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Abstract

Fisher’s Linear Discriminant Analysis (LDA) is popular for dimension reduction and extraction

of discriminant features in many pattern recognition applications, especially biometric learning.

In deriving the Fisher’s LDA formulation, there is an assumption that the class empirical mean is

equal to its expectation. However, this assumption may not be valid in practice. In this paper,

from the "perturbation" perspective, we develop a new algorithm, called perturbation LDA (P-

LDA), in which perturbation random vectors are introduced to learn the effect of the difference

between the class empirical mean and its expectation in Fisher criterion. This perturbation

learning in Fisher criterion would yield new forms of within-class and between-class covariance

matrices integrated with some perturbation factors. Moreover, a method is proposed for

estimation of the covariance matrices of perturbation random vectors for practical

implementation. The proposed P-LDA is evaluated on both synthetic data sets and real face

image data sets. Experimental results show that P-LDA outperforms the popular Fisher’s LDA-

based algorithms in the undersampled case.

Keywords: Fisher criterion, perturbation analysis, face recognition
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1. Introduction

Data in some applications such as biometric learning are of high dimension, while available

samples for each class are always limited. In view of this, dimension reduction is always

desirable, and at the time it is also expected that data of different classes can be more easily

separated in the lower-dimensional subspace. Among the developed techniques for this purpose,

Fisher’s Linear Discriminant Analysis (LDA)1 [7][27][36][23] has been widely and popularly

used as a powerful tool for extraction of discriminant features. The basic principle of Fisher’s

LDA is to find a projection matrix such that the ratio between the between-class variance and

within-class variance is maximized in a lower-dimensional feature subspace.

Due to the curse of high dimensionality and the limit of training samples, within-class scatter

matrix is always singular, so that classical Fisher’s LDA will fail. This kind of singularitywS

problem is always called the small sample size problem [1][4] in Fisher’s LDA. So far, some

well-known variants of Fisher’s LDA have been developed to overcome this problem. Among

them, Fisherface (PCA+LDA) [1], Nullspace LDA (N-LDA) [4][3][12] and Regularized LDA

(R-LDA) [11][35][37][5][17] are three representative algorithms. In "PCA+LDA", Fisher’s LDA

is performed in a principal component subspace, in which within-class covariance matrix will be

of full rank. In N-LDA, the nullspace of within-class covariance matrix is first extracted, andwS

then data are projected onto that subspace and finally a discriminant transform is found there for

maximization of the variance among between-class data. In regularized LDA, a regularized term,

such as where , is added to . Some other approaches, such as Direct LDA [34],I⋅λ 0>λ wS

LDA/QR [32] and some constrained LDA [6][13], are also developed. Recently, some efforts are

made for development of two-dimensional LDA techniques (2D-LDA) [28][31][33], which

perform directly on matrix-form data. A recent study [38] conducts comprehensive theoretical

and experimental comparisons between the traditional Fisher’s LDA techniques and some

representative 2D-LDA algorithms in the undersampled case. It is experimentally shown that

some two-dimensional LDA may perform better than Fisherface and some other traditional

Fisher’s LDA approaches in some cases, but R-LDA always performs better. However,

estimation of the regularized parameter in R-LDA is hard. Though cross-validation is popularly

1 LDA in this paper is referred to Fisher’s LDA. It is not a classifier but a feature extractor learning low-rank discriminant

subspace, in which any classifier can be used to perform classification.



PAGE 4 DRAFT 7/9/2008

used, it is time consuming. Moreover, it is still hard to fully interpret the impact of this

regularized term.

Geometrically understanding, Fisher’s LDA makes different class means scatter and data of the

same class close to their corresponding class means. However, since the number of samples for

each class is always limited in some applications such as biometric learning, the estimates of

class means are not accurate, and this would degrade the power of Fisher criterion. To specify

this problem, we first re-visit the derivation of Fisher’s LDA. Consider the classification

problem of L classes C1, ,CL. Suppose the data space X ( ) is a compact vector space and…
nℜ⊂

is a set of finite samples. All data)},(),...,,(),...,,(),...,,{( 11
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find an optimal projection matrix by optimizing the following Eq. (1):

where and are between-class covariance (scatter) matrix and within-class covariancebŜ wŜ

(scatter) matrix respectively defined as follows:
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,=bŜ T
kkN

NL
k

k )ˆˆ)(ˆˆ(
1

uuuu −−∑ = (2)

, .kN

NL
kw

k SS ˆˆ
1=∑= T

k
k
ik

k
iN

N

ik
k

k )ˆ)(ˆ(ˆ 1
1 uxuxS −−∑= = (3)

.=bŜ T
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for estimation is large enough to reflect the data distribution of each class. Unfortunately, this

assumption is not always true in some applications, especially the biometric learning. Hence the

impact of the difference between those two terms should not be ignored.

In view of this, this paper will study the effect of the difference between the class empirical mean

and its expectation in Fisher criterion. We note that such difference is almost impossible to be

specified, since is usually hard (if not impossible) to be determined. Hence, from the]'[|' xEx kC

“perturbation” perspective, we introduce the perturbation random vectors to stochastically

describe such difference. Based on the proposed perturbation model, we then analyze how

perturbation random vectors take effect in Fisher criterion. Finally, perturbation learning will

yield new forms of within-class and between-class covariance matrices by integrating some

perturbation factors, and therefore a new Fisher’s LDA formulation based on these two new

estimated covariance matrices is called Perturbation LDA (P-LDA). In addition, a semi-

perturbation LDA, which gives a novel view to R-LDA, will be finally discussed.

Although there are some related work on covariance matrix estimation for designing classifier

such as RDA [8] and its similar work [10], and EDDA [2], however, the objective of P-LDA is

different from theirs. RDA and EDDA are not based on Fisher criterion and they are classifiers,

while P-LDA is a feature extractor and does not predict class label of any data as output. P-LDA

would exact a subspace for dimension reduction but RDA and EDDA do not. Moreover, the

perturbation model used in P-LDA has not been considered in RDA and EDDA. Hence the

methodology of P-LDA is different from the ones of RDA and EDDA. This paper focuses on

Fisher criterion, while classifier analysis is beyond our scope. To the best of our knowledge,

there is no similar work addressing Fisher criterion using the proposed perturbation model.

