proposed to improve the scalability and tractability
of the original RDC model, 2) more in-depth discussion and
analysis on its relationship to alternative learning methods,
and 3) more extensive experimental evaluations including
the introduction of a new dataset.

3 QUANTIFYING FEATURES FOR PERSON

REIDENTIFICATION

3.1 Proposed Relative Distance Comparison
Learning

We formally cast the person reidentification problem into
the following distance comparison problem, where we
assume each instance of a person is represented by a feature
set (e.g., the representation described in Section 6.2). For an
instance z of person A, we wish to learn a reidentification
model to successfully identify another instance z0 of the
same person captured elsewhere in space and time. This is
achieved by learning a distance function fð�; �Þ so that
fðz; z0Þ < fðz; z00Þ, where z00 is an instance of any other

person except A. To this end, given a training set
Z ¼ fðzi; yiÞgNi¼1, where zi 2 Rq is a multidimensional
feature vector representing the appearance of a person in
one view and yi is its class label (person ID), we define a
pairwise set OO ¼ fOOi ¼ ðxpi ;xni Þg, where each element of a
pair-wise data OOi itself is computed using a pair of sample
feature vectors. More specifically, xpi is a difference vector
computed between a pair of relevant samples (of the same
class/person) and xni is a difference vector from a pair of
related irrelevant samples, i.e., only one sample for
computing xni is one of the two relevant samples for
computing xpi and the other is a mismatch from another
class (e.g., xpi and xni share the same z in the following (1),
while they have different z0). The difference vector x
between any two samples z and z0 is computed by

x ¼ d
�
z; z0

�
; z; z0 2 Rq; ð1Þ

where d is an entry-wise difference function that outputs a
difference vector between z and z0. The specific form of
function d will be described in Section 3.4.

Given the pairwise set OO, a distance function f will take
the difference vector as input and can be learned based on
relative distance comparison so that a distance between a
relevant sample pair (fðxpi Þ) is wished to be smaller than
that between a related irrelevant pair (fðxni Þ). In order to
differentiate these two types of difference vectors, we
propose a logistic function based modeling to describe
how a distance between a relevant pair differs from the one
between a related but irrelevant pair as follows:

Cf
�
xpi ;x

n
i

�
¼
�
1þ exp

�
f
�
xpi
�
� f
�
xni
����1

: ð2Þ

We assume the events of distance comparison between a
relevant pair and a related irrelevant pair are independent2.
Then, we wish to minimize the risk of learning f via all the
above relative distance comparisons as follows:

min
f
rðf;OOÞ; rðf;OOÞ ¼ � log

Y
OOi

Cf
�
xpi ;x

n
i

� !
: ð3Þ

The distance function f is parameterized as a Mahalanobis
(quadratic) distance function:

fðxÞ ¼ xTMx; M � 0; ð4Þ

where M is a semidefinite matrix. The distance learning
problem thus becomes learning M using (3). Directly
learning M using semidefinite program techniques is
computationally expensive for high-dimensional data [33].
In particular, we found out in our experiments that given a
dimensionality of thousands, typical for visual object
representation, a distance learning method based on learn-
ing M becomes intractable. To overcome this problem, we
perform eigenvalue decomposition on M:

M ¼ A�AT ¼WWT ; W ¼ A�
1
2; ð5Þ

where the columns of A are orthonormal eigenvectors of M
and the leading diagonal of � contains the corresponding
nonzero eigenvalues. Note that the columns of W form a set
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of orthogonal vectors. Therefore, learning a function f is
equivalent to learning such a matrix W ¼ ðw1; . . . ; wl; . . . ;
wLÞ such that

min
W

r
�
W;OO

�
; s:t: wT

i wj ¼ 0; 8i 6¼ j

r
�
W;OO

�
¼
X
OOi

log
�
1þ exp

���WTxpi
��2 �

��WTxni
��2��

:

ð6Þ

We call this relative distance comparison learning for
person reidentification. RDC is based on a logistic function
ranging from 0 to 1 in value. This is designed to avoid
dramatic changes in the response to different relative
distance comparisons.

3.2 An Iterative Optimization Algorithm

It is important to point out that our optimization criterion
(6) may not be a convex optimization problem against the
orthogonal constraint due to the logistic function-based
relative comparison modeling. It means that deriving an
global solution by directly optimizing W is not straightfor-
ward. In this work, we formulate an iterative optimization
algorithm to learn an optimal W, which also aims to seek a
low-rank and nontrivial solution automatically. This is
critical for reducing the model complexity, thus alleviating
the overfitting problem given a large number of under-
sampled classes.

Starting from an empty matrix, after iteration ‘ a new
estimated column w‘ is added to W. The algorithm
terminates after L iterations when a stopping criterion is
met. Each iteration consists of two steps as follows:

Step 1. Assume that after ‘ iterations a total of
‘ orthogonal vectors w1; . . . ;w‘ have been learned. To learn
the next orthogonal vector w‘þ1, let

a‘þ1
i ¼ exp

X‘
j¼0

kwT
j xp;ji k

2 � kwT
j xn;ji k

2

( )
; ð7Þ

where we define w0 ¼ 0, and xp;‘i and xn;‘i are the difference
vectors at the ‘th iteration defined as follows:

xs;‘i ¼ xs;‘�1
i � ~w‘�1 ~wT

‘�1x
s;‘�1
i ; s 2 fp; ng; i ¼ 1; . . . ;

��OO��;
ð8Þ

where ‘ � 1 and ~w‘�1 ¼ w‘�1=kw‘�1k. Note that we define
xs;0i ¼ xsi , s 2 fp; ng, and ~w0 ¼ 0.

