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A B S T R A C T

Due to the short duration and low intensity of micro-expressions, the recognition of micro-expression is still a
challenging problem. In this paper, we develop a novel multi-task mid-level feature learning method to enhance
the discrimination ability of extracted low-level features by learning a set of class-specific feature mappings,
which would be used for generating our mid-level feature representation. Moreover, two weighting schemes are
employed to concatenate different mid-level features. We also construct a new mobile micro-expression set to
evaluate the performance of the proposed mid-level feature learning framework. The experimental results on
two widely used non-mobile micro-expression datasets and one mobile micro-expression set demonstrate that
the proposed method can generally improve the performance of the low-level features, and achieve comparable
results with the state-of-the-art methods.

1. Introduction

Emotion recognition has drawn more and more attention over the
past few decades. One major research topic in the emotion analysis is to
recognize facial expression [1–3]. Compared with the traditional facial
expression problem, micro-expression recognition is still a relatively
new topic with many challenges. Micro-expression, once called micro-
momentary facial expression in 1966 [4], was renamed by Ekman [5] a
few years later. According to Ekman's studies [6–8], micro-expression
is defined as a very brief and subtle movement on the face, which is
uncontrollable to human themselves. With its close relationship with
genuine emotions, micro-expression can serve as an important cue to
reveal the emotions people try to conceal, especially in some high-stake
situations. For this characteristic, micro-expression has a wide range of
potential applications in diverse fields including criminal interrogation
and clinical diagnosis.

Studies show that muscles in human face cannot be fully stretched
to form a perceptible facial expression within 0.5 s [9,10], so it is not
easy for human beings without any professional knowledge to accu-
rately detect and recognize micro-expressions. To help detecting and
recognizing micro-expressions, Ekman [11] introduced a Micro-
Expression Training Tool (METT), in which the professional knowledge
about seven subtle facial expressions are taught to the participants.

However, the recognition performance was still unsatisfactory even
after METT's training [12]. Moreover, recognition by human beings is
easily affected by human's perception, making the results diverse
among different subjects and at different time.

Recently, a lot of efforts have been made to develop computer vision
techniques for the micro-expression recognition. Most existing meth-
ods [13–15] intend to simply concatenate the low-level features
extracted from different local regions together for recognition. These
methods generally expect that the extracted low-level features are
representative enough to depict the expressions. However, due to the
short duration and low intensity of micro-expression, the low-level
features without any processing can hardly capture and reflect the
critical movements in micro-expression. Moreover, the irrelevant and
noisy information involved in video clips will further weaken the
representation ability of the features, especially for the features
extracted from inactive regions1 with less dynamics.

In this paper, a mid-level feature learning mechanism is formu-
lated, which processes the low-level features extracted from each facial
region independently. For each region, a number of class-specific
mappings are learned for projecting the original feature space to
numerous subspaces, in one of which samples of the specific class
are pulled closer while the samples from different classes are pushed
farther. But different from [16] which intends to learn different
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mappings independently, we explicitly introduce a common mapping
to constrain the mapping learning. With this restriction, learnings of
different feature mappings are linked together, and the common
information among them can be mined for boosting our feature
learning. In this way, a more discriminative mid-level feature with
better generalization ability can be obtained to represent each facial
region. We call our learning the multi-task mid-level feature learning.
The mid-level features of all the local regions are then concatenated
together for recognition. To further improve the system performance,
two different weighting schemes are utilized for the feature concatena-
tion.

In addition, micro-expressions collected in the existing works [17–
19] are only recorded by digital video cameras. In some emergency
situations, the video clips we can utilize for criminal investigation could
be recorded by a mobile device with relatively low quality, which makes
the micro-expression recognition problem more challenging. In this
paper, we have additionally collected a mobile micro-expression
dataset for evaluation. The results show that our method can be well
generalized to tackle the low-quality micro-expression recognition
problem.

In general, the experimental results on two widely used non-mobile
micro-expression datasets and one mobile micro-expression set de-
monstrate the effectiveness of the proposed method.

2. Related work

For the purpose of addressing micro-expression recognition pro-
blem, some low-level features (e.g. LBP-TOP) were proposed at the
early stage. LBP-TOP, which was first adopted in traditional facial
expression recognition [20], is a 3D variant of LBP. By encoding the
binary relationship patterns between each pixel and its neighbors on
three orthogonal planes, the dynamic texture of the entire video can be
represented. For more efficient computation, two more compact and
lightweight representations, called LBP-SIP [21] and LBP-MOP [22],
were also presented. Unlike LBP-TOP where all the adjacent points are
concerned in the feature computation, LBP-SIP only considers the six
neighbors on the intersecting lines. More compactly, LBP-MOP is
constructed by concatenating LBP features from only three mean
images, which are the pooling results of the respective stacks along
three orthogonal directions. To represent micro-expressions in an
intuitional way, Liong and Phan [23] also proposed an optical-strain-
based feature for recognition.

To improve performance of recognition, several methods were
proposed to enhance the low-level features. To emphasize the impor-
tance of active regions, Liong et al. [13] proposed to concatenate local
features with different weights. Regions with higher optical strain
magnitudes are thought to be more important, and will be weighted
with larger values. With direction information considered on each
orthogonal plane, LBP-TOP was further extended to Local
Spatiotemporal Directional (LSTD) feature in [24]. Considering the
close relationship between color and emotions, Wang et al. [14,25]
proposed to extract LBP-TOP features from the tensor independent
color space (TICS). Compared with RGB, color components in TICS are
less related and thus more discriminative features can be extracted for
recognition. To avoid the statistical instability of LBP-TOP, a re-
parametrization technique based on the second local Gaussian jet
was proposed in [26].