The remainder of this paper is outlined as follows. The proposed P-LDA will be introduced in

Section 2. The implementation details will be presented in Section 3. Then P-LDA is evaluated

using three synthetic data sets and three large human face data sets in Section 4. Discussions and

conclusion of this paper are then given in Sections 5 and 6 respectively.
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2. Perturbation LDA (P-LDA): A New Formulation

The proposed method is developed based on the idea of perturbation analysis. A theoretical

analysis is given and a new formulation is proposed by learning the difference between the class

empirical mean and its expectation as well as its impact to the estimation of covariance matrices

under Fisher criterion. In Section 2.1, we first consider the case when data of each class follow

single Gaussian distribution. The theory is then extended to the mixture of Gaussian distribution

case and reported in Section 2.2. The implementation details of the proposed new formulation

will be given in Section 3.

2.1. P-LDA under Single Gaussian Distribution

Assume data of each class are normally distributed. Given a specific input (x,y), where sample

x X and class label y {C1, ,CL}, we first try to study the difference between a sample x and∈ ∈ …

the expectation of class y in Fisher criterion. However, is usually hard (if not]'[|' xEx y ]'[|' xEx y

impossible) to be determined, so it may be impossible to specific such difference. Therefore, our

strategy is to stochastically characterize (simulate) the difference between a sample x and

by a random vector and then model a random mean for class y to stochastically describe]'[|' xEx y

. Define ξx ( ) as a perturbation random vector for stochastic description (simulation)]'[|' xEx y
nℜ∈

of the difference between the sample x and . When data of each class follow normal]'[|' xEx y

distribution, we can model ξx as a random vector from the normal distribution with mean 0 and

covariance matrix Ωy, i.e.,

We call Ωy the perturbation covariance matrix of ξx. The above model assumes that the

covariance matrices Ωy of ξx are the same for any sample x with the same class label y. Note that

it would be natural that an ideal value of Ωy can be the expected covariance matrix of class y, i.e.,

. However, this value is usually hard to be determined, since[ ]T
yyy ])['])(['( |||' xExxExE xxx ′′−′′− ′′′′

and the true density function are not available. Actually this kind of estimation needs not]'[|' xEx y

be our goal. Note that the perturbation random vector ξx is only used for stochastic simulation of

the difference between the specific sample x and its expectation . Therefore, in our study,]'[|' xEx y

Ωy only needs to be properly estimated for performing such simulation based on the perturbation

model specified by the following Eq. (6) and (7), finally resulting in some proper correctings

(perturbations) on the empirical between-class and within-class covariance matrices as shown

, Ωy .),(~ yΩNξx 0 nn×ℜ∈ (5)
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later. For this goal, a random vector is first formulated for any sample x to stochastically

approximate below:]'[|' xEx y

The stochastic approximation of to means there exists a specific estimate2 of thex~ ]'[|' xEx y xξ̂

random vector with respect to the corresponding distribution such thatxξ

Formally we call equality (6) and (7) the perturbation model. It is not hard to see such

perturbation model is always satisfied. The main problem is how to model properly. For thisyΩ

purpose, a technique will be suggested in the next section.

Now, for any training sample , we could formulate its corresponding perturbation randomk
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vector and the random vector to stochastically approximate its),(~
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k
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expectation . By considering the perturbation impact, could be stochastically]'[|' xEx kC ]'[|' xEx kC

approximated on average by:
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mean of class Ck in our study.
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where . Next, following equalities (2) and (4), we get
kC
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From the above analysis, a new formulation of Fisher’s LDA called Perturbation LDA (P-LDA)

is given by the following theorem.

Theorem 1 (P-LDA) Under the Gaussian distribution of within-class data, Perturbation LDA (P-
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finding the projection by maximizing the ratio between the expectation values of and),( ξWbf

with respect to such that the uncertainty is considered to be over the domain of .),( ξWwf ξ ξ

That is:

It can be verified that

So, it is exactly the optimization model formulated in Eq. (12). This gives an more intuitive

understanding of the effects of covariance matrices and . Though in P-LDA and arewS
~
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~

wŜ bŜ

perturbated by and respectively, however in Section 5 we will show and will
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converge to the precise within-class and between-class covariance matrices respectively. This

will show the rationality of P-LDA, since the class empirical mean is almost its expectation value

when sample size is large enough and then the perturbation effect could be ignored.

2.2. P-LDA under Mixture of Gaussian Distribution

This section extends theorem 1 by altering the class distribution from single Gaussian to mixture

of Gaussians [27]. Therefore, the probability density function of a sample x in class Ck is:
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when extends classical Fisher’s LDA to the mixture of Gaussian distribution case.
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vector for can be modeled, where , , so thatk
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3 The designs of and in the criterion are not restricted to the presented forms. The goal here is just to present a way howbS ′′
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to generalize the analysis under single Gaussian case.
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3. Estimation of Perturbation Covariance Matrices

For implementation of P-LDA, we need to properly estimate two perturbation covariance

matrices and . Parameter estimation is challenging, since it is always ill-posed [27][8] due
∆

b
S

∆

wS

to limited sample size and the curse of high dimensionality. A more robust and tractable way to

overcome this problem is to perform some regularized estimation. It is indeed the motivation

here. A method will be suggested to implement P-LDA with parameter estimation in an entire

PCA subspace without discarding any nonzero principal component. Unlike the covariance

matrix estimation on sample data, we will introduce an indirect way for estimation of the

covariance matrices of perturbation random vectors, since the observation values of the

perturbation random vectors are hard to be found directly.

For derivation, parameter estimation would focus on P-LDA under single Gaussian distribution,

and it could be easily generalized to the Gaussian mixture distribution case by theorem 2. This

section is divided into two parts. The first part suggests regularized models for estimation of the

parameters, and then a method for parameter estimation is presented in the second part.

3.1. Simplified Models for Regularized Estimation

In this paper, we restrict our attention to the data that are not much heteroscedastic, i.e., class

covariance matrices are approximately equal4 (or not differ too much). It is also in line with one

of the conditions when Fisher criterion is optimal [27]. Under this condition, we consider the case

when perturbation covariance matrices of all classes are approximately equal. Therefore, the

perturbation covariance matrices can be replaced by their average, a pooled perturbation

covariance matrix defined in Eq.(19). We obtain Lemma 1 with its proof provided in Appendix-2.

Lemma 1. If the covariance matrices of all perturbation random vectors are replaced by their

average, i.e., a pooled perturbation covariance matrix as follows

then and can be rewritten as:
∆

b
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4 Discussing variants of Fisher’s LDA under unequal class covariance matrices is not the scope of this paper. It is another research

topic [16].
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Note that when class covariance matrices of data do not differ too much, utilizing pooled

covariance matrix to replace individual covariance matrix has been widely used and

experimentally suggested to attenuate the ill-posed estimation in many existing algorithms

[8][7][24][10][15][25][26].