Step 2. Obtain xp;‘þ1
i , xn;‘þ1

i by (8). Let OO‘þ1 ¼ fOO‘þ1
i ¼

ðxp;‘þ1
i ;xn;‘þ1

i Þg. Then, learn a new optimal projection w‘þ1 on
OO‘þ1 as follows:

w‘þ1 ¼ arg min
w
r‘þ1

�
w;OO‘þ1

�
; ð9Þ

where

r‘þ1

�
w;OO‘þ1

�
¼
X
OO‘þ1

i

log
�
1þ a‘þ1

i exp
���wTxp;‘þ1

i

��2 �
��wTxn;‘þ1

i

��2��
:

We seek a solution by a gradient descent method

w‘þ1  w‘þ1 � � �
@r‘þ1

@w‘þ1
; � � 0; ð10Þ

@r‘þ1

@w‘þ1
¼
X
OO‘þ1

i

2 � a‘þ1
i � exp

�
kwT

‘þ1x
p;‘þ1
i k2 � kwT

‘þ1x
n;‘þ1
i k2�

1þ a‘þ1
i � exp

�
kwT

‘þ1x
p;‘þ1
i k2 � kwT

‘þ1x
n;‘þ1
i k2�

�
�
xp;‘þ1
i xp;‘þ1

i

T � xn;‘þ1
i xn;‘þ1

i

T �
w‘þ1;

where � is a step length automatically determined at each
gradient update step using similar strategy in [23]. Accord-
ing to the descent direction in (10), the initial value of w‘þ1

for the gradient descent method is set to

w‘þ1 ¼ jOO‘þ1j-1
X
OO‘þ1

i

�
xn;‘+1
i � xp;‘+1

i

�
: ð11Þ

Note that the update in (8) deducts information from
each sample xs;‘-1

i affected by w‘�1 as wT
‘�1x

s;‘
i ¼ 0 so that

the next learned vector w‘ will only quantify the part of the
data left from the last step, i.e., xs;‘i . In addition, a‘þ1

i

indicates the trends in the change of distance measures for
xpi and xni over previous iterations and serve as a priori
weight for learning w‘.

The iteration of the algorithm (for ‘ > 1) is terminated
when the following criterion is met:

r‘
�
w‘;OO

‘
�
� r‘+1

�
w‘+1;OO

‘þ1
�
< "; ð12Þ

where " is a small tolerance value set to 10-6 in this work.
The algorithm is summarized in Algorithm 1.

3.3 Theoretical Validation

The following two theorems validate the claim that the
proposed iterative optimization algorithm learns a set of
orthogonal vectors fw‘g that iteratively decrease the
objective function in Criterion (6).

Theorem 1. The learned vectors w‘, ‘ ¼ 1; . . . ; L, are orthogonal
to each other.

Proof. Assume that ‘� 1 orthogonal vectors fwjg‘�1
j¼1 have

been learned. Let w‘ be the optimal solution of
Criterion (9) at the ‘ iteration. First, we know that w‘

is in the range space3 of fxp;‘i g [ fx
n;‘
i g according to (10)

and (11), i.e., w‘ 2 spanfxs;‘i ; i ¼ 1; . . . ; jOOj; s 2 fp; ngg.
Second, according to (8), we have

ZHENG ET AL.: REIDENTIFICATION BY RELATIVE DISTANCE COMPARISON 657

3. This can also be explored by using Lagrangian equation for (9) for a
nonzero w‘.

No commercial use ^_^



wT
j xs;jþ1

i ¼ 0; s 2 fp; ng; j ¼ 1; . . . ; ‘� 1

spanfxs;‘i ; i ¼ 1; . . . ; jOOj; s 2 fp; ngg
� span

�
xs;‘�1
i ; i ¼ 1; . . . ; jOOj; s 2 fp; ng

�
� � � � � span

�
xs;0i ; i ¼ 1; . . . ; jOOj; s 2 fp; ng

�
:

ð13Þ

Hence, w‘ is orthogonal to wj, j ¼ 1; . . . ; ‘� 1. tu

Theorem 2. rðW‘þ1;OOÞ � rðW‘;OOÞ, where W‘ ¼ ðw1; . . . ;
w‘Þ, ‘ � 1. That is, the algorithm iteratively decreases the
objective function value.