Aside from methods which enhance the basic low-level features,
there are still numerous methods proposed to extract other robust
representations. Lu et al. [27] presented a Delaunay-based temporal
coding model (DTCM), which encodes local temporal variations in each
subregion and represents the total variation by only preserving the
ones with high saliency. Oh et al. [28] proposed a monogenic Riesz
wavelet representation, where a two-layer architecture is adopted to
extract magnitude, phase and orientation features of different scales.
With nice facial alignment, Liu et al. [15] also proposed a Main

Directional Mean Optical-flow (MDMO) feature. By removing small
head movements in optical flow domain, more reliable local informa-
tion can be obtained with less noisy influence. To preserve the shape
properties of micro-expressions, a representation called spatiotemporal
local binary pattern with integral projection (STLBP-IP) was presented
by Huang et al. [29], where 1D- and 2DLBP features are extracted from
integral images along two orthogonal directions. With efficient vector
quantization and Fisher criterion, Huang et al. [30] proposed another
spatiotemporal feature, where compact and discriminative codebooks
are learned for feature extraction.

From the methods mentioned above, we can notice that most
existing methods adopt a similar framework, where local features are
extracted from different facial regions and then simply concatenated
for recognition. However, with irrelevant and noisy information
involved, the subtle dynamic patterns of micro-expression are not easy
to be captured and represented by the low-level features, especially for
the ones from inactive regions. Different from the normal facial
expression, even a subtle movement in inactive region could serve as
an important cue of micro-expression. With less discriminative in-
formation extracted from the inactive regions, features concatenated by
the low-level ones may lead to questionable results and poor perfor-
mance. To tackle this problem, a multi-task mid-level feature learning
method is proposed to enhance the discrimination ability of the low-
level features. For further improvement of the concatenated features,
two weighting schemes are also presented.

3. Proposed approach

The overall framework of the proposed method consists of two
parts: Firstly, enhancing the discrimination ability of local features by
utilizing a multi-task mid-level feature learning mechanism, where
several class-specific feature mappings are learned as illustrated in
Fig. 1. Secondly, concatenating the enhanced mid-level features from
the same videos by two different weighting schemes, and then making
decision using SVM classifiers with RBF kernel [31].

3.1. Multi-task mid-level feature learning

Suppose that there are c micro-expression classes included in the
recognition problem. For the i-th micro-expression, we have Ni video
clips for training. Video clips are first spatially divided into a b× non-
overlapping blocks. Then we extract low-level features from all the
blocks and t a b= × low-level features are obtained to represent each
video clip. Let us denote the corresponding low-level features as

x{→ }ij
k

i j k
c N t
, , =1,1,1
, ,i , where x R→ ∈ij

k d is the k-th low-level feature for the j-th

training sample from the i-th micro-expression. To be concise, x→ij
k
will

be rewritten as x→ij in the following.
For each low-level feature x→ij, we first calculate its top kinter

interclass nearest neighbors N x(→ )inter ij from other micro-expressions
and kintra intraclass nearest neighbors N x(→ )intra ij from the same micro-
expression based on the Euclid metric. Then the inter(intra) class
similarity between local feature x→ij and the p-th interclass nearest
neighbor x→ijp (the q-th intraclass nearest neighbor x→ijq) can be defined
as follows:
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where σ is a parameter to scale the similarities of different point pairs.
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Based on the above inter(intra) class similarities, we formulate our
mid-level feature learning as:
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Here, W R∈i
d h× represents a class-specific feature mapping for the i-th

micro-expression. Our objective function consists of three terms, and
we will discuss each term in detail in the following:

Term J1: J1 is employed to quantify the distance between samples
from different classes. Unlike the LDA method which separates
different classes by a common subspace, we aim to learn several
class-specific feature mappings simultaneously. Each feature mapping
corresponds to a specific class, and the samples from other classes are
expected to be separated by the mapping as shown in Fig. 2. We also
note that the more similar two samples are, the higher Aijp will be

obtained, which leads to larger margin between them in the feature
subspace. So by minimizing J− 1, samples from different micro-expres-
sions will be well separated in the corresponding subspaces, thus more
discriminative features can be learned for recognition.

Note that J1 can be conveniently rewritten as:

∑ W H WJ = tr( ).
i

c

i
T

i inter i1
=1

,
(4)
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and tr(·) is the trace operation.
Term J2: Different from J1, this term is used to quantify the

distance between samples from the same class. J2 is minimized such
that samples from the same class are clustered together. Thus, the
components that are consistent in each class will be preserved for
recognition.

Similar to J1, J2 can be rewritten as:

∑ W H WJ = tr( ).
i

c

i
T

i intra i2
=1

,
(6)
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Term R: This term is used to establish linkages among the learnings
of different mappings. Since the movements contained in micro-
expression are subtle, the information that can be used for model
training is limited, and thus learning different mappings independently
could easily lead to a solution with poor generalization ability. To tackle
this problem, we explicitly introduce a common mapping θ to constrain
the mapping learning:

W U θ= + .i i (8)

Here, θ represents a common structure shared by different mappings,
and Ui can be regarded as the specific component. With the restriction
of θ, learnings of different Wi are linked together. By learning different
mappings simultaneously, the common information among them can

Fig. 1. A graphic illustration of the proposed feature learning framework. We first partition each video clip into smaller regions and then extract the low-level features to represent each
region. For each region (e.g. the k-th region), we learn several class-specific feature mappings W{ }i

k
i
c
=1 under the multi-task learning mechanism, where Wi

k pulls the features of the i-th

micro-expression together and pushes the features from other classes farther.

Fig. 2. Illustration of feature projection of the i-th class-specific feature mapping.
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be mined and supplied for each individual feature mapping learning.
With more available information, features with better generalization
ability can be obtained for recognition. The similarities of different
mappings are measured by the term R, and its effect is controlled by α.

R can be rewritten as:
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Then we can rewrite Eq. (3) as:
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3.2. Optimization

It is not easy to solve the above problem by optimizing W{ }i i
c
=1 and θ

simultaneously. We have to solve it in an iterative manner as
introduced below.

Updating Wi with θ fixed: When θ is fixed, the gradient of Eq. (10)
with respect to Wi can be calculated as:

W
H H W W θ

H H I W θ

L α α

α α

∂
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= 2[( − + ) − ].
i
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i intra i inter i

, ,
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Due to the orthogonality constraint, we cannot update Wi by simply
setting WL∂ /∂ i to be 0. Here, we use a generalized gradient descent
method on the Grassman manifold in [32,37] to achieve the optimiza-
tion.

