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Jointly Learning Heterogeneous Features for
RGB-D Activity Recognition

Jian-Fang Hu, Wei-Shi Zheng, Jianhuang Lai, and Jianguo Zhang

Abstract—In this paper, we focus on heterogeneous features learning for RGB-D activity recognition. We find that features from
different channels (RGB, depth) could share some similar hidden structures, and then propose a joint learning model to simultaneously
explore the shared and feature-specific components as an instance of heterogeneous multi-task learning. The proposed model formed
in a unified framework is capable of: 1) jointly mining a set of subspaces with the same dimensionality to exploit latent shared features
across different feature channels, 2) meanwhile, quantifying the shared and feature-specific components of features in the subspaces,
and 3) transferring feature-specific intermediate transforms (i-transforms) for learning fusion of heterogeneous features across
datasets. To efficiently train the joint model, a three-step iterative optimization algorithm is proposed, followed by a simple inference
model. Extensive experimental results on four activity datasets have demonstrated the efficacy of the proposed method. A new RGB-D
activity dataset focusing on human-object interaction is further contributed, which presents more challenges for RGB-D activity

benchmarking.

Index Terms—heterogeneous features learning, RGB-D activity recognition, action recognition

1 INTRODUCTION

HE emergence of low-cost depth sensors (e.g., the Microsoft

Kinect) opens a new dimension to address the challenges of
human activity recognition. Compared to the conventional use of
RGB videos, the information from depth channel is insensitive to
illumination variations, invariant to color and texture changes, and
more importantly reliable for body silhouette and skeleton (human
posture) extraction [31]]. Bearing on these merits, it is believed that
the introduced depth information can greatly light up the research
of human activity analysis [|12], [24], [36].

Nevertheless, using depth alone has limitations in distinguish-
ing human activities and object context in challenging cases [39],
[55[]. Depth information (e.g. captured by existing Kinect device)
often suffers from low spatial resolution and low depth precision.
Moreover, the depth information is usually weak in capturing
the important appearance information, such as object color and
texture. These greatly limit the application of depth cameras on
recognizing complex human activities with object and interactions,
such as human-object interactions [10f], [SO] and fine grained
activities [16]], where the color appearance is also important.

In fact, there indeed exists a connection between the informa-
tion from RGB and depth channel, which could be unveiled after
certain transformation. In Figure |1} we show some visualization
results of the HOG features extracted from RGB image patches
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Fig. 1. Visualization of HOG features for two activity snapshots from
RGB (gray) channel and depth channel, respectively. As shown, the
HOG features from both channels of the same activity unveil similar
“gist” structure of that activity, e.g., the“gist” of looking down in reading,
and cup-to-mouth in drinking.

and the corresponding depth patches. Albeit extracted from dif-
ferent channels, these HOG features still look similar for each
of the activities. This suggests that depth channel is related to
the RGB channels and the heterogeneous features extracted from
different channels could share some (hidden) structures (e.g., the
gist of looking down in reading, and cup-to-mouth in drinking
as shown in Figure [I). However, despite the similarities in the
visualized HOG features, there still exist differences between dif-
ferent channels; for instance, the RGB channel mainly captures the
appearance (color) information, while the depth channel describes
the geometry (shape) cues in depth. This suggests they indeed have
their own characteristics in describing objects. Hence, learning
RGB and depth features together should not only extract shared
features that are robust and collaborative across feature channels
but also exploit features complementary between different chan-
nels. However, the majority of existing RGB-D action recognition
methods [5]], [20], [30] neither seek to jointly learn the features
extracted from RGB and depth channels simultaneously nor model
their underlying connections.

In order to effectively capture the connections among dif-



IEEE TRANS. ON PAMI

\
Xz

-
- SpeciﬁJ ‘

e Feature Extraction

Feature Extraction

Joint learning

Fig. 2. A graphic illustration of our joint learning framework. In this framework, all the i-transforms (e.g. four i-transforms, {©;};—1,2,3,4) shared
structures and specific structures are jointly learned for the purpose of recognition on RGB and Depth channels.