Proof. Let w‘þ1 be the optimal solution of (9). By Theorem 1,
it is easy to prove that for any j � 1, wT

j xs;ji ¼ wT
j xs;0i ¼

wT
j xsi , s 2 fp; ng. Hence, we have

r‘þ1

�
w‘þ1;OO

‘þ1
�

¼
X
OO‘þ1

i

log
�
1þ a‘þ1

i exp
�
kwT

‘þ1x
p;‘þ1
i k2 � kwT

‘þ1x
n;‘þ1
i k2��

¼ rðW‘þ1;OOÞ:

Also r‘þ1ð0;OO‘þ1Þ ¼ rðW‘;OOÞ. Since w‘þ1 is the minimal
solution, we have r‘þ1ðw‘þ1;OO

‘þ1Þ � r‘þ1ð0;OO‘þ1Þ, and
therefore rðW‘þ1;OOÞ � rðW‘;OOÞ. tu
Since Criterion (9) may not be convex, a local optimum

could be obtained in each iteration of our algorithm.
However, even if the computation was trapped in a local
minimum of (9) at the ‘þ 1 iteration, Theorem 2 is still
valid if r‘þ1ðw‘þ1;OO

‘þ1Þ � r‘ðw‘;OO
‘Þ; otherwise the algo-

rithm will be terminated by the stopping criterion (12). To
alleviate the local optimum problem at each iteration,
multiple initializations could be deployed in practice. In
this work, we formulate an ensemble algorithm in Section 4
to alleviate the problem of local optimum.

3.4 Learning in an Absolute Data Difference Space

To compute the data difference vector x defined in (1), most
existing distance learning methods use the following entry-
wise difference function,

x ¼ dðz; z0Þ ¼ z� z0; ð14Þ

to learn M ¼WWT in the normal data difference space
denoted by DZ ¼ fxij ¼ zi � zj

��zi; zj 2 Zg. The learned
distance function is thus written as

fðxijÞ ¼
�
zi � zj

�T
M
�
zi � zj

�
¼ kWTxijk2: ð15Þ

In this work, we compute the difference vector by the
following entry-wise absolute difference function:

x ¼ dðz; z0Þ ¼
��z� z0

��; xðkÞ ¼
��zðkÞ � z0ðkÞ

��; ð16Þ

where zðkÞ is the kth element of the sample feature vector. M
is thus learned in an absolute data difference space, denoted
by

��DZ�� ¼ fjxijj ¼ jzi � zjj
��zi; zj 2 Zg, and our distance

function, which is a symmetric Premetrics, becomes

fðjxijjÞ ¼ jzi � zjjTMjzi � zjj ¼ kWT jxijj k2: ð17Þ

We now explain why learning in an absolute data
difference space is more suitable to our relative comparison
model. First, we note that

jziðkÞ � zjðkÞj � jðziðkÞ � zj0 ðkÞj
� jðziðkÞ � zjðkÞÞ � ðziðkÞ � zj0 ðkÞÞj;

ð18Þ

hence we have jxijj � jxij0 j: � jxij � xij0 j, where “: � ” is an

entry-wise “� ”. As jxijj; jxij0 j � 0, we thus can prove����jxijj � jxij0 j���� � ����xij � xij0
����: ð19Þ

This suggests that the variation of jxijj given the same

sample space Z is always less than that of xij. Specifically, if

zi; zj; zj0 are from the same class, the intraclass variation is

smaller in jDZj than in DZ. On the other hand, if zj and zj0

belong to a different class than zi, the variation of interclass

differences is also more compact in the absolute data

difference space. Since the variations of both relevant and

irrelevant sample differences xp and xn are smaller, the

learned distance function using (6) would yield more

consistent distance comparison results, therefore benefitting

our RDC model. Specially, for the same semidefinite matrix

M, by combining (19) and the Cauchy inequality, we have

upperð
����WT ðjxijj � jxij0 jÞ

����Þ � upperð����WT ðxij � xij0 Þ
����Þ;

where upperð�Þ is the upper bound operation. This indicates

that in the latent subspace induced by W, the maximum

variation of jxijjTMjxijj is lower than that of xTijMxij. We

show notable benefit of learning RDC in an absolute data

difference space in our experiments.

4 ENSEMBLE LEARNING FOR LARGE SCALE

COMPUTATION

The proposed RDC is based on the comparison between

each relevant and related irrelevant pairs and optimized by

an iterative algorithm. However, there are the two follow-

ing remaining issues could still hinder the tractability of the

proposed model.

1. First, the number of comparisons can thus be very
high given even a moderate training data size.
Specifically, the amount of these pairwise comparison
could lead to a considerably large space complexity
(memory usage cost). For instance, let us assume
there are N images in total in a training set belonging
to L people. Assuming there are N

L images for each
person, we can learn an RDC with a space complexity
of Oðq � ðð1L� 1

L2Þ �N3 þ ð1L� 1Þ �N2ÞÞ, where q is the
dimension of the feature space. This high space
complexity is thus caused by both the N3 term and
the typically high feature dimension q.

2. Second, although the proposed iterative optimiza-
tion algorithm can effectively handle the high order
nonconvex optimization problem, it could still be
trapped into a local optimum.

To alleviate these two problems, rather than learning a

batch mode RDC, we propose learning a set of weak RDC

models, each computed using a small subset of the data,

and then combining them to build a stronger RDC using

ensemble learning. More specifically, by using the idea of

ensemble learning, a strong RDC model fsðxÞ is constructed

by a set of H weak RDC models fw;iðxÞ as follows:
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fsðxÞ ¼
XH
i¼1

�i � fw;iðxÞ; ð20Þ

where fw;iðxÞ are defined as in (4) and �i is the weight of
each weak RDC model.