Updating θ with W{ }i i
c
=1 fixed: When W{ }i i

c
=1 are fixed, the gradient of

Eq. (10) with respect to θ can be calculated as:
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By letting θL 0∂ /∂ = , θ can be updated as:
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In this way, we can get c class-specific feature mappings for each
facial region. The detailed procedures are outlined in Algorithm 1.

Algorithm 1.

Input: local features of training samples x{→ }ij
k

i j k
c N t
, , =1,1,1
, ,i , dimension

of class-specific feature subspace h, number of inter- and
intra-class neighbors kinter, kintra, convergence error ε,
max iteration time Tmax, and two user-defined para-
meters α, σ.

Output: class-specific feature mappings W{ }i
k

i k
c t
, =1,1
, .

For k t= 1, 2,…, , repeat
Step 1 (Initialization)

1.1. Set θ I=k
d h

,0
× ;

1.2. For i c= 1, 2,…, , repeat

Set W randn d h= ( , )i
k,0 ;

Step 2 (Preparation)

2.1. For each local feature x→ij
k
, the similarities Aijp, Bijq be-

tween x→ij
k
and its inter- and intra-class neighbors are calculated

from Eqs. (1) and (2), respectively.
2.2. Compute auxiliary matrices Hi inter, , Hi intra, from Eqs. (5) and

(7), respectively.
Step 3 (Optimization)
For r T= 1, 2,…, max, repeat

3.1. With θk r, −1 fixed, W{ }i
k r are updated using [32].

3.2. With W{ }i
k r fixed, θk r, is computed from Eq. (13).

3.3. Calculate the objective value Lr from Eq. (10) with W{ }i
k r

and θk r, .

3.4. If r > 2 and L L ε| − | <r r−1 , go to Step 4.
Step 4 (Output)

Output class-specific feature mappings W{ }i
k

i
c
=1.

3.3. Recognition

Given a testing sample, we first partition it into t blocks and then
extract low-level feature from each block. Class-specific feature map-
pings W{ }i

k
i k
c t
, =1,1
, obtained in the training stage are used to map low-level

features into mid-level ones. Specifically, for each low-level feature y→k

(extracted from training or testing sample), we first calculate the
projection of each class-specific mapping as::

Wv y i c k t→ = ( ) → , = 1,…, , = 1,…, ,i
k

i
k T k

(14)

where v→i
k
is the feature projection of y→k under the i-th class-specific

feature mapping.
These feature projections form our new feature representations for

the corresponding facial regions. We then concatenate the projections
of the same class and get $c$ holistic feature representations:

⎡
⎣⎢

⎤
⎦⎥V v v i c

→
= (→ ) ,…,(→ ) , = 1,…, .i i

T
i
t T

T
1

(15)

Indeed, an improved concatenated features can be obtained using
the weighting schemes described in [13]:

⎡
⎣⎢

⎤
⎦⎥V w v w v i c

→* = ( ·→ ) ,…,( ·→ ) , = 1,…, .i i i
T

i
t

i
t T

T
1 1

(16)

To determine parameters w{ }i
k

i k
c t
, =1,1
, , the mean optical strain [13] is

calculated for each facial region to depict the motion intensity. To find
out the general active regions, nummost regions with relatively large
strain magnitudes are firstly recorded as candidates in each video.
Their frequencies in each class are then calculated. Candidates with low
frequencies will be further excluded, and the weights are computed
from the remainders.

With w{ }i
k

i k
c t
, =1,1
, directly used, active regions with higher weight

assignment will be emphasized in the recognition. To keep a balance
between active and inactive regions in the concatenated features, we
can utilize weights in an inverse way, i.e. w w= 1 −i

k
i
k. By doing this,

more attention is taken to the inactive regions to eliminate the biases
caused by the dynamic information gap between active and inactive
regions. Both weighting schemes will be used and evaluated in
experiments.

For recognition, we exactly follow the procedures described in [33],

where holistic features (i.e. V
→

i or V
→*

i ) of the same class (e.g. class i) were
fed into a two-class SVM classifier, each SVM outputs a confidence
value indicating the probability of a testing sample belonging to the
considered micro-expression class (e.g. class i). And totally we can
obtain $c$ SVM classifiers for recognition. The class with the highest
SVM output is selected as our predicted label.

4. Experiments

In this section, two non-mobile and one mobile micro-expression
datasets are used to evaluate the effectiveness of the proposed method.
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The datasets, implementation details, and our experimental results are
described as follows.

4.1. Experiments on non-mobile datasets

4.1.1. Non-mobile datasets
SMIC: The SMIC dataset [17] contains 164 micro-expression video

clips. These video clips were recorded from 16 subjects and labeled into
three different classes: positive (happy), negative (sad, fear and
disgust) and surprise. Following [29,30], we used all the 164 samples
for evaluation. To eliminate the spatial and temporal discrepancies,
bicubic interpolation and temporal interpolation method (TIM) [34]
were employed to normalize each video clip so that all the videos have a
resolution of 150 × 120 pixels and 20 frames.

CASME2: The CASME2 dataset [19], which is an extension of the
CASME dataset [18], consists of 26 subjects with 255 micro-expression
video clips recorded by a 200 fps camera. These samples include seven
classes: happiness, surprise, fear, sadness, disgust, repression and
others. In our experiments, classes with few samples (i.e. fear and
sadness) were not used for evaluation as [19] did. Thus we conducted
experiments on the rest 246 samples from 5 classes. Similar to SMIC,
all the video clips in this set were normalized to a uniform size of
150×120 pixels and 30 frames in the spatial and temporal dimensions.

4.1.2. Implementation details
Similar to [17,22,29], we used the leave-one-subject-out (LOSO)

cross-validation to evaluate the proposed method, where samples from
one certain subject were used as testing data, while the rest served as
the training samples. This process repeated until all the subjects were
met, and the mean recognition accuracy was used to measure the
performance.