To develop a more simplified model in the entire principal component space, we perform

principal component analysis [14] in X without discarding any nonzero principal component. In

practice, the principal components can be acquired from the eigenvectors of the total-class

covariance matrix Ŝt(=Ŝw+Ŝb). When the data dimension is much larger than the total sample size,

the rank of Ŝt is at most N-1 [1][18], i.e., rank(Ŝt)≤N-1. In general, rank(Ŝt) is always equal to N-

1. For convenience of analysis, we assume rank(Ŝt)≈N-1. It also implies that no information is

lost for Fisher’s LDA, since all positive principal components are retained [29].

Suppose given the decorrelated data space X, the entire PCA space of dimension n=N-1. Based

on Eq. (6) and Lemma 1, for any given input sample x=(x1, ,xn)
T X, its corresponding… ∈

perturbation random vector is ξx=( )T , where ξx~N(0,Ω). Since X is decorrelated, then
xx ξξ ,,1

…
nℜ∈

coefficients x1, ,xn are approximately uncorrelated. Note that the perturbation variables…
n
xx ξξ ,,1

…

are apparently only correlated to their corresponding uncorrelated coefficients x1, ,xn…

respectively. Therefore it is able to model Ω by assuming these random variables aren
xx ξξ ,,1

…

uncorrelated each other5. Based on this principle, Ω can be modeled by

where σ 2

i is the variance of . Furthermore, if the average variance is used toi
xξ 2

1
12

i
n
in

σσ =∑=

replace each individual variance σ2

i , i=1, ,n, a special model is then acquired by…

From statistical point of view, the above simplified models could be interpreted as regularized

estimations [2] of Ω on the perturbation random vectors. It is known that when the

dimensionality of data is high, the estimation would become ill-posed (poorly posed) if the

number of parameters to be estimated is larger than (comparable to) the number of samples

[8][27]. Moreover, estimation of Ω relates to the information of some expectation value, which,

,ΛΩ = ),,( 22
1 ndiag σσ ⋯=Λ (21)

, , is the n×n identity matrixIΩ 2σ= 0≠σ I (22)

5 It might be in theory a suboptimal strategy. However this assumption is practically useful and reasonable to alleviate the ill-

posed estimation problem for high-dimensional data by reducing the number of estimated parameters. In Appendix-4, we show its

practical rationality by demonstrating an experimental verification for this assumption on face data sets used in the experiment.
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however, is hard to be specified in practice. Hence, regularized estimation of Ω would be

preferred to alleviate the ill-posed problem and obtain a stable estimate in applications. To this

end, estimation based on Eq. (22) may be more stable than estimating Λ, since Eq. (22) can

apparently reduce the number of estimated parameters. This would be demonstrated and justified

by synthetic data in the experiment.

Finally, this simplified perturbation model is still in line with the perturbation LDA model, since

the perturbation matrices as well as their average Ω need not to be the accurate expected
kCΩ

class covariance matrices but only need to follow the perturbation model given below Eq. (5).

3.2. Estimating Parameters

An important issue left is to estimate the variance parameters ,..., and . The idea is2
1σ 2

nσ 2σ

straightforward that the parameters are learned from the generated observation values of

perturbation random vectors using maximum likelihood. However, an indirect way is desirable,

since it is impossible to find the realizations of perturbation random vectors directly. Hence, our

idea turns to find some sums of perturbation random vectors based on the perturbation model

and then generate their realizations for estimation.

Inferring the Sum of Perturbation Random Vectors

Suppose Nk, the number of training samples for class Ck, is larger than 1. Define the average of

observed samples in class Ck by excluding xk

j as

It is actually feasible to treat as another empirical mean of class Ck. Then, another randomj
k

−
û

mean of class Ck is able to be formulated by:

Comparing with the random mean of class Ck in terms of Eq. (8), based on the perturbationku~

model, we know and can both stochastically approximate to by the followingku~
j

k
−

u~ ]'[|' xEx kC

specific estimates respectively:

where , is an estimate of such that based on thek

i

k

i

k

i ξxx ˆ~̂ += k
iξ̂ k

iξ
k
i

k
i ξx ˆ+ ]'[|' xEx kC=

perturbation model. Hence, we can have the relation below:

, .k
i

N

jiiN

j
k

k

k
xu ≠=−

− ∑= ,11
1ˆ

kNj ,,1…= (23)

.k
i

N
jiiN

j
k

k
i

N
jiiN

j
k

k

k

k

k
ξuxu ≠=−

−
≠=−

− ∑+=∑= ,11
1

,11
1 ˆ~~

(24)

,k

i

N

iNk
k

k
xu ~̂~̂

1
1

=∑= ]'[|' xEx kC= (25)

,k

i

N

jiiN

j

k
k

k
xu ~̂~̂

,11
1

≠=−

−
∑= ]'[|' xEx kC= (26)
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A geometric interpretation of Eq. (27) can be provided by Fig. 1. Note that = = ,kû~ 1~̂ j
k

−
u 2~̂ j

k
−

u

j1≠j2. It therefore yields . According to Eq. (7), this is obviously true becausek
j

k
j

k
j

k
j 1221

ˆˆ ξξxx −=−

, i=1, ,Nk.]'[ˆ~̂
|' xEξxx x kC

k

i

k

i

k

i =+= …

Now return back to the methodology. Based on Eq. (27) we then have

Define a new random vector as:

Based on Lemma 1, we know that the pooled perturbation covariance matrix to be estimated for

all { } is . It is therefore easy to verify the following result:k
jξ Ω

Actually is just the sum of perturbation random vectors we aim to find. Moreover, Eq. (28)
k
j

−ξ

could provide an estimate of by:
k
j

−ξ

It therefore avoids the difficulty in finding the observation values directly. Moreover it isk
iξ̂

known that follow the same distribution within class Ck, i.e., , so itkNj
k
j ,,1}ˆ{

⋯=
−ξ ),(

)1(
1 Ω0N

−kk NN

is feasible to generate Nk observation values { } from this distribution. In fact,
k

N

kk

k

−−− ξξξ ˆ,,ˆ,ˆ
21 ⋯

the empirical mean of the observation values coincides with their expectation with respect to the

distribution because of the following equality

= .kû~
j

k
−

û~ (27)