Learning weak RDC models fw;i—Each weak RDC
model is learned using a different subset of the training
samples. More specifically, to learn H weak models, the
training dataset is divided into H groups. Assuming there
are in total L people/classes C ¼ fC1; . . . ; CLg, we first
equally divide them into H groups G1; . . . ; GH without
overlap, i.e., C ¼

SH
i¼1 Gi and 8i 6¼ j, Gi

T
Gj ¼ ;. Subse-

quently, the training dataset Z is divided into H subsets
Z1; . . . ;ZH as follows:

Zi ¼ fðxi; yiÞjyi 2 Gig: ð21Þ

Then for each subset Zi, another subset of samples Oi is
randomly selected from the remaining samples (i.e.,
B percent of the data in Z � Zi). In this paper, H and B
are set to be 50 and 40, respectively. Finally, these two
subsets Zi and Oi are merged to form the final training set
for learning the ith weak model using the batch-mode
method described in Section 3.1. Note that Zi and Oi are
formed in a different way in that Oi is drawn randomly. By
introducing a random component in the data subset we
ensure that the feature space is to some extent well sampled
for each weak model.

Learning �i—Suppose H weak RDC models ffw;igHi¼1

have been learned from the previous step. We now explore
boosting to learn the weight �i on the whole dataset Z
iteratively (see Algorithm 2). Specifically, at the tth step, we
first select the best weak distance model fw;kt that minimizes
the following cost function:

kt ¼ arg min
i

X
OOj

Dj
t � �
�
fw;i
�
xpj
�
> fw;i

�
xnj
��
; ð22Þ

where Dj
t is the weight of pairwise difference vectors at the

tth step,
PjOOj

j¼1 D
j
t ¼ 1, and � is a Boolean function. Then, Dj

t

is updated as follows:

Dj
tþ1 ¼ F�1Dj

t � exp
�
�t �

�
fw;kt

�
xpj
�
� fw;kt

�
xnj
���

; ð23Þ

where F is the normalizer such that
PjOOj

j¼1 D
j
tþ1 ¼ 1. The

weight �t for the selected weak model fw;kt is then
determined by

�t ¼ 0:5 � log
1þ r
1� r ; r ¼

XjOOj
j¼1

Dj
t

�
fw;kt

�
xnj
�
� fw;kt

�
xpj
��
:

ð24Þ

According to [9], in order to ensure that the ensemble
algorithm converges, each input weak RDC model fw;i is
normalized by maxj

��fw;iðxpj Þ � fw;iðxnj Þ��, i.e.,

fw;ið�Þ  
�

max
j

��fw;i�xpj�� fw;i�xnj ���	-1

fw;ið�Þ; ð25Þ

so that fw;iðxpj Þ � fw;iðxnj Þ 2 ½�1;þ1	.
By learning RDC in an ensemble way, each weak model

is learned on a smaller set of data and the final distance
function of the ensemble model is based on the score values
of each weak model. Define N+ðziÞ (N-ðziÞ) as the number

of relevant (irrelevant) observations for query zi in the
training set. Note that the space complexity (memory cost)
of creating all the training samples xpi and xni is

O
XN
i¼1

q �N+ðziÞ �N-ðziÞ
 !

; ð26Þ

where N-ðziÞ ¼ N �N+ðziÞ-1, q is the number of features
to describe each data sample. Assuming there are N

L images
for each person, we then have N+ðziÞ ¼ N

L -1. Therefore, to
generate each weak RDC model in learning an ensemble
RDC, the space complexity is reduced to Oðq � ððb2

L �
b
L2Þ �N3+ðbL -b2Þ �N2ÞÞ, where b is the percentage of all
training samples used for building a weak RDC.4 After
generating the weak RDCs, the ensemble learning process
itself has a space complexity of OðH � ðð1L - 1

L2Þ �N3 þ ð1L �
1Þ �N2ÞÞ, where H is the number of groups (i.e., the total
number of weak RDC models). As H 
 q, the boosting
process has much less memory usage during training.

Apart from reducing the space complexity of RDC,
ensemble learning also alleviates the local optimum
problem of the iterative algorithm proposed to solve the
RDC optimization problem in Section 3.2. Note that each
RDC model we described above is weak because it is only
learned on a small set of training data and it may still suffer
from the local optimum problem. As the ensemble learning
theory in [9] ensures the matching error is minimized, the
ensemble learning introduced above thus is able to alleviate
the effect of being trapped in a local optimum. Our
experiments show that the Ensemble RDC can generally
yield equal or better performance as compared to the
proposed batch mode RDC for large scale computing and is
with reduced memory usage.

5 RELATIONS TO ALTERNATIVE MODELS

Given the RDC model and its ensemble formulation, we
shall now discuss the relations between these models and
alternative models, specifically ranking models and dis-
tance learning models.