For the parameter setting, the four parameters σ, kinter, kintra and
α used in our multi-task mid-level feature learning were set as 100, 15,
5 and 0.001, respectively. The dimension of the class-specific feature
subspace h was selected as d0.6 × . For computing local features on the
SMIC dataset, video clips were spatially divided into 5×1 blocks, while
the division grid on CASME2 was selected as 5×4. The parameter
nummost used on SMIC and CASME2 was set as 2 and 9, respectively.
Three kinds of features LBP-TOP, LBP-MOP and LBP-MOP*2 were
used as our low-level features. The radii (Rx, Ry, Rt) in axes X, Y and T
used in LBP-TOP and LBP-MOP (LBP-MOP*) were set as (4, 4, 2) and
(2, 2, 2) on SMIC, (3, 3, 3) and (1, 1, 3) on CASME2, respectively.

4.1.3. Results and analysis

4.1.3.1. Comparison with the original low-level features. To validate
the effectiveness of the proposed mid-level feature learning method, we
conduct our experiments on both SMIC and CASME2 datasets. We
compare the performance of the original low-level features and the
mid-level features learned by our multi-task mid-level feature learning
(MMFL) method. Both features were evaluated using two different
weighting schemes described in Section 3.3 (denoted as wactive and
wbalance). For wactive, local features are concatenated with weights
proportional to the activeness of facial regions, while weights of
wbalance are inverse (i.e. w w= 1 −i

k
i
k). The results without

weighting scheme are also reported, and we denoted it as wno. By
examining the comparison results presented in Tables 1 and 2, we can
obtain the following observations:

• For the case ofwno, the results obtained by model MMFL are higher
than that of original features on both SMIC and CASME2 datasets. It
indicates that the proposed multi-task mid-level feature learning
method can enhance the discrimination ability of the original low-

level features and thus lead to better recognition performance.

• With both weighting schemes used, different demands of weighting
schemes can be observed for SMIC and CASME2 datasets. As can be
seen from Tables 1 and 2, no matter whether multi-task mid-level
feature learning is utilized or not, results of using wactive are higher
than that of using wbalance on SMIC, while on CASME2 the
methods using wbalance always perform better. This reflects the
inherent difference between both datasets. SMIC set is more
dependent on the active regions (e.g. eyes and mouth), in which
relatively large and discriminative motions can be captured and used
to recognize the positive (happy) and surprise emotions, while the
remainder (negative) can be filtered out from them. However, in
CASME2, more diverse and detailed expressions are included. To
distinguish them, more attention should be paid to the subtle
discrepancies between different micro-expressions, especially for
the ones from inactive regions. Due to that, compared with wactive,
wbalance is more adequate for the recognition of the CASME2
dataset and can lead to better recognition performance.

• It is noticed that, even some original features (LBP-MOP and LBP-
MOP*) on SMIC get slightly higher results than the ones of MMFL
when wactive is utilized, their results using wbalance are generally
lower than the ones of MMFL on both datasets. It indicates that,
with plentiful dynamics in active regions, the original low-level
features can depict some discriminative patterns as MMFL does, and
benefits from wactive on the SMIC dataset. But for inactive regions
with insufficient information, the original features are less robust
than the ones obtained by our MMFL, which shows the effectiveness
of the proposed multi-task mid-level feature learning.

4.1.3.2. Comparison with traditional supervised subspace
learning. To further validate the effectiveness of the proposed multi-
task mid-level feature learning, we compared our method with some
traditional supervised subspace learning methods, including LDA. A
variant of MMFL without regularization term R was also implemented,
and denoted as NR. The comparison results are presented in Tables 3
and 4. From these tables, we can obtain the following observations:

• For the case of wno, LDA performs poorly on both datasets and get
worse results than the original ones presented in Tables 1 and 2.
Such result indicates that LDA is inadequate to tackle problems with
insufficient information. Different from LDA, NR and MMFL, which

Table 1
The result (%) of MMFL and the original features (Original) on the SMIC dataset.

Method Weighting Scheme LBP-TOP LBP-MOP LBP-MOP*

Original wno 45.09 44.22 38.69
Using wbalance 47.45 43.16 4.48
Using wactive 51.73 63.95 63.72

MMFL wno 49.02 53.81 42.64
Using wbalance 51.03 47.09 47.58
Using wactive 55.19 62.33 63.15

Table 2
The result (%) of MMFL and the original features (Original) on the CASME2 dataset.

Method Weighting Scheme LBP-TOP LBP-MOP LBP-MOP*

Original wno 48.90 54.24 55.20
Using wbalance 30.15 30.83 29.77
Using wactive 25.56 22.85 25.46

MMFL wno 53.33 57.59 58.09
Using wbalance 54.60 57.61 59.81
Using wactive 41.34 39.73 43.21

2 LBP-MOP* is an extension of LBP-MOP based on [13].
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decompose problem into numerous two-class ones, can generate
features with higher generalization ability and get better perfor-
mance. Furthermore, by sharing common structure between differ-
ent mappings, MMFL can get further improved and obtain better
recognition results than the NR method.

• When using wactive on SMIC and wbalance on CASME2, we can
find that MMFL can always get improvement, and its results are
higher than the ones of LDA and NR methods. This result
demonstrates that, with higher generalization ability, feature ob-
tained by MMFL can better represent the dynamic patterns of
different regions and further benefit from weighting schemes in the
feature concatenation.

• It is noticed that, no matter which supervised subspace learning
method is utilized, the performance of using wactive is generally
higher than the one of using wbalance on SMIC, while on CASME2
the results (except LDA) are opposite. Such phenomenon once again
indicates the inherent difference between SMIC and CASME2, and
the outlier further shows the poor generalization ability of features
extracted by LDA, especially for the ones from inactive regions.

4.1.3.3. Comparison with the state-of-the-art methods. Here, we
compare our MMFL model with several state-of-the-art micro-
expression recognition approaches including OS (optical strain) [23],
LBP-SIP+Gp and LBP-TOP+Gp [22](Gp denotes Gaussian pyramid
used in feature extraction), RW (monogenic resize wavelet) [28], STM
(selective transfer machine) [35], SS (sparse sampling) [36], STLBP-IP
(spatiotemporal local binary pattern with integral projection) [29] and
STCLQP (spatiotemporal completed local quantization pattern) [30].
The comparison results are listed in Tables 5 and 6. From these tables,
we can obtain the following three observations:

• From Tables 5 and 6, we can observe that the results of MMFL are
higher than the ones of OS, RW, LBP-SIP+Gp and LBP-TOP+Gp on
both datasets. It shows that, compared with the basic spatiotemporal

features, MMFL can reveal more relevant information, and more
discriminative features can be obtained for better recognition
performance.