ferent heterogeneous features, we propose a joint heterogeneous
feature learning model for RGB-D activity recognition. In the
proposed model, we learn a set of subspaces (one subspace for
each heterogeneous feature type) such that features with different
dimensionality can be compared, and their shared and specific
components can be easily encoded. To achieve this, we introduce
a linear projection matrix called the intermediate transform (i-
transform) for each feature type, with the ability to control the
dimensionality of each subspace. We then formulate our subspaces
mining, shared and feature-specific components learning in the
framework of multi-task learning. Therefore, the optimal solution
for the i-transforms and shared-specific structures can be jointly
derived, with the principles illustrated in Figure |ZI Modeling in
such a way can significantly improve the intrinsic structures learn-
ing among the features of different types and transfer knowledge
between them. A three-step iterative optimization algorithm is pro-
posed to find the optimal solution with a guaranteed convergence.
We call the proposed model the joint heterogeneous features
learning (JOULE) model. Technically speaking, although efforts
of exploring both shared and specific structures for classification
are attempted in some of the existing multi-task learning methods
[11, (2, [6], [54], our proposed model differs in that these
methods assume that the features are homogeneous (the same
type, e.g. word frequencies for text categorization) with the same
dimensionality, thus not applicable for mining shared and feature-
specific structures among heterogeneous features.

RGB-D training data in a target set are not always sufficient,
in which case an auxiliary set is usually beneficial. To enable
our model to handle this case, we further propose a transfer
version of our JOULE, which is capable of effectively utilizing
an auxiliary set. We assume that during learning, features of the
same type from the auxiliary set and target set shares the same i-
transform and can be jointly learned. Therefore, the knowledge
transfer from auxiliary set to the target set could be achieved
by the shared linear i-transforms, and subsequently enhance the
recognition performance on the target set.

In addition to the aforementioned joint heterogeneous learning
model, we present a variant of temporal pyramid Fourier features
(TPF) developed in [39] so as to apply both the original feature
signal and its gradient to implicitly encode human motions, which
experimentally yield better performance than TPF on original
feature signal only. And, in order to test the generalization perfor-
mance of our method on 3D human-object interactions more ex-
tensively, we also contribute a new RGB-D activity dataset called

SYSU 3D HOI activity set, which consists of 12 activity classes
from 40 participants. Both this dataset and our codes will be avail-
able in |http://isee.sysu.edu.cn/~hujianfang/ProjectJOULE.html.
In summary, the main contributions of our work are three-
fold: 1) a novel joint heterogeneous feature learning framework
for RGB-D activity recognition, which is capable of learning
hidden connections among heterogeneous features extracted from
sequences of different channels; 2) a transfer RGB-D feature
learning framework leveraging auxiliary datasets; 3) a new dataset
collected for RGB-D human-object interaction recognition.

2 RELATED WORK

Recently, recognizing human activities from low cost depth cam-
eras has become a more and more important research direction
with many applications including digital surveillance, virtual real-
ity, human-computer interaction and Xbox One games etc. There
are two emerging branches in activity recognition research: 1)
depth-based representation, and 2) RGB-D based development. In
this section, in addition to reviewing existing works of recognizing
human activities captured by depth cameras, we further briefly
describe the literature of learning heterogeneous features for
generic visual recognition purpose, which is also relevant to ours.

Depth-based representation. On building depth-based represen-
tation, a straightforward way is to generalize the descriptors spe-
cially designed for RGB channel to depth channel for describing
the shape geometry [18]], [59]. For instance, Oreifej and Liu
[28] extended the histogram of gradient (HOG) descriptor by
constructing a histogram to capture the distribution of surface
normal orientation in 4D space. Yang et al. [48] suggested that
concatenating the normal vectors within a spatiotemporal depth
sub-volume together can capture more informative geometric
cues. [38|] sought to explicitly encode the geometric cues by
computing the number of points that follow in each sampled
sub-volume. Lu et al. [21] directly investigated the relationship
between sampled pixels in both actor and background regions.
Most of these methods attempted to mine some discriminative
local patterns for representing human activities without consider-
ing the holistic human poses, which has been demonstrated to be
critical for describing complex human activities involving human-
object interactions [[10], [41]], [50]. Due to the development of
realtime human skeleton (3D posture) tracker from single depth
image [31], human motions can be effectively captured by the
positional dynamics of each individual skeletal joint [[7], [13]], [23]],
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[44]] or the relationship of joint pairs [22], [27], [47] or even their
combination [[19]], [52], [58]]. Vemulapalli et al. [[34] exploited 3D
relative geometries among different body parts in the Lie algebra.
In addition to the skeleton motions, local depth patterns are also
found to be useful for discriminating complex activities with
human-object interactions [39]], [41]. Specifically, Wei et al. [41]
presented a model to explicitly study the interactions of human
and object. Koppula et al. [15]] simultaneously modeled the human
activities and object affordances in RGB-D videos with a structural
support vector machine.