Fig. 1. Geometric interpretation: k
j

k
j

k
j

k
j 1221

ˆˆ ξξxx −=−=α

.
j

kk
k
jN

k
i

N
jiiNN k

k

kk

−
≠=−

−=−∑ uuξξ ˆˆˆˆ 1
,1)1(

1
(28)

.k
jN

k
i

N
jiiNN

k
j

k

k

kk
ξξξ 1

,1)1(
1 )( −∑= ≠=−

− (29)

.),(~
)1(

1 Ω0Nξ
−

−
kk NN

k
j (30)

.j
kk

k
j

−− −= uuξ ˆˆˆ (31)

.0uuξ =−∑=∑ −
=

−
= )ˆˆ(ˆ

11
j

kk
N
j

k
j

N
j

kk (32)



PAGE 15 DRAFT 7/9/2008

Inferring Estimates of ,..., and2
1σ 2

nσ 2σ

The estimates of ,..., and are given below based on Eq. (30) and the generated2
1σ 2

nσ 2σ

. First we denoteLk

Nj

k
j

k

,..,1
,..,1

}ˆ{
=
=

−ξ

Then we define satisfying),(ˆ 2 jkσ

In the uncorrelated space, is modeled by for approximation, soΩ ),,( 22
1 ndiag σσ ⋯== ΛΩ

,..., are estimated as ,..., by using maximum likelihood as follows:2
1σ 2

nσ 2
1σ̂ 2ˆnσ

As suggested by Eq. (22), an average variance of ,..., is used, so the estimate of is2
1σ 2

nσ 2σ̂ 2σ

obtained below:

Extensive experiments in section 4 will justify this estimation.

4. Experimental Results

The proposed P-LDA algorithm will be evaluated by both synthetic data and face image data.

Face images are the typical biometric data. Always, the number of available face training

samples for each class is very small while the data dimensionality is very high.

This section is divided into three parts. The first and second parts report the experiment results

on synthetic data and face data respectively. In the third part, we verify our parameter estimation

strategy on high-dimensional face image data. Through the experiments, two popular classifiers,

namely nearest class mean classifier (NCMC) and nearest neighbor classifier (NNC) are selected

to evaluate the algorithms. These two kinds of classifiers have been widely used for Fisher’s

LDA in existing publications. All programs are implemented using Matlab and run on PC with

Intel Pentium (R) D CPU 3.40 GHz processor.

4.1. Synthetic Data

This section is to justify the performances of the proposed P-LDA under theorem 1 and theorem

2, and show the effects of Eq. (21) and Eq. (22) in modeling P-LDA. Three types of synthetic

data following single Gaussian and mixture of Gaussian distributions in each class respectively

.Tj
k

j
k

j
kk

j
k n))(ˆ,),1(ˆ(ˆˆˆ

∆∆∆
=−= −

uuuuu ⋯ (33)

.22
)1(

1 ))(ˆ(),(ˆ ijk
j

kiNN kk

∆
=

−
uσ (34)

, .),(ˆˆ 2

11
12

jki

N

j

L

kNi
k σσ == ∑∑= ni ,,1⋯= (35)

.2

1
12 ˆˆ

i

n

in
σσ =∑= (36)
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Table 1. Overview of the Synthetic Data (Single Gaussian Distribution)

Table 2. Overview of the Synthetic Data (Gaussian Mixture Distribution)

Fig. 2 Illustration of Synthetic Data: (a) is with equal identity covariance matrices multiplied by 0.25; (b) is with equal diagonal

covariance matrices; (c) is with Gaussian mixture distribution.

Class Id Mean Covariance Matrix I Covariance Matrix II

Class 1 (-0.3,-0.5,1.2)T















0.2500
00.250
000.25















0.030800
00.00270
000.2192

Class 2 (-0.1,1.2,1.5)T

Class 3 (0.9,-0.7,1.1)T

Class Id Mean of 1st GC Mean of 2nd GC Mean of 3rd GC Covariance Matrix

Class 1 (1,-0.5,-1)T (0.2,1,0.6)T (-0.3,-0.5,1.2)T















0.552700
00.65930
000.0298

Class 2 (-1,-0.5,-1)T (-0.1,1.2,1.5)T (1,-1.9,2)T

Class 3 (0.9,-0.7,1.1)T (-1.5,0.6,-0.6)T (1,1.5,1.2)T

0

2

4

0
1

2
3

1

0

1

2

X
Y

(a)

2

0

2

4

1

0

1

2
0.5

1

1.5

2

XY

(b)

1
0

1
2

2

0

2

4

4

2

0

2

4

XY

(c)

are generated in a three-dimensional space. As shown in table 1 and 2, for single Gaussian

distribution, we consider two cases, in which the covariance matrices are (i) identity covariance

matrices multiplied by a constant 0.25 and (ii) equal diagonal covariance matrices respectively.

For each class, 100 samples are generated. For mixture of Gaussian distribution, each class

consists of three Gaussian components (GC) with equal covariance matrices. For each GC, there

are 40 samples randomly generated and there are 120 samples for each class. Information about

the synthetic data is tabulated in table 1 and 2, and the data distributions are illustrated in Fig. 2.

In tables 3~5, the accuracies with respect to different numbers of training samples for each class

are shown, where p indicates the number of training samples for each class. In the mixture of

Gaussian distribution case, the bracketed number is the number of training samples from one

Gaussian component of each class (e.g. “p=9 (3)” means every 3 samples out of 9 training

samples of each class are from one of its Gaussian components). For each synthetic data set, we

repeat the experiments ten times and the average accuracies are obtained. Since finding Gaussian
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components is not our focus, we assume that those Gaussian components are known for

implementation of P-LDA based on theorem 2. In addition, “P-LDA (GMM), Eq. (22)” means P-

LDA is implemented under Gaussian mixture model (GMM) based on theorem 2 with parameter

estimated by Eq. (22); “LDA (GMM)” means classical Fisher’s LDA is implemented using a

similar scheme to Eq. (18) without the perturbation factors. Note that no singular problem in

Fisher’s LDA happens in the experiment on synthetic data.

Table 3. Average Accuracy Results (Equal Identity Covariance Matrices)

Table 4. Average Accuracy Results (Equal Diagonal Covariance Matrices)

Table 5. Average Accuracy Results (Gaussian Mixture Distribution)

In the single Gaussian distribution case, we find that P-LDA using Eq. (22) outperforms P-LDA

using Eq. (21) and classical Fisher’s LDA, especially when only two samples for each class are

used for training. When the number of training samples for each class increases, P-LDA will

converge to classical Fisher’s LDA, as the class means will be more accurately estimated when

more samples are available. In Section 5.1, theoretical analysis would confirm this scenario.