• It is noticed that, by eliminating redundant frames in video clips and
reducing imbalanced sample distribution of different subjects, SS
and STM can generally get better performance than the basic
spatiotemporal features. However, they are still generally lower
than the ones of MMFL. The reason is that, without any processing,
an amount of irrelevant and noisy information is involved in the
basic spatiotemporal features. Based on them, SS and STM can only
gain limited improvement.

• As can be seen from Tables 5 and 6, MMFL cannot always outper-
form STLBP-IP and STCLQP. However, compared with our MMFL,
STCLQP and STLBP-IP are highly dependent on the initialization of
clustering centers and the neutral frame selection, which makes
them less stable in real-world applications.

4.1.3.4. Influence of parameter α. Here, we evaluated the influence of
α in our model by varying it from 10−5 to 10−1 while fixing the other
parameters. The experimental results on both datasets are presented in
Figs. 3 and 4.

From these figures, we can observe that in most cases, results look
like a para-curve and have peaks when α is near 0.001. The reason
could be that the larger α is, the more similar the class-specific feature
mappings will be. So when a high α is used, the discrepancies of class-
specific feature mappings will decrease, as well as the discrimination
ability of the learned features. Likewise, when α is too small, the
learnings of different feature mappings are poorly linked. Less common
information can be mined for boosting our feature learning, which
leads to less discriminative features and poorer recognition perfor-
mance. To obtain better recognition results, a proper α with inter-
mediate value 0.001 is selected in this paper.

Table 3
The result (%) of LDA, NR and MMFL on the SMIC dataset.

Method Weighting Scheme LBP-TOP LBP-MOP LBP-MOP*

LDA wno 37.65 35.26 36.28
Using wbalance 43.48 43.22 57.39
Using wactive 49.67 49.36 39.72

NR wno 33.57 41.87 41.22
Using wbalance 41.77 43.11 44.70
Using wactive 41.63 53.23 58.68

MMFL wno 49.02 53.81 42.64
Using wbalance 51.03 47.09 47.58
Using wactive 55.19 62.33 63.15

Table 4
The result (%) of LDA, NR and MMFL on the CASME2 dataset.

Method Weighting Scheme LBP-TOP LBP-MOP LBP-MOP*

LDA wno 42.63 43.39 48.19
Using wbalance 38.16 35.90 36.69
Using wactive 42.61 42.47 41.50

NR wno 48.73 56.27 57.03
Using wbalance 42.24 56.34 56.97
Using wactive 42.09 40.76 44.87

MMFL wno 53.33 57.59 58.09
Using wbalance 54.60 57.61 59.81
Using wactive 41.34 39.73 43.21

Table 5
The result (%) of MMFL and the state-of-the-art methods on the SMIC dataset.

Method ACC

State-of-the-art OS [23] 53.56
RW [28] 34.00
STM [35] 44.00
SS [36] 58.00
STLBP-IP [29] 57.93
STCLQP [30] 64.02

MMFL + wactive LBP-TOP 55.19
LBP-MOP 62.33
LBP-MOP* 63.15

Table 6
The result (%) of MMFL and the state-of-the-art methods on the CASME2 dataset.

Method ACC

State-of-the-art LBP-SIP+Gp [22] 38.46
LBP-TOP+Gp [22] 37.25
RW [28] 46.00
STM [35] 44.00
SS [36] 49.00
STLBP-IP [29] 59.51
STCLQP [30] 58.39

MMFL + wbalance LBP-TOP 54.60
LBP-MOP 57.61
LBP-MOP* 59.81
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4.2. Experiments on mobile dataset

4.2.1. Mobile dataset
Nowadays, with the wide use of slow-motion mode, some mobile

devices (e.g. iPhone and iPad) can record video clips in a high sampling
rate (e.g. 120 fps and 240 fps), so they can serve as another source to
collect micro-expression data. Indeed, mobile devices may not produce
videos of the same quality with conventional cameras, but they are
more widely used in daily life and can capture sufficient detailed facial
movements for micro-expression recognition.

So far, there is no available mobile micro-expression dataset. To
construct a mobile dataset, 17 subjects (14 male and 3 female) were
invited to mimic 6 micro-expressions (i.e. happiness, surprise, fear,
sadness, disgust and anger). An iPad Air 2 with slow-motion mode
(120 fps) was fixed indoors to record the facial movements. Unlike that
on the SMIC and CASME2 datasets, to simulate the camerawork in real
daily life, we do not explicitly control the filming illumination, which
makes the dataset more challenging. In total, we have 306 micro-
expression video clips. We call this new collected dataset as mobileDB.
Similar to SMIC and CASME2, each video clip in this dataset starts
from a relatively neutral frame and ends when facial expression turns
back to relatively neutral. These samples were then normalized to a
uniform size (150×150 pixels and 30 frames) for evaluation. Some
examples of the mobileDB dataset can be found in Fig. 5.

4.2.2. Implementation details
Similar to SMIC and CASME2, we extract the LBP-TOP, LBP-MOP

and LBP-MOP* features to represent each sample. The parameters (Rx,
Ry, Rt) for computing these features were set as (2, 2, 1), (2, 2, 2) and
(2, 2, 2), respectively. Other parameters were kept the same as that
used in the CASME2 dataset.

4.2.3. Results and analysis
To evaluate the proposed method, three different experiments were

conducted. The detailed results are presented in Tables 7 and 8 and
Fig. 6, respectively. From them, we can obtain some analogous
observations.