RGB-D based development. Depth does not necessarily mean
discriminant. Albeit invariant to lighting changes, it does lose
some useful information such as texture context, which is critical
to distinguish some activities involving human-object interactions.
Recent works also showed that the fusion of the RGB and depth
sequences can largely improve the recognition of activities with
object interactions [5]], [15], [16[, [20]], [30], [41], [51], [55]. For
instance, Zhao et al. [55]] combined interest point based descriptors
extracted from RGB and depth sequences together for recognition.
Liu and Shao [20] simultaneously fused the RGB and depth
information using a deep architecture; Zhu et al. [58|] employed
a set of random forests to fuse spatiotemporal and human key
joints (skeleton); Shahroudy et al. [30] selected to fuse the RGB
information and skeleton cues using a structured sparsity method;
[I5] simply concatenated the skeleton features and silhouette-based
features together for classification. However, these existing works
treated the depth channel and RGB channel independently without
considering their underlying connections (structures). Thus their
recognition performance would often be hindered by the ignored
structure learning. In this context, our model aims to jointly
learn the hidden shared and specific structures among different
heterogeneous features extracted from depth and color sensors,
respectively. This leads to a better overall performance in the
RGB-D activity recognition.

Shared-specific structures learning for activity recognition.
Learning shared-specific structures for activity recognition is
found to be beneficial. Shared-specific structures are defined and
mined from different perspectives and for different purposes in
the literature [8]], [32], [37]l, [40], [45], [S7]. For example, some
researchers intended to exploit their discriminative shared-specific
features by constructing shared and class-specific dictionaries []],
[37] or learning local motion patterns that are shared by different
activities [57]; and recently, this idea was also introduced for
recognizing activities captured from different views in [32]f], [45]].
However, these methods assume that they can directly align dif-
ferent feature channels or extract shared and specific information
without any pre-learning. Our proposed model differs from them
significantly, since an i-transform is introduced for each feature
channel in order to make the shared-specific structures learning
be performed in a more suitable latent space. And this is highly
demanded when processing heterogeneous features with different
number of dimensions. Although the CCA in [3] is mostly close
to ours, it is not for discriminative learning, and moreover it
assumes that the specific component for each feature channel is
a Gaussian distribution (or Gaussian noise) and this assumption
may not hold and thus not be sufficient to describe the specific
information of each channel. Our experimental results show that
our JOULE model performs better than an advanced variant of
CCA (MPCCA) in [3].

Heterogeneous feature learning for visual recognition. Our
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Fig. 3. Two signals (left) and their TPF features (middle and right). The
TPF features of the gradient signal (right) is more distinctive than the
TPF of the original signal (middle) when differentiating the input signals.

work is also relevant to heterogeneous features learning methods
[O], 146[, [53]], which were mainly developed for fusing features
in generic visual recognition tasks with different assumptions.
Intuitively, one can develop a fusion model by concatenating
features together in a standard multi-task framework without
considering intrinsic connections (shared or specific structures)
among features [4]], [5], [58]. For instance, Cao et al. [4] built a
heterogeneous feature machine (HFM) to integrate heterogeneous
features with different types and different metrics for visual
recognition. However, their performance is often limited by the ig-
nored hidden connections modeling. Alternatively, some methods
assume that different heterogeneous features share in the primitive
feature space, a common subspace or even a common subset of
input primitive features (without explicitly considering specific
structures of each feature type) [9], [14], [46], [S3]l. For example,
the work of [46] assumes that different tasks share a common set
of input variables (i.e., a common set of input features). However,
this is not the case for our RGB-D based activity recognition, since
our features are of different types with different dimensionality.
Among all these heterogeneous feature learning methods, the
multi-task discriminant analysis (MTDA) [53] is the closest to
ours. However, our model is notably different from it, even though
both models unitize the concept of subspaces. MTDA assumes
that there is a shared common space after projecting each type
of features separately without explicitly considering the feature-
specific structures. In contrast, we relax this assumption and as-
sume that heterogeneous features are only partially related, which
makes our method more applicable for describing the complex
connections (shared and specific structures) among heterogeneous
features extracted from RGB, depth and skeleton channels with
large variations and thus obtain better recognition accuracy. In
this context, we cast our model as a Frobenious-regularized least-
square problem, with both prediction and reconstruction loss
considered in a unified framework. This consequently leads to
a better overall performance of our model in the experiments. It is
worth noting that Wang et al. very recently extended the idea of
jointly learning and sharing heterogeneous features and obtained
the state of the art results for RGB-D object recognition [35].