Relations to existing ranking models. Our RDC model
is a special ranking model, concerned with only two ranks,
i.e., the true match being ranked higher than any mis-
matches. In our early work [28], we investigated the use of a
rank support vector machine (RankSVM)-based ranking
model for person reidentification. In particular, the primal
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RankSVM proposed by Chapelle and Keerthi [2] is adopted,
which is more suitable for large-scale learning compared to
a standard RankSVM. The primal RankSVM aims to solve
the following ranking optimization problem:

min
w

1

2
wk k2þ�

XjOOj
i¼1

max 0; 1�wT
�
xpi � xni

�� �2
; ð27Þ

where � is a positive importance weight on the ranking
performance, and xpi and xni are also computed in the
absolute data difference space. Comparing this optimiza-
tion problem with the one our RDC model attempts to solve
(6), one can note the following fundamental differences
between the two models:

1. RDC is able to explore the second-order information
extracted from data due to the quadratic formulation
in (4), learning weights for not only each individual
feature but also the combination of each pair of
features, while primal RankSVM only computes the
weights w based on the first-order information,
ignoring the correlations between features. This
difference is due to the distance learning formulation
of RDC and the linear SVM formulation of primal
RankSVM.

2. With the hinge loss function, primal RankSVM is
essentially a large margin-based optimization model
due to the offset 1 and minimization of kwk in (27).
In contrast, our RDC model enforces a softer
constraint by using logistic function modeling. This
enables the RDC model to be more tolerant to large
intra and interclass variations and less prone to
underfitting given undersampled data.

3. Differing from RDC, there is a free parameter � in the
cost function of primal RankSVM which determines
the relative weighting between the margin function
and the ranking error function. Determining the
optimal value of � is critical and can be achieved by
cross-validation. However, person reidentification
based on learning to rank is typically a large scale
learning problem. Using cross-validation would
further increase the computational cost a lot, making
the model less tractable.

Another related ranking model one can consider is
RankBoost based on the boosting technique. Comparing
RDC to RankBoost [9], the major difference is that RDC
quantifies the joint combination of different features rather
than quantifying each feature independently. This indivi-
dual local selection process makes the RankBoost model
computationally much more expensive than either RDC or
RankSVM, as demonstrated by our experiments (see
Section 6.6). It is worth pointing out that although boosting
technique is also used in our ensemble version of RDC, the
objective is completely different: We aim to combine a
handful of weak RDC models together rather than
quantifying features individually and independently.

Relations to existing distance learning models. Among
various existing distance learning methods, the methods in
[29], [33], and [20] are the most relevant ones to our model as
they also exploit the idea of relative distance comparison.
However, there is a fundamental difference in their distance

learning formulation; that is, in their models relative
distance comparison is used as a constraint rather than as
part of the cost function as in the RDC model. In some work,
a common form of the constraint in these related models
[29], [20] is as follows:

xTnMxn � xTp Mxp � 1;

where xp is the difference between relevant samples, xn is

that of the related irrelevant ones, and M is the distance

matrix. Hence, when those models minimize the kMkF , it is

equivalent to maximizing the margin 1
kMkF

between a

relevant pair and the corresponding related irrelevant one

with a normalized distance matrix fM ¼ M
kMkF

. In [33], the

model explicitly minimizes the intraclass variation and

maximizes the interclass variation. As a result, these relative

distance comparison models still either implicitly [29], [20]

or explicitly [33] aim to learn a distance by which each class

becomes more compact while being more separable from

each other in an absolute sense. In contrast, RDC is only

concerned with the relative distance comparison and using

the comparison error itself as its cost function. This enables

a distance to be learned with a softer constraint with the

benefit of being more tolerant to intra and interclass

variations and undersampling.

6 EXPERIMENTS

6.1 Datasets and Settings

Three publicly available person reidentification datasets,
ETHZ [7], i-LIDS Multiple-Camera Tracking Scenario
(MCTS) [37], [31], and VIPeR [14] were used for evaluation.
The ETHZ dataset was originally designed for person
detection and tracking in image sequences captured from a
moving camera in a busy street scene. Schwartz and Davis
[30] converted it into a person reidentification dataset by
extracting images of a set of people selected from the video
sequences5 (i.e., those images of each person were assumed
to have been taken from different camera views). This
resulted in 146 people and 8,555 images in total. To make it
more realistic to a multicamera setup, we randomly chose six
images for each person for training in the dataset for our
experiments. The image size is normalized to 128� 64 pixels.
The challenges of this dataset are the illumination changes
and occlusions on people’s appearance while the view angle
change is small (see Fig. 5). In the i-LIDS MCTS dataset,
which was captured indoor at a busy airport arrival hall,
there are 119 people with a total 476 person images captured
by multiple nonoverlapping cameras with an average of four
images for each person. The images were normalized to a
size of 128� 64 pixels. Many of these images undergo large
illumination change, considerable view angle change, and
are subject to large occlusions (see Fig. 6). The VIPeR dataset6

is a person reidentification dataset available consisting of 632
people captured outdoor with two images for each person
with normalized size at 128� 64 pixels. View angle change
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was the most significant cause of appearance change with
most of the matched image pairs containing one front/back
view and one side-view (see Fig. 7). Illumination change
could also be drastic, but there was little occlusion. It is noted
that these three datasets have different characteristics (e.g.,
outdoor/indoor, large/small variations in view angle,
presence/absence of occlusion) and therefore are ideal for
evaluating person reidentification algorithms given different
challenges. Among them, the ETHZ dataset is considered to
be the easiest one due to the fact that it was not actually
captured by multiple nonoverlapping view cameras and
thus lack of view angle change. Note that across the three
datasets, the average number of training images of each
person ranges from two (VIPeR) to six (ETHZ), highlighting
the undersampled class distribution typical for the person
reidentification problem.