Similar results are obtained in the mixture of Gaussian case. These results show that when the

number of training samples is small, P-LDA using Eq. (22) can give a more stable and better

estimate of the parameter and therefore provide better results.

4.2. Face Image Data

Fisher’s LDA based algorithms are popularly used for dimension reduction of high-dimensional

data, especially the face images in biometric learning. In this section, the proposed method is

applied to face recognition. Since face images are of high dimensionality and only limited

Method
Classifier: NCMC Classifier: NNC

p=2 p=5 p=10 p=2 p=5 p=10

P-LDA, Eq. (22) 86.735% 90% 92.556% 85.884% 88.772% 88.741%

P-LDA, Eq. (21) 85.408% 90% 92.481% 83.81% 88.491% 88.519%

Classical Fisher’s LDA 82.721% 89.439% 92.519% 81.19% 88.281% 88.148%

Method
Classifier: NCMC Classifier: NNC

p=2 p=5 p=10 p=2 p=5 p=10

P-LDA, Eq. (22) 90.51% 93.404% 93.481% 91.19% 93.439% 95.296%

P-LDA, Eq. (21) 88.469% 93.123% 93.444% 89.354% 92.912% 95.37%

Classical Fisher’s LDA 86.803% 93.158% 93.444% 87.993% 92.947% 95.259%

Method Classifier: NCMC Classifier: NNC

p=6 (2) p=9 (3) p=18 (6) p=60(20) p=6 (2) p=9 (3) p=18 (6) p=60(20)

P-LDA (GMM), Eq. (22) 71.257% 75.586% 77.712% 78.556% 71.082% 72.913% 78.725% 81.167%

P-LDA (GMM), Eq. (21) 68.275% 73.874% 76.667% 78.333% 68.363% 71.502% 78.007% 81%

Classical Fisher’s LDA (GMM) 67.924% 73.784% 76.601% 78.333% 68.216% 71.291% 78.007% 81%
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samples are available for each person, we implement P-LDA based on theorem 1 and Eq. (22)

with its parameter estimated by Eq. (36).

Three popular face databases, namely FERET [19] database, CMU PIE [22] database and AR

database [18], are selected for evaluation. For FERET, a subset consists of 255 persons with 4

faces for each individual is established. All images are extracted from 4 different sets, namely Fa,

Fb, Fc and the duplicate. Face images in this FERET subset are undergoing illumination

variation, age variation and some slight expression variation. For CMU PIE, a subset is

established by selecting face images under all illumination conditions with flash in door [22]

from the frontal pose, 1/4 Left/Right Profile and Below/Above in Frontal view. There are totally

7140 images and 105 face images for each person in this subset. For AR database, a subset is

established by selecting 119 persons, where there are eight images for each person. Face images

in this subset are undergoing notable expression variations. All face images are aligned

according to their coordinates of the eyes and face centers respectively. Each image is linearly

stretched to the full range of [0,1] and its size is simply normalized to 40 50. Some images are×

illustrated in Fig. 3, Fig. 4 and Fig. 5.

Fig. 3. Some Images from the Subset of FERET

Fig. 4. Some Images of One Subject from the Subset of CMU PIE

Fig. 5. Images of One Subject from the Subset of AR

In order to evaluate the proposed model, P-LDA is compared with some Fisher’s LDA-based

methods including Fisherface [1], Nullspace LDA (N-LDA) [12], Direct LDA [34] and

Regularized LDA with cross-validation [37], which are popular used for solving the small

sample size problem in Fisher’s LDA for face recognition.
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On each data set, the experiments are repeated 10 times. For each time, p images for each person

are randomly selected for training and the rest are for testing. In the tables, the value of p is

indicated. Finally, the average recognition accuracies are obtained.

The results are tabulated in table 6~8. We see that P-LDA achieves at least 6 percent and 3

percent improvements over Direct LDA and N-LDA respectively on FERET database, and

achieves more than 4 percent improvement over Fisherface, Direct LDA and N-LDA on CMU

PIE database. On AR subset, P-LDA also gets significant improvements over Fisherface and

Direct LDA and gets more than 1 percent improvement over N-LDA. Note that no matter using

NNC or NCMC, the results of N-LDA are the same, because N-LDA will map all training

samples of the same class into the corresponding class empirical mean in the reduce space [3].

In addition, a related method R-LDA with cross-validated (CV) parameter6 is also conducted for

comparison. On FERET, P-LDA gets more than one percent improvement when using NNC and

gets about 0.6 percent improvement when using NCMC. On CMU, when p=5, P-LDA gets 1.4

percent improvement over R-LDA using NNC and 0.5 percent improvement using NCMC; when

p=10, P-LDA and R-LDA gets almost the same performances. On AR subset, the performances

of P-LDA and R-LDA are also similar. Though R-LDA gets similar performance to P-LDA in

some cases, however, as reported in table 9, R-LDA is extremely computationally expensive due

to the cross-validation process. In our experiments, P-LDA can finish in much less than one

minute for each run, while R-LDA using cross-validation technique takes more than one hour.

More comparison between P-LDA and R-LDA could be found in Section 5.2. It will be analyzed

later that R-LDA can be seen as a semi-perturbation LDA, which gives a novel understanding to

R-LDA. It would also be explored that the proposed perturbation model actually can suggest an

effective and efficient way for the regularized parameter estimation in R-LDA. Therefore, P-

LDA is much more efficient and still performs better.

6 On FERET, three-fold cross-validation (CV) is performed; On CMU, five-fold CV is performed when p=5 and ten-fold CV is

performed when p=10; On AR, three-fold CV is performed when p=3 and six-fold CV is performed when p=6. The candidates of

the regularization parameter λ are sampled from 0.005 to 1 with step 0.005. In the experiment, the three-fold CV is repeated ten

times on FERET. On CMU, the five-fold and ten-fold CV are repeated six and three times respectively; on AR, the three-fold and

six-fold CV are repeated ten and five times respectively. So, each cross-validated parameter is determined via its corresponding

30 round cross-validated classification.
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Table 6. Average Recognition Accuracy on Subset of FERET (p=3)

Table 7. Average Recognition Accuracy on Subset of CMU PIE

Table 8. Average Recognition Accuracy on Subset of AR

Table 9. Expense of R-LDA(CV)

Although Fisherface, Direct LDA, N-LDA and R-LDA are also proposed for extraction of

discriminant features in the undersampled case, they mainly address the singularity problem of

the within-class matrix, while P-LDA addresses the perturbation problem in Fisher criterion due

to the difference between a class empirical mean and its expectation value. Noting that P-LDA

using model (21) and (22) can also solve the singularity problem, this suggests alleviating the

perturbation problem is useful to further enhance the Fisher criterion.