A preliminary version of this work was reported in [11]. In
this paper, we have significantly extended our jointly learning
framework in five aspects: 1) a new parameter was introduced
to explicitly control the tradeoff between the mined shared and
specific structures in the JOULE model; and more importantly
2) a new transfer learning based joint learning model was pro-
posed by employing an auxiliary set to facilitate the feature
learning on the target set; and 3) we have provided a rigorous
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and theoretical analysis about the convergence of the developed
three-step optimization method in the supplementary file; and
4) we conducted a new group of experiments and added more
comparisons on one additional dataset consisting of a set of
complex composed activities [19]]; 5) we have added extensive
test and deeper analysis, including the comparison with additional
methods (e.g., the heterogeneous feature machine [4])), the effect
of regularization parameters, the influence of the newly introduced
control parameter and the evaluation of Transfer-JOULE.

3 HETEROGENEOUS FEATURES CONSTRUCTION

We describe here in detail three descriptors utilized in our model:
dynamic skeleton (DS) features, dynamic color pattern (DCP) and
dynamic depth pattern (DDP). Each descriptor consists of two
components: temporal pyramid Fourier features (TPF) from: 1) the
original feature signal and ii) the corresponding gradient signal,
respectively. These six components form our heterogeneous fea-
ture set.

The use of TPF features is motivated from the work of Wang
et al. [39]. Following their practice, we repeatedly partition the
feature signal (e.g., temporal skeleton features in [39]]) into 1,
2 and 4 sub-segments along the temporal dimension, and then
concatenate the low frequency Fourier coefficients extracted from
each segment.

In addition to computing TPF from the original feature series
as in [39], we also calculate TPF from the temporal gradient signal
of the original feature series. This proposed extension is motivated
from the following observations: 1) the gradient could, to a certain
extent, implicitly encode the velocity change of the motion in
activity; 2) it could also capture the variation of pixel values, which
helps to describe the interactions between human and objects. For
instance, the rapid change of the pixel values near a mouth may
indicate that some objects are coming near and interacting with
the mouth (e.g., drinking). As illustrated in Figure 3] the temporal
pyramid Fourier features of the gradient signal may capture more
discriminative cues.

Dynamic Skeleton. Human pose and its dynamics are one of the
key elements in activities [10]], [49]]. Here we extract the pose
dynamics using skeleton information from the depth sequences for
our activity modeling. Specifically, for each video sequence, the
real-time skeleton tracker [31] is used to extract the trajectories
of human key joints (skeleton). Following the implementations
in [39]], we then compute the relative positions between each
pair of trajectories and concatenate them together. The temporal
pyramid Fourier features are further extracted from the relative
positions as well as its gradient version to represent the dynamic
pose information. It was noted that the sequence length may vary
from video to video. Relative positions of each trajectory pair
are interpolated by cubic spine to have the same length before
computing the Fourier features, which ensures that the frequency
locations of computed TPF features are properly calibrated and
aligned before comparison.

Dynamic Color and Depth Pattern. Using the 3D joint positions
without local appearance is often insufficient to characterize com-
plex activities including human-object interactions. To compensate
this, the local appearance features (both in RGB and depth) are
extracted around each human joint, which could capture charac-
teristic shape, texture and manipulated object’s appearance during
interactions. Specifically, for each joint in a trajectory, we first
compute the HOG feature in its local region for all the associated
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frames. All of the HOG features of one joint trajectory constitute
a temporal HOG tube. Then for the trajectory of each bin of the
vectorized HOG feature along the time dimension, we extract the
TPF features including the original and gradient version, and then
concatenate them together to form our final descriptor. The HOG-
TPF extracted from RGB sequence and depth sequence form our
dynamic color pattern (DCP) and dynamic depth pattern (DDP),
respectively.