In our experiments, we randomly selected all images of
p people (classes) to set up the test set, and the rest of the
people (classes) were used for training. Different values of p
were used to evaluate the matching performance of models
learned with different amounts of training data. Each test set
was composed of a gallery set and a probe set. The gallery
set consisted of one image for each person, and the
remaining images were used as the probe set. This
procedure was repeated 10 times. During training, a pair
of images of each person formed a relevant pair, and one
image of him/her and one of another person in the training
set formed a related irrelevant pair, and together they
formed the pairwise set OO defined in Section 3.

For evaluation, we use the average cumulative match
characteristic (CMC) curves [14] over 10 trials to show the
ranked matching rates. A rank r matching rate indicates the
percentage of the probe images with correct matches found
in the top r ranks against the p gallery images. Rank 1
matching rate is thus the correct matching/recognition rate.
Note that, in practice, although a high rank 1 matching rate
is critical, the top r ranked matching rate with a small r
value is also important because the top matched images will
normally be verified by a human operator [14].

6.2 Feature Representation

We apply our RDC model as well as other models to an
appearance representation of people captured by a set of
different basic features. We start with a mixture of color and
texture histogram features similar to those used in [15], [28]
and let our model automatically discover an optimal feature

distance. Specifically, we divided a person image into six
horizontal stripes. For each stripe, the RGB, YCbCr, HSV
color features, and two types of texture features extracted
by Schmid and Gabor filters were computed across
different radiuses and scales, and in total, 13 Schimid filters
and 8 Gabor filters were obtained. In total, 29 feature
channels were constructed for each stripe and each feature
channel was represented by a 16D histogram vector.
The details can be referred to in [15], [28]. Each person
image was thus represented by a feature vector in a 2,784D
feature space Z. Since the features computed for this
representation include low-level features widely used by
existing person reidentification techniques, this representa-
tion is considered generic and representative.

6.3 RDC versus Baseline Methods.

We first compared our RDC with baseline methods,
namely nonlearning based l1-norm distance and Bhatta-
charyya distance, which were used by most existing
person reidentification work. Our results (Figs. 2, 3, and
4, Tables 2, 3, and 4) show clearly that with the proposed
RDC, the matching performance for all three datasets is
improved significantly, more so when the training set size
increases. The improvement is particularly dramatic on the
VIPeR dataset. In particular, Table 5 shows that a fourfold
increase in correct matching rate (r ¼ 1) is obtained against
both l1-norm and Bhattacharyya distances when p ¼ 316.
The results validate the importance of performing distance
learning. Examples of matching people using RDC for the
three datasets are shown in Figs. 5, 6, and 7 respectively.

6.4 RDC versus Adaboost and PLS

The Adaboost algorithm was formulated in [15] and the
partial least squares (PLS) method was proposed in [30].
They are the only learning-based person reidentification
methods we are aware of. In our experiments, the
suggested settings in [15] and [30] were used. The
Adaboost method in [15] is motivated by the observation
that not all features are equally distinctive and reliable for
matching people and aims to learn the weighting of
different features. The proposed RDC algorithm also aims
to compute the importance weight, but it differs in that
1) RDC performs a ranking-based soft discriminant feature
selection while Adaboot in [15] performs large margin-
based discriminant selection; 2) RDC is able to evaluate the
importance of different combinations of features (second
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No commercial use ^_^



order information), while Adaboost assumes different
features are independent and selects them individually.
As shown in Figs. 2, 3, and 4, and Tables 2, 3, and 4, our
RDC model clearly outperforms the Adaboost-based
method in all three datasets. The advantage is particularly
significant on the more challenging i-LIDS and VIPeR
datasets. For instance, for the VIPeR dataset, the rank 1
matching rate of RDC is twice of that of Adaboost for all

three training/testing splits. This result highlights the
importance of quantifying features globally rather than
locally (individually).

Although PLS does not quantify features individually as
Adaboost does, it does not perform well for person
reidentification in our experiments. This is because PLS is
a regression method and it can only be learned on the
gallery dataset. Since there are only limited samples per
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Fig. 4. Performance comparison using CMC curves on the VIPeR dataset.

Fig. 3. Performance comparison using CMC curves on the i-LIDS MCTS dataset.

TABLE 2
Top Ranked Matching Rate (Percent) on ETHZ

p is the size of the gallery set (larger p means smaller training set) and r is the rank.

TABLE 3
Top Ranked Matching Rate (Percent) on i-LIDS MCTS

p is the size of the gallery set and r is the rank.
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person for training PLS and the people’s appearance varies
largely, PLS is sensitive to the learned data and may not
generalize to new data very well. In contrast, our RDC
model and the Adaboost model are learned using an
independent training set consisting of different people from
those in the gallery set. This not only contributes to better
performance but also makes the methods more general
applicable (i.e., applicable even with only a single gallery
image per person).