In addition, the above results as well as the results on synthetic data sets also indicate that when

the number of training samples is large, the differences between P-LDA and the compared LDA

based algorithms become small. This is true according to the perturbation analysis given in this

paper, since the estimates of the class means will be more accurate when training samples for

each class become more sufficient. Noting also that the difference between P-LDA and R-LDA is

small when p is large on CMU and AR, it implies the impact of the perturbation model in

estimation of the between-class covariance information will become minor as the number of

Method Classifier: NCMC Classifier: NNC

P-LDA 87.06% 89.29%

R-LDA (CV) [37] 86.43% 87.96%

N-LDA [12] 83.49% 83.49%

Direct LDA[34] 80.71% 78.98%

Fisherface [1] 77.25% 71.22%

Method
Classifier: NCMC Classifier: NNC

p=5 p=10 p=5 p=10

P-LDA 78.98% 89.94% 81.82% 93.26%

R-LDA (CV) [37] 78.44% 89.91% 80.43% 93.29%

N-LDA [12] 74.45% 84.98% 74.45% 84.98%

Direct LDA[34] 73.68% 85.88% 72.73% 88.12%

Fisherface [1] 72.99% 85.49% 67.26% 82.17%

Method
Classifier: NCMC Classifier: NNC

p=3 p=6 p=3 p=6

P-LDA 92.34% 98.28% 93.13% 98.91%

R-LDA (CV) [37] 92.40% 98.32% 92.81% 98.74%

N-LDA [12] 91.36% 96.43% 91.36% 96.43%

Direct LDA[34] 88.77% 97.14% 88.42% 97.65%

Fisherface [1] 86.57% 94.66% 85.50% 94.50%

Method FERET, p=3 CMU PIE, p=5 CMU PIE, p=10 AR, p=3 AR, p=6

Time/run (NNC/NCMC) 19~20 hours ~1 hours ~7.5 hours ~1.2 hours 8.5~9 hours
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training samples increases. In Section 5.1, we would give more theoretical analysis.

4.3. Parameter Verification

In the last two subsections, we show that P-LDA using Eq. (22) gives good results on both

synthetic and face image data, particularly when the number of training samples is small. In this

section, we will have extensive statistics of the performances of P-LDA on FERET and CMU PIE

if the parameter σ2 is set to be other values. We compare the proposed P-LDA with parameter

estimation with the best scenario selected manually.

The detailed procedures of the experiments are listed as follows.

Step 1) Prior values of σ2 are extensively sampled. We let , , so that .η

η
σ

−
=

1
2 10 << η ),0(2 +∞∈σ

Then 1999 points are sampled for η between 0.0005 and 0.9995 with interval 0.0005. Finally,

1999 sampled values of σ2 are obtained.

Step 2) Evaluate the performance of P-LDA with respect to each sampled value of σ2. We call

each P-LDA with respect to a sampled value of σ2 a model.

Step 3) We compare the P-LDA model with parameter σ2 estimated by the methodology

suggested in section 3.2 against the best one among all models of P-LDA got at step 2).

The average recognition rate of each model of P-LDA is obtained by using the same procedure

run on FERET and CMU PIE databases. We consider the case when p, the number of training

samples for each class, is equal to 3 on FERET and equal to 5 on CMU. For clear description, the

P-LDA model with parameter estimated using the methodology suggested in section 3.2 is called

“P-LDA with parameter estimation”, whereas we call the P-LDA model with respect to the best

σ2 selected from the 1999 sampled values “P-LDA with manually selected optimal parameter”.

Comparison results of the rank 1 to rank 3 accuracies are reported in table 10 and table 11. Fig. 6

and Fig. 7 show the ranking accuracies of these two models. It shows that the difference of rank

1 accuracies between two models is less than 0.2% in general.
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Table 10. Average Recognition Accuracy of P-LDA on FERET Data Set: “P-LDA with manually selected

optimal parameter” vs. “P-LDA with parameter estimation”

Table 11. Average Recognition Accuracy of P-LDA on CMU PIE Data Set: “P-LDA with manually selected

optimal parameter” vs. “P-LDA with parameter estimation”

To evaluate the sensitivity of P-LDA on σ2, the performance of P-LDA as a function of σ2 is

shown from Fig. 8 to Fig. 9 using NCMC and NNC classifiers respectively. The overall

sensitivity of P-LDA on σ2 for FERET data set is described in Fig. 8 (a), where the horizontal

axis is on a logarithmic scale. Fig. 8 (b) shows the enlarged part of Fig. 8 (a) near the peak of the

curve where σ2 is small. Similarly, Fig. 10 and Fig. 11 show the result on CMU PIE. They show

it may be hard to obtain an optimal estimate of σ2, but interestingly it is shown in table 10 and 11

and Fig. 6 and 7 that the suggested methodology in section 3.2 works well. It is apparent that

Method
Classifier: NCMC Classifier: NNC

Rank 1 Rank 2 Rank 3 Rank 1 Rank 2 Rank 3

P-LDA with manually selected optimal parameter 87.25% 90.16% 91.80% 89.33% 91.29% 92.12%

P-LDA with parameter estimation 87.06% 90.35% 91.88% 89.29% 91.25% 92.08%

Method
Classifier: NCMC Classifier: NNC

Rank 1 Rank 2 Rank 3 Rank 1 Rank 2 Rank 3

P-LDA with manually selected optimal parameter 79.02% 83.93% 86.44% 81.95% 85.45% 87.33%
P-LDA with parameter estimation 78.98% 83.89% 86.40% 81.82% 85.12% 86.97%
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selecting the best parameter manually using an extensive search would be time consuming, while

P-LDA using the proposed methodology for parameter estimation costs much less than one

minute. So the suggested methodology is computationally efficient.
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Fig. 9. Classifier: NNC. (a) the performance of P-LDA as a function of σ2 (x-axis) on FERET, where the

horizontal axis is scaled logarithmically; (b) the enlarged part of (a) near the peak of the curve where σ2 is small



PAGE 24 DRAFT 7/9/2008

5. Discussion

As shown in the experiment, the number of training samples for each class is really an impact of

the performance of P-LDA. In this section, we explore some theoretical properties of P-LDA.