4.2.3.1. Comparison with the original low-level features. From
Table 7, we can find that the results of MMFL are higher than the
ones of the original low-level features when wno is utilized. This result
is the same as the ones on SMIC and CASME2, indicating that the
proposed multi-task mid-level feature learning method can enhance
the discrimination ability of the low-level features and thus lead to
better recognition performance. Moreover, similar to CASME2, the
results of using wbalance are higher than the ones of using wactive on
both original feature and the MMFL. It once again indicates that
wbalance, which further balances the relationship between active and
inactive regions, is more adequate to tackle problems with diverse
expressions. Furthermore, with more discriminative information
extracted from inactive regions, MMFL using wbalance can always
get improvement, while the original features cannot, which further
shows its effectiveness in feature learning with insufficient information.

4.2.3.2. Comparison with traditional supervised subspace
learning. As can be seen from Table 8, results of MMFL using wno

are higher than the ones of LDA and NR methods. Moreover, different
from LDA and NR in which some features get worse results than the
original ones, MMFL can always get better performance. It shows that,
by decomposing problem into numerous two-class ones and sharing
common information among them, MMFL can generate features with
higher generalization ability, which can further benefit from wbalance

and lead to better recognition results than the ones of LDA and NR
methods.

4.2.3.3. Influence of parameter α. Similar to the results presented in
Section 4.1.3.4, the results presented in Fig. 6 also look like a para-
curve and have peaks when α is near 0.001. It once again indicates that,
α with too large or small value will result in nearly homology or
independence of different mappings, and lead to poor performance. To
keep a balance, α with intermediate value should be utilized.

5. Conclusion

To address the micro-expression recognition problem, a multi-task
mid-level feature learning method is proposed in this paper. By
learning numerous class-specific feature mappings simultaneously,
the potential common information among them can be mined and
supplied for each individual feature mapping learning. With more
available information, features with better discrimination and general-
ization abilities can be obtained for recognition. Moreover, by utilizing
weighing schemes, concatenated features can get further improvement.
Experimental results on two widely used non-mobile micro-expression
datasets and one mobile micro-expression set demonstrate the effec-
tiveness of the proposed method.

Acknowledgment

This work was supported partially by the National Key Research

Fig. 3. Parameter analysis of α on SMIC when wactive is used.

Fig. 4. Parameter analysis of α on CASME2 when wbalance is used.

J. He et al. Pattern Recognition 66 (2017) 44–52

50



and Development Program of China (2016YFB1001002,
2016YFB1001003), NSFC (No. 61573387,61472456, 61522115,
61661130157, 61628212), Guangdong Natural Science Funds for
Distinguished Young Scholar under Grant S2013050014265, the
GuangDong Program (No. 2015B010105005), the Guangdong
Science and Technology Planning Project (No. 2016A010102012,
2014B010118003), and Guangdong Program for Support of Top-notch
Young Professionals (No. 2014TQ01X779).

References

[1] C. Shan, S. Gong, P.W. McOwan, Facial expression recognition based on local
binary patterns: a comprehensive study, Image Vis. Comput. 27 (6) (2009)
803–816.

[2] J. Edwards, H.J. Jackson, P.E. Pattison, Emotion recognition via facial expression
and affective prosody in schizophrenia: a methodological review, Clin. Psychol. Rev.
22 (6) (2002) 789–832.

[3] C. Busso, Z. Deng, S. Yildirim, M. Bulut, C.M. Lee, A. Kazemzadeh, S. Lee, U.
Neumann, S. Narayanan, Analysis of emotion recognition using facial expressions,
speech and multimodal information, in: Proceedings of the 6th International
Conference on Multimodal interfaces, ACM, Paris, France, 2004, pp. 205–211.

[4] E.A. Haggard, K.S. Isaacs, Micromomentary facial expressions as indicators of ego
mechanisms in psychotherapy, in: Methods of Research in Psychotherapy,
Springer, New York, 1966, pp. 154–165.

[5] P. Ekman, W.V. Friesen, Nonverbal leakage and clues to deception, Psychiatry 32
(1) (1969) 88–106.

[6] P. Ekman, M. O'Sullivan, Who can catch a liar?, Am. Psychol. 46 (9) (1991) 913.
[7] M.G. Frank, P. Ekman, The ability to detect deceit generalizes across different types

of high-stake lies, J. Personality Soc. Psychol. 72 (6) (1997) 1429.
[8] P. Ekman, Darwin, deception, and facial expression, Ann. N.Y. Acad. Sci. 1000 (1)

(2003) 205–221.
[9] W.-J. Yan, Q. Wu, J. Liang, Y.-H. Chen, X. Fu, How fast are the leaked facial

expressions: the duration of micro-expressions, J. Nonverbal Behav. 37 (4) (2013)
217–230.

[10] D. Matsumoto, H.S. Hwang, Evidence for training the ability to read microex-
pressions of emotion, Motiv. Emot. 35 (2) (2011) 181–191.

[11] P. Ekman, Microexpression Training Tool, University of California, San Francisco,
2002.

[12] M.G. Frank, C.J. Maccario, V. Govindaraju, Behavior and Security, Protecting
Airline Passengers in the Age of Terrorism, Greenwood Pub Group, Santa Barbara,
California, 2009, pp. 86–106.

[13] S.-T. Liong, J. See, R.C.-W. Phan, A.C. Le Ngo, Y.-H. Oh, K. Wong, Subtle
expression recognition using optical strain weighted features, in: Computer
Vision—ACCV 2014 Workshops, Springer, Singapore, 2014, pp. 644–657.

[14] S.-J. Wang, W.-J. Yan, X. Li, G. Zhao, C.-G. Zhou, X. Fu, M. Yang, J. Tao, Micro-
expression recognition using color spaces, IEEE Trans. Image Process. 24 (12)
(2015) 6034–6047.

[15] Y.-J. Liu, J.-K. Zhang, W.-J. Yan, S.-J. Wang, G. Zhao, X. Fu, A main directional
mean optical flow feature for spontaneous micro-expression recognition, IEEE
Trans. Affect. Comput. 7 (4) (2016) 299–310.

[16] J. Lu, Y.-P. Tan, G. Wang, Discriminative multimanifold analysis for face
recognition from a single training sample per person, IEEE Trans. Pattern Anal.
Mach. Intell. 35 (1) (2013) 39–51.