6.5 RDC versus Related Distance Learning Methods

We also compared RDC with four alternative popular
discriminant distance learning methods, namely, Xing’s
method [35], LMNN [33], ITM [5], and MCC [13]. Among
the four methods, only LMNN exploits relative distance
comparison, but it is used as an optimization constraint

rather than the main objective function, and moreover a
hard rather than a soft margin measure is used to quantify
each relative distance comparison. MCC is based on
Bayesian modeling, but it is not a relative distance
comparison-based method. Note that since MCC needs to
select the best dimension for matching, we performed cross-
validation by selecting its value in f½1 : 1 : 10	; dg, where d is
the maximum rank MCC can learn. Due to the space
limitation, the standard derivations of all methods are not
shown in the table. In our experiments, the standard
derivations of all methods are mainly around 2-4 percent,
where the proposed RDC is always around 2.5 percent and
MCC is always between 3-4 percent.

The first thing we discovered in our experiments was
that none of the four models were tractable due to the high
dimensionality of the input data. PCA was thus performed
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TABLE 4
Top Ranked Matching Rate (Percent) on VIPeR

p is the number of classes in the testing set; r is the rank.

Fig. 5. Examples of person reidentification on ETHZ using RDC. In each row, the left-most image is the probe, images in the middle are the top 20
matched gallery images with a highlighted red box for the correctly matched, and the right-most shows a true match.

TABLE 5
RDC versus Primal RankSVM (Percent) on ETHZ, i-LIDS, and VIPeR
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to reduce the dimensionality while preserving 100 percent
of the data. Our results (Figs. 2, 3, and 4, Tables 2, 3, and 4)
clearly show that our model yields the best rank 1 matching
rate and overall much superior performance compared to
the compared models. The advantage of RDC is particularly
apparent when a training set is small (learning becomes
more difficult) and a test set is large indicated by the value
of p (matching becomes harder). Table 4 shows that on
VIPeR when 100 people are used for learning and
532 people for testing (p ¼ 532), the correct matching rate
for RDC is almost more than doubled against any
alternative distance learning methods. It is noted that,
benefiting from being a Bayesian modeling, MCC gives the
most comparable results to RDC when the training set is
large. However, its performance degrades dramatically
when the size of the training data decreases (see columns
under p ¼ 120 in Table 2, p ¼ 80 in Table 3, and p ¼ 532 in
Table 4). Overall the results suggest that overfitting to
undersampled training data is the main reason for the
inferior performance of the compared alternative learning
approaches.

6.6 RDC versus Related Ranking Methods

We first compare RDC with the primal RankSVM method
used in [28]. Different from RDC, RankSVM has a free
parameter � which determines the relative weights between
the margin function and the ranking error function. We
cross-validated the parameter � in f0:0001; 0:005; 0:001;

0:05; 0:1; 0:5; 1; 10; 100; 1,000g for primal RankSVM. As
shown in Table 5, the two methods all perform very well
compared to non-learning-based methods and the four
distance learning-based methods. Our RDC yields overall
better performance, especially at lower rank matching rate
and given less training data over the more challenging
i-LIDS and VIPeR datasets. The better performance of RDC
is mainly due to the logistic function-based modeling that
enforces a softer constraint on relative distance comparison
and exploiting second-order rather than first-order feature
quantification. It is discovered that tuning the free para-
meter for primal RankSVM is not a trivial task and the
performance can be sensitive to the tuning especially given
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Fig. 6. Examples of person reidentification on i-LIDS MCTS using RDC.

Fig. 7. Examples of person reidentification on VIPeR using RDC.
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undersampled data. Importantly, this results in more
computational cost. The training of primal RankSVM took
about 2.5 hours for each trial on i-LIDS and VIPeR, and
about 8 hours for each trial on ETHZ. Hence, learning primal
RankSVM is costly and could potentially be a serious
problem for large-scale learning (e.g., matching in a camera
network comprising hundreds of cameras). In contrast, the
training of our RDC model was at least 10 times faster. (See
Section 6.9 for more discussion on computational cost.) In
addition, a more advanced development, namely, ensemble
RDC, would achieve better performance than RDC in
challenging cases.

We also compare RDC with RankBoost [9]. However, it
turned out that RankBoost is intractable for our high-
dimensional feature space (2,784D). Without access to special
hardware, RankBoost was only tractable for the smallest
training dataset setting for all three datasets. The main reason
for this high computational cost is because RankBoost needs
to learn an optimal weak classifier at each iteration, which
has to determine a threshold parameter optimally over a
large number of pairwise comparison (OðN3Þ with N the
number of training images). Table 6 shows the results. It can
clearly be seen that Rankboost performs much worse than
our RDC. The possible reasons include: 1) The weak ranker in
RankBoost is too weak based on a single feature, and 2) all
features are treated independently.

6.7 Evaluation of Ensemble RDC

Ensemble RDC is proposed as an extension to RDC in order
to alleviate the large scale computation problem in RDC.
Table 7 shows that the ensemble RDC yields similar
matching performance to RDC on ETHZ. But on the two
more challenging datasets, ensemble RDC outperforms
RDC. As expected, the ensemble RDC has much less space
complexity than the batch model RDC. For instance, in the
case of p ¼ 316 for VIPeR, ensemble RDC took at most
2G RAM for learning the weak classifier while RDC
required at least 10.4G RAM in our experiments. The better
performance of ensemble RDC is likely due to the fact that

the ensemble learning process can effectively alleviate the
local optimum of the iterative algorithm for optimizing
RDC. As we explained earlier, the formulated iterative
algorithm in Section 3.2 may be trapped in a local
optimum. With the boosting-based learning, an RDC that
is particularly weak because of being trapped in a local
optimum will be given a smaller weight. It thus alleviates
the local optimum problem.