The convergence of P-LDA will be shown. We also discuss P-LDA with some related methods.

5.1. Admissible Condition of P-LDA

Suppose L is fixed. Since the entries of all perturbation covariance matrices are bounded7, it is

easy to obtain and , i.e., the perturbation factor , when)( 1
Nb O=

∆
S )( 1

Nw O=
∆

S ΟS →
∆

b ΟS →
∆

w
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Fig. 10. Classifier: NCMC. (a) the performance of P-LDA as a function of σ2 (x-axis) on CMU PIE, where the

horizontal axis is scaled logarithmically; (b) the enlarged part of (a) near the peak of the curve where σ2 is small
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Fig. 11. Classifier: NNC. (a) the performance of P-LDA as a function of σ2 (x-axis) on CMU PIE, where the

horizontal axis is scaled logarithmically; (b) the enlarged part of (a) near the peak of the curve whereσ2 is small

7 We say a matrix is bounded if and only if all entries of this matrix are bounded.
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, where O is the zero matrix. Here, for any matrix A=A(β) of which each nonzero entry01 →
N

depends on β, we say A=O(β) if the degree8 of A→O is comparable to the degree of β→0.

However, if L is a variant, i.e., the increase of the sample size may be partly due to the increase

of the amount of classes, then and . Suppose any covariance matrix is)( 1
Nb O≠

∆
S )( 1

Nw O≠
∆

S
kCΩ

lower (upper) bounded by if and only if ( ) for anylowerΩ ),( jilowerΩ ≤ ),( ji
kCΩ ),( ji

kCΩ ≤ ),( jiupperΩ

(i,j). Then the following lemma gives an essential view, and its proof is given in Appendix-3.

Lemma 2. If all nonzero perturbation covariance matrices , k=1, ,L, are lower bounded by
kCΩ …

and upper bounded by , where and are independent of L and N, then itlowerΩ upperΩ lowerΩ upperΩ

is true that and .)(
N
L

b O=
∆

S )(
N
L

w O=
∆

S

The condition of Lemma 2 is valid in practice, because the data space is always compact and

moreover it is always a Euclidean space of finite dimension. In particular, from Eq. (20), it could

be found that the perturbation matrices depend on the average sample size for each class. Based

on theorem 1, we finally have the following proposition.

Proposition 1 (Admissible Condition of P-LDA) P-LDA depends on the average number of

samples for each class. That is and , i.e., , when .)(
N
L

b O=
∆

S )(
N
L

w O=
∆

S ΟS →
∆

b ΟS →
∆

w 0→
N
L

It is intuitive that some estimated class means are unstable when the average sample size for each

class is small9. This also shows what P-LDA targets for is different from the singularity problem

in Fisher’s LDA, which will be solved if the total sample size is large enough. Moreover the

experiments on synthetic data in section 4.1 could provide the support to proposition 1, as the

difference between P-LDA and classical Fisher’s LDA become smaller when the average sample

size for each class becomes larger.

5.2. Discussion with Related Approaches

5.2.1 P-LDA vs. R-LDA

Regularized LDA (R-LDA) is always modeled by the following criterion:

.0,
))ˆ((

)ˆ(
maxarg >

+
= λ

λ WISW

WSW
W W

w
T

b
T

opt
trace

trace
(37)

8 The degree of A=A(β)→O depending on β is defined to be the smallest degree for A(i,j)→0 depending on β, where A(i,j) is any

nonzero entry of A. For example, A=[β β2] , then the degree of A→O is 1 and A=O(β) .
9 With suitable training samples, the class means may be well estimated, but selection of training samples is beyond the scope of

this paper.
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Sometimes, a positive diagonal matrix is used to replace λI in the above equality.

Generally, the formulation of P-LDA in Section 2 is different from the form of R-LDA.

Although the formulation of R-LDA looks similar to the simplified model of P-LDA in Section 3,

the motivation and objective are totally different. Details are discussed as follows.

1. P-LDA is proposed by learning the difference between a class empirical mean and its

corresponding expectation value as well as its impact to Fisher criterion, whereas R-LDA is

originally proposed for the singularity problem [37][11][5] because Ŝw+λI is positive with

λ>0.

2. In P-LDA, the effects of and are known based on the perturbation analysis in theory.
∆

b
S

∆

wS

In contrast, R-LDA still does not clearly tell how λI has effect on Sw in a pattern recognition

sense. Although Zhang et al. [35] presented a connection between the regularization network

algorithms and R-LDA from a least square view, it still lacks interpretation how

regularization can has effect on within-class and between-class covariance matrices

simultaneously and also lacks parameter estimation.

3. P-LDA tells the convergence of perturbation factors by proposition 1. However, R-LDA does

not tell it in theory. The singularity problem R-LDA addresses is in nature an implementation

problem and it would be solved when the total sample size is sufficiently large, while it does

not imply the average sample size for each class is also sufficiently large in this situation.

4. P-LDA is developed when data of each class follow either single Gaussian distribution or

Gaussian mixture distribution, but R-LDA has not considered the effect of data distribution.

5. In P-LDA, scheme for parameter estimation is an intrinsic methodology derived from the

perturbation model itself. For R-LDA, a separated algorithm is required, such as the cross-

validation (CV) method, which is so far popular. However, CV seriously lies on a discrete set

of candidate parameters. In general, cross-validation is always time consuming.

Interestingly, if the proposed perturbation model is imposed on R-LDA, i.e., R-LDA is treated as

a semi-perturbation Fisher’s LDA, where only within-class perturbation is considered and
∆

wS

the factor is ignored, then the methodology in Section 3 may provide an interpretation how
∆

b
S

the term λI has its effect in the entire PCA space. This novel view to R-LDA can give the

advantage in applying the proposed perturbation model for an efficient and effective estimation

of the regularized parameter λ in R-LDA. To justify this, similar comparisons on FERET and
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CMU subsets between “R-LDA with manually selected optimal parameter” and “R-LDA using

perturbation model” are performed in table 12 and 13, where “R-LDA with manually selected

optimal parameter” is implemented similarly to “P-LDA with manually selected optimal

parameter” as demonstrated in section 4.3. For reference, the results of R-LDA(CV) are also

shown. We find that “R-LDA using perturbation model” extremely approximates to “R-LDA

with manually selected optimal parameter” and achieves almost the same performances as R-

LDA(CV). This indicates that the proposed perturbation model could also be an alternative,

practical and efficient way for parameter estimation in R-LDA.