[17] X. Li, T. Pfister, X. Huang, G. Zhao, M. Pietikainen, A spontaneous micro-
expression database: inducement, collection and baseline, in: IEEE International
Conference and Workshops on Automatic Face and Gesture Recognition, 2013, pp.
1–6.

[18] W.-J. Yan, Q. Wu, Y.-J. Liu, S.-J. Wang, X. Fu, Casme database: A dataset of
spontaneous micro-expressions collected from neutralized faces, in: IEEE
International Conference and Workshops on Automatic Face and Gesture
Recognition, 2013, pp. 1–7.

[19] W.-J. Yan, X. Li, S.-J. Wang, G. Zhao, Y.-J. Liu, Y.-H. Chen, X. Fu, Casme II: an
improved spontaneous micro-expression database and the baseline evaluation,
PloS One 9 (1) (2014).

[20] G. Zhao, M. Pietikainen, Dynamic texture recognition using local binary patterns
with an application to facial expressions, IEEE Trans. Pattern Anal. Mach. Intell. 29
(6) (2007) 915–928.

[21] Y. Wang, J. See, R.C.-W. Phan, Y.-H. Oh, Lbp with six intersection points: Reducing
redundant information in lbp-top for micro-expression recognition, in: Computer
Vision—ACCV 2014, Springer, Singapore, 2014, pp. 525–537.

[22] Y. Wang, J. See, R.C.-W. Phan, Y.-H. Oh, Efficient spatio-temporal local binary
patterns for spontaneous facial micro-expression recognition, PloS One 10 (5)
(2015).

[23] S.-T. Liong, R.C.-W. Phan, J. See, Y.-H. Oh, K. Wong, Optical strain based
recognition of subtle emotions, in: International Symposium on Intelligent Signal
Processing and Communication Systems, 2014, pp. 180–184.

[24] S.-J. Wang, W.-J. Yan, G. Zhao, X. Fu, C.-G. Zhou, Micro-expression recognition
using robust principal component analysis and local spatiotemporal directional
features, in: Computer Vision—ECCV 2014 Workshops, Springer, Zurich, 2014, pp.
325–338.

[25] S.-J. Wang, W.-J. Yan, X. Li, G. Zhao, X. Fu, Micro-expression recognition using

Fig. 5. Some examples of the mobileDB dataset.

Table 7
The result (%) of MMFL and the original features (Original) on the mobileDB dataset.

Method Weighting Scheme LBP-TOP LBP-MOP LBP-MOP*

Original wno 38.24 40.20 42.48
Using wbalance 39.22 39.87 41.50
Using wactive 26.47 26.80 30.72

MMFL wno 40.85 41.50 47.71
Using wbalance 43.14 43.79 48.04
Using wactive 28.43 29.74 37.25

Table 8
The result (%) of LDA, NR and MMFL on the mobileDB dataset.

Method Weighting Scheme LBP-TOP LBP-MOP LBP-MOP*

LDA wno 19.93 30.72 22.88
Using wbalance 21.90 19.93 19.93
Using wactive 18.63 19.93 18.30

NR wno 32.35 38.89 46.08
Using wbalance 26.14 38.56 45.42
Using wactive 18.63 28.76 37.91

MMFL wno 40.85 41.50 47.71
Using wbalance 43.14 43.79 48.04
Using wactive 28.43 29.74 37.25

Fig. 6. Parameter analysis of α on mobileDB when wbalance is used.

J. He et al. Pattern Recognition 66 (2017) 44–52

51

http://refhub.elsevier.com/S0031-3203(16)30387-9/sbref1
http://refhub.elsevier.com/S0031-3203(16)30387-9/sbref1
http://refhub.elsevier.com/S0031-3203(16)30387-9/sbref1
http://refhub.elsevier.com/S0031-3203(16)30387-9/sbref2
http://refhub.elsevier.com/S0031-3203(16)30387-9/sbref2
http://refhub.elsevier.com/S0031-3203(16)30387-9/sbref2
http://refhub.elsevier.com/S0031-3203(16)30387-9/sbref3
http://refhub.elsevier.com/S0031-3203(16)30387-9/sbref3
http://refhub.elsevier.com/S0031-3203(16)30387-9/sbref4
http://refhub.elsevier.com/S0031-3203(16)30387-9/sbref5
http://refhub.elsevier.com/S0031-3203(16)30387-9/sbref5
http://refhub.elsevier.com/S0031-3203(16)30387-9/sbref6
http://refhub.elsevier.com/S0031-3203(16)30387-9/sbref6
http://refhub.elsevier.com/S0031-3203(16)30387-9/sbref7
http://refhub.elsevier.com/S0031-3203(16)30387-9/sbref7
http://refhub.elsevier.com/S0031-3203(16)30387-9/sbref7
http://refhub.elsevier.com/S0031-3203(16)30387-9/sbref8
http://refhub.elsevier.com/S0031-3203(16)30387-9/sbref8
http://refhub.elsevier.com/S0031-3203(16)30387-9/sbref9
http://refhub.elsevier.com/S0031-3203(16)30387-9/sbref9
http://refhub.elsevier.com/S0031-3203(16)30387-9/sbref9
http://refhub.elsevier.com/S0031-3203(16)30387-9/sbref10
http://refhub.elsevier.com/S0031-3203(16)30387-9/sbref10
http://refhub.elsevier.com/S0031-3203(16)30387-9/sbref10
http://refhub.elsevier.com/S0031-3203(16)30387-9/sbref11
http://refhub.elsevier.com/S0031-3203(16)30387-9/sbref11
http://refhub.elsevier.com/S0031-3203(16)30387-9/sbref11
http://refhub.elsevier.com/S0031-3203(16)30387-9/sbref12
http://refhub.elsevier.com/S0031-3203(16)30387-9/sbref12
http://refhub.elsevier.com/S0031-3203(16)30387-9/sbref12


dynamic textures on tensor independent color space, in: International Conference
on Pattern Recognition, 2014, pp. 4678–4683.