6.8 Further Evaluations of RDC

In this section, we further evaluate the proposed RDC
methods in the following three aspects.

Effect of using logistic function. We first evaluate the
usefulness of the logistic function based modeling. Without
a logistic function, Criterion (6) becomes

min
W

r0ðW;OOÞ; s:t: wT
i wj ¼ 0; 8i 6¼ j;

where r0ðW;OOÞ ¼
X
OOi

kWTxpi k
2 � kWTxni k

2:
ð28Þ

This is similar to the maximum margin criterion (MMC) for
feature extraction [21], which we call RDC-MMC in our
experiments. The performance of RDC-MMC is compared
with RDC in Table 8. The results show that without the
logistic modeling for differentiating the margin in the
difference information from different types, the RDC-MMC
model performs much worse for person reidentification.
This highlights the importance of using a logistic function
for learning a person reidentification model.

Effect of learning in an absolute data difference space.

We have shown in Section 3.4 that in theory our relative
distance comparison learning method can benefit from
learning in an absolute data difference space. To validate
this experimentally, we compare RDC with RDCraw which
learns in the normal data difference space DZ (see
Section 3.4). The result in Table 9 indicates that learning
in an absolute data difference space does improve the
matching performance. Note that most existing distance
learning models are based on learning in the normal data
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TABLE 7
RDC versus Ensemble RDC (Precent) on ETHZ, i-LIDS, and VIPeR

p is the number of classes in the testing set; r is the rank.

TABLE 6
RDC versus RankBoost (Percent) on ETHZ, i-LIDS, and VIPeR
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difference space DZ. It is possible to reformulate some of
them in order to learn in an absolute data difference space.
In Table 9, we show that when ITM and MCC are learned in
the absolute data difference space jDZj, termed ITMabs and
MCCabs, respectively, their performances become worse as
compared to their results in Tables 2, 3, and 4. This indicates
that the absolute different space is more suitable for our
relative comparison distance learning, which makes the
distance comparison more consistently.

6.9 Computational Cost

Though RDC is iterative, it has relatively low cost in
practice. In our experiments, for VIPeR with p ¼ 316, it took
around 15 minutes for an Intel dual-core 2.93 GHz CPU and
48 GB RAM server to learn RDC for each trial. We observed
that the low cost of RDC is partially due to its ability to seek
a suitable low rank of W (i.e., converge within very few
iterations), as shown in Table 10. In comparison among the
compared other methods, Adaboost was one of the most
costly which took over 7 hours for each trial. The primal
RankSVM took more than 2.5 hours.

7 CONCLUSIONS

We have formulated the person reidentification as a relative
distance comparison problem. In particular, we proposed a
relative distance comparison model, which aims to max-
imize the likelihood that a pair of true match has a smaller
distance than that of a wrong match pair under a soft
discriminant modeling. An ensemble strategy is also
introduced to develop ensemble RDC in order to overcome
limitations in RDC on both space complexity and local
minimum. We have demonstrated that the proposed person

reidentification models can alleviate the bias of large
variations during optimization of learning similarity
measurement. Our experiments validate that the proposed
approach outperforms the related popular person reidenti-
fication techniques and related methods in terms of
matching performance and tractability.

It would be interesting to investigate how information on
groups of people can assist person reidentification as
contextual information. This is motivated by the observa-
tion that humans often rely on the people surrounding the
target person for identification if the target is occluded or
has undistinguishable appearance. This contextual informa-
tion is useful in certain public spaces such as the i-LIDS
airport arrival scene where people typically walk with the
same group of people even when they do not know each
other, as demonstrated in our previous work [37]. However,
how to automatically detect a group of people in practical
scenarios is still an open problem which needs to be solved
in order to utilize information of group of people as
contextual information for person reidentification. Also,
groups of people may merge, split, or undergo occlusion,
and all these issues may affect the use of group information
for helping person reidentification on target people. Hence,
we consider that the key problem is on exploring the most
reliable and robust features for group representation based
on techniques such as context quantification [39].

It is worth pointing out although our RDC model is
formulated specifically for addressing the person reidenti-
fication, it can be applied to solve other pattern recognition
problems. In particular, there are other vision problems that
share similar characteristics as person reidentification, i.e.,
large intra and interclass variations, large number of classes
with few samples per class. Such problems include gait
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TABLE 9
Effect of Learning (Percent) in an Absolute Data Difference Space

TABLE 10
Average Rank of W Learned by RDC

TABLE 8
RDC versus RDC-MMC (Percent) on ETHZ, i-LIDS, and VIPeR

p is the number of classes in the testing set; r is the rank.
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recognition and large scale object recognition where there

exists a large number of rare classes, each containing only a

handful of samples. Extending RDC to address other vision

problems is part of our ongoing work. Finally, in the current

work, no attempt has been made to remove the background

information from a person image which could typically

have an negative effect on the performance of person

reidentification. The idea was to rely on the proposed

feature quantification technique to select the best features in

order to eliminate the negative effect of background

information. Nevertheless, it will be interesting to integrate

an explicit background segmentation step into the proposed

framework in the future.
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