Table 12. Average Recognition Accuracy of R-LDA on FERET Data Set: “R-LDA with manually selected

optimal parameter” vs. “R-LDA using perturbation model” (p=3)

Table 13. Average Recognition Accuracy of R-LDA on CMU PIE Data Set: “R-LDA with manually selected

optimal parameter” vs. “R-LDA using perturbation model” (p=5)

5.2.2 Other Comparisons

Recently, a related work called Median LDA has been proposed by Yang et al. [30], in which

they addressed the estimation of the class mean in Fisher’s LDA by using median mean.

However, the analysis of the perturbation impact of the estimation of class mean on two

covariance matrices in Fisher criterion is not systematically and theoretically presented.

Another related work is known as the concentration inequality (learning) in learning theory

[21][9], such as Hoeffding’s inequality that describes the difference between empirical mean and

its expectation. But only statistical bound is reported. The bound may be loose and the effect of

such difference has not been integrated into the discriminate learning algorithm such as Fisher’s

LDA. In contrast, in P-LDA, a random mean is modeled to stochastically characterize the

expectation value of each class. P-LDA has been developed by integrating the perturbation

between the empirical mean of each class and its expectation value into the learning process.

Method
Classifier: NCMC Classifier: NNC

Rank 1 Rank 2 Rank 3 Rank 1 Rank 2 Rank 3

R-LDA with manually selected optimal parameter 86.78% 90.24% 91.69% 88.27% 90.16% 91.25%

R-LDA (CV) 86.43% 89.96% 91.49% 87.96% 90.26% 91.33%

R-LDA using perturbation model 86.47% 90.00% 91.69% 88.08% 90.20% 91.49%

Method
Classifier: NCMC Classifier: NNC

Rank 1 Rank 2 Rank 3 Rank 1 Rank 2 Rank 3

R-LDA with manually selected optimal parameter 78.60% 83.42% 85.88% 80.50% 84.08% 85.98%

R-LDA (CV) 78.44% 83.27% 85.72% 80.43% 84.05% 85.94%

R-LDA using perturbation model 78.24% 83.51% 86.13% 80.18% 84.12% 86.14%
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6. Conclusion

This paper addresses a fundamental research issue in Fisher criterion – the class empirical mean

is equal to its expectation. This is one of the assumptions made in deriving the Fisher’s LDA

formulation for practical computation. However, in many pattern recognition applications,

especially the biometric learning, this assumption may not be true. In view of this, we introduce

perturbation random vectors to learn the effect of the difference between the class empirical

mean and its expectation in Fisher criterion, and then a new formulation, namely perturbation

LDA (P-LDA) is developed. The perturbation analysis has finally yielded new forms of within-

class and between-class covariance matrices by integrating some perturbation factors in Fisher

criterion. A complete theory and mathematical derivation of P-LDA under single Gaussian

distribution and mixture of Gaussian distribution of data in each class are developed respectively.

For practical implementation of the proposed P-LDA method, a technique for estimation of the

covariance matrices of perturbation random vectors is also developed. Moreover, the proposed

perturbation model also gives a novel view to R-LDA, resulting in an efficient and effective

estimation of regularized parameter. Experiments have been performed to evaluate P-LDA and

do comparison with recently developed popular Fisher’s LDA-based algorithms for solving the

small sample size problem. The results show that the proposed P-LDA algorithm is efficient and

obtains better performances. In future, the perturbation model in Fisher’s LDA may be further

developed. In this paper, P-LDA relies on Gaussian assumption of data distribution in each class.

Though P-LDA under mixture of Gaussians is also developed, it is currently required that the

Gaussian components are first found, which is still an active research issue in pattern recognition.

Therefore, non-parametric technique may be considered for its future development.
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Appendix–1. Derivation of Eq. (9) and (11)
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Appendix–2. Proof of Lemma 1

Proof: is true obviously and the proof is for here. Since , then:
∆

wS
∆

b
S LkNNN ks

L
kss

,,1,,1 ⋯=−=∑ ≠=

Appendix–3. Proof of Lemma 2

Proof: For convenience, we denote ( ) which means is lower
kClower ΩΩ ≤ upperCk

ΩΩ ≤
kCΩ

(upper) bounded by ( ). Similarly to the proof in lemma 1, it is easy to have thelowerΩ upperΩ

following relations:

Since and are independent of L and N and implies for L≥1, so it islowerΩ upperΩ 0→
N
L 01 →

N

true that and . □)(
N
L

b O=
∆

S )(
N
L

w O=
∆
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Appendix–4. Experimental Verification

We here experimentally provide support for the suboptimal but practical strategy used to model

by assuming random variables to be uncorrelated each other in the entire principalΩ nξξ xx ,,1
⋯

component space in section 3.1. We show that this assumption is really practically useful. Recall

the parameter estimation in section 3.2 where we get . Hence a general),(~
)1(

1 Ω0Nξ
−

−

kk NN
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j
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where n is the dimensionality of the entire principal component space, is the size of and}{⋅ }{⋅

is the absolute standard correlation value between and .),(
~
ˆ jiΩ iξx

j
ξx

The curve of the value of as a function of has been shown in Fig. 12 and Fig. 13 on)(βF β

FERET and CMU PIE respectively, where three training samples are used for each class on

FERET and six training samples are used for each class on CMU PIE. We observe that on

FERET, when and when ; on CMU,0.2925%)( =βF 0.09959=β 0.006176%)( =βF 0.2015=β

when and when . This shows that it0.3002%)( =βF 0.102=β 0.008472%)( =βF 0.2513=β

would be quite a low probability for the absolute standard correlation value to have ajiji ≠),,(
~
Ω̂

high value. It means it has an extremely high probability that the correlation between andiξx
j
ξx

is very low when i≠j.

In conclusion, the experiment shows that are almost uncorrelated each other because ofnξξ xx ,,1
⋯

the extremely low correlation values between them. As we always do not have sufficient samples

to tackle the ill-posed estimation problem when dealing with high-dimensional data, it is a

practical and also reasonable way to hold this assumption for performing regularized estimation

and model the perturbation covariance matrix using Eq. (21) and its further reduced form Eq.

(22).
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