[26] J.A. Ruiz-Hernandez, M. Pietikainen, Encoding local binary patterns using the re-
parametrization of the second order Gaussian jet, in: IEEE International
Conference and Workshops on Automatic Face and Gesture Recognition, 2013, pp.
1–6.

[27] Z. Lu, Z. Luo, H. Zheng, J. Chen, W. Li, A Delaunay-based temporal coding model
for micro-expression recognition, in: Computer Vision—ACCV 2014 Workshops,
Springer, Singapore, 2014, pp. 698–711.

[28] Y.-H. Oh, A.C. Le Ngo, J. See, S.-T. Liong, R.C.-W. Phan, H.-C. Ling, Monogenic
Riesz wavelet representation for micro-expression recognition, in: IEEE
International Conference on Digital Signal Processing, 2015, pp. 1237–1241.

[29] X. Huang, S.-J. Wang, G. Zhao, M. Piteikainen, Facial micro-expression recognition
using spatiotemporal local binary pattern with integral projection, in: Proceedings
of the IEEE International Conference on Computer Vision Workshops, 2015, pp.
1–9.

[30] X. Huang, G. Zhao, X. Hong, W. Zheng, M. Pietikainen, Spontaneous facial micro-
expression analysis using spatiotemporal completed local quantized patterns,
Neurocomputing 175 (2016) 564–578.

[31] C.-C. Chang, C.-J. Lin, LIBSVM: a library for support vector machines, ACM Trans.
Intell. Syst. Technol. 2 (2011) 27:1–27:27.

[32] Z. Wen, W. Yin, A feasible method for optimization with orthogonality constraints,
Math. Program. 142 (1–2) (2013) 397–434.

[33] L. Zhong, Q. Liu, P. Yang, J. Huang, D.N. Metaxas, Learning multiscale active facial
patches for expression analysis, IEEE Trans. Cybern. 45 (8) (2015) 1499–1510.

[34] Z. Zhou, G. Zhao, Y. Guo, M. Pietikainen, An image-based visual speech animation
system, IEEE Trans. Circuits Syst. Video Technol. 22 (10) (2012) 1420–1432.

[35] A.C. Le Ngo, R.C.-W. Phan, J. See, Spontaneous subtle expression recognition:
imbalanced databases and solutions, in: Computer Vision—ACCV 2014, Springer,
Singapore, 2014, pp. 33–48.

[36] A.C. Le Ngo, J. See, R.C.-W. Phan, Sparsity in dynamics of spontaneous subtle
emotions: analysis & application, IEEE Trans. Affect. Comput. (2016). http://
dx.doi.org/10.1109/TAFFC.2016.2523996.

[37] J.-F. Hu W.-S. Zheng J. Lai J. Zhang Jointly learning heterogeneous features for
RGB-D activity recognition IEEE Trans. Pattern Anal. Mach. Intell. (Accepted)

Jiachi He received the B.S. degree from Jinan University, Guangzhou, China, in 2014.
He is currently pursuing the M.S. degree from Sun Yat-Sen University, Guangzhou,
China. His research interests include face and facial expression recognition.

Jian-Fang Hu received the PhD and B.S. degrees from the School of Mathematics, Sun
Yat-sen University, Guangzhou, China, in 2016 and 2010, respectively. His research
interests include human-object interaction modeling, 3D face modeling, and RGB-D
activity recognition. He has published several scientific papers in the international
journals and conferences including IEEE TPAMI, IEEE TCSVT, PR, ICCV, CVPR, and
ECCV.

Xi Lu received the B.S. Degree from Jilin University. He is currently pursuing the M.S.
degree under the supervision of Dr. W.-S Zheng. He is interested in computer vision and
machine learning.

Wei-Shi Zheng received the Ph.D. degree in Applied Mathematics from Sun Yat-Sen
University, in 2008. He is now a Professor at Sun Yat-sen University. He had been a
Postdoctoral Researcher on the EU FP7 SAMURAI Project at Queen Mary University of
London and an Associate Professor at Sun Yat-sen University after that. He has now
published more than 80 papers, including more than 50 publications in main journals
(TPAMI, TNN, TIP, TSMC-B, PR) and top conferences (ICCV, CVPR, IJCAI, AAAI). He
has joined the organisation of four tutorial presentations in ACCV 2012, ICPR 2012,
ICCV 2013 and CVPR 2015 along with other colleagues. His research interests include
person/object association and activity understanding in visual surveillance. He has
joined Microsoft Research Asia Young Faculty Visiting Programme. He is a Recipient of
Excellent Young Scientists Fund of the National Natural Science Foundation Of China,
and a recipient of Royal Society-Newton Advanced Fellowship.

J. He et al. Pattern Recognition 66 (2017) 44–52

52

http://refhub.elsevier.com/S0031-3203(16)30387-9/sbref13
http://refhub.elsevier.com/S0031-3203(16)30387-9/sbref13
http://refhub.elsevier.com/S0031-3203(16)30387-9/sbref13
http://refhub.elsevier.com/S0031-3203(16)30387-9/sbref14
http://refhub.elsevier.com/S0031-3203(16)30387-9/sbref14
http://refhub.elsevier.com/S0031-3203(16)30387-9/sbref15
http://refhub.elsevier.com/S0031-3203(16)30387-9/sbref15
http://refhub.elsevier.com/S0031-3203(16)30387-9/sbref16
http://refhub.elsevier.com/S0031-3203(16)30387-9/sbref16
http://refhub.elsevier.com/S0031-3203(16)30387-9/sbref17
http://refhub.elsevier.com/S0031-3203(16)30387-9/sbref17
http://dx.doi.org/10.1109/TAFFC.2016.2523996
http://dx.doi.org/10.1109/TAFFC.2016.2523996

	Multi-task mid-level feature learning for micro-expression recognition
	Introduction
	Related work
	Proposed approach
	Multi-task mid-level feature learning
	Optimization
	Recognition

	Experiments
	Experiments on non-mobile datasets
	Non-mobile datasets
	Implementation details
	Results and analysis

	Experiments on mobile dataset
	Mobile dataset
	Implementation details
	Results and analysis


	Conclusion
	Acknowledgment
	References