4 HETEROGENEOUS FEATURE LEARNING

Different features may share some similar structural components
as illustrated in Figure To effectively quantify the shared
structures among different features with varied dimensions, we
introduce a set of subspaces to represent these features so that
they can be compared directly. These subspaces are learned by
balancing the trade-off between the shared structures and feature-
specific cues. In the following, we define our notations first, and
then present a detailed description of the proposed joint learning
model.

41

Suppose there are S types of heterogeneous features to learn
together. For each feature type i (i = 1,...,.5), let X; € R%xn
denote the feature matrix of n; training instances, where d; repre-
sents the feature dimensionality. We attempt to learn a projection
matrix ®; for each X; to project it into a subspace spanned by
the columns of ®;. Here for simplicity and clarity, we call this
projection matrix ®; as intermediate transform (i-transform).

In total, we have S subspaces, which are set to have the
same dimensionality such that both the shared and feature-specific
structures across different feature types can be easily quantified in
the projected feature space by two weight matrices Wy, W; €
RM*L where M is the dimensionality of the subspace, and
usually M << d;. L indicates the number of activity classes.
We use Y; € {—1,L — 1}1>" to represent the labels of all the
training samples for the i*" feature. Each column of Y is defined
as a zero-mean vector [—1,...,—1, L — 1, —1..., —1]T. Note that
all of the Y ;s are label vectors and they are the same for different
types of features. For a sample with class label [ (I = 1,...L),
the [*" entry of the zero-mean vector equals to a constant positive
number L — 1.

Now, we formulate our joint heterogeneous features learning
(JOULE) model in a multi-task learning framework with orthogo-
nality constraints considered as follows:

The Joint Learning Model

R1(Wo,{W:)},{©:})

s
min AW + (1 - NW)TO] X, - Y7
wo,{wq,},{@i};(”( o+ ( YWi) %
R>({©:}) R3(Wo,{W:)})

e
+7X; — ©:;0] X% + §||W0H% + BIIWill%)

5t.0'0,=1,i=1,2,..8
9]

Our heterogeneous feature learning model intends to jointly
learn the subspaces (encoded by i-transform {@;}), shared
and feature-specific components (represented by Wj and
{W,}, respectively) in a unified framework. We cast it as
a least-square problem with both prediction (the first term
R1(Wo,{W;},{©,})) and reconstruction loss (the second term
R2({©,})) as well as the regularization term R3(Wo, {W;})
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considered together. In the following, we discuss these terms in
detail one by one.

Prediction loss term R;(Wy,{W,},{©,}). This item is de-
fined as (|[(A\Wq + (1 — A)W)TOTX; — Y;||%) such that
the empirical risk of each feature can be minimized, and thus
it would guide our shared-specific structures learning for the
purpose of better recognition. We formulate the prediction loss
term in the multi-task learning framework in order to jointly
learn the shared and specific structures across different features
and classes together. Here, we model the structures in the weight
space such that the shared-specific structures can be mined in a
discriminative framework. Specifically, we use a weight matrix
W, that is owned jointly by different features to encode the
shared structures. We also employ a matrix W, only privately
possessed by the i*" feature to capture its specific component.
Discovering the shared and specific structures in a joint learning
model is essential for connecting and transferring information
among different tasks. Therefore our method could generalize well
to the case of knowledge transfer from some auxiliary data to
facilitate the model learning, which will be further elaborated in
Section [5| Here, we utilize parameter A € [0, 1] to control the
tradeoff between the mined shared and specific structures. Larger
A leads to a larger weight on the shared structure and smaller
weight on the specific structures.

Reconstruction loss term R2({©,}). This term is defined as
the reconstruction loss term to ensure that a good reconstruction
(controlled by the parameter ) can be derived from the learned
subspace using i-transform during optimization, which leads to a
meaningful solution of the model.

To facilitate the formulation of reconstruction loss term,
an orthogonal constraint ®7@®; = I was imposed on the i-
transforms. The purposes are 1) to reduce the redundancy to
certain extent while preserving data information; and more im-
portantly, 2) to establish a feasible link between points in the
original and projected feature spaces. For instance, given a point
y = O;7x in the projected feature space (via ®;”), its corre-
sponding point in the original feature space is given by ®;y; and
subsequently, 3) to simplify the reconstruction loss term (shown
as follows). Therefore, we can formulate the reconstruction loss

To simplify this term further:

1X; — 0,07 X%
=tr(X] (I1-©,0])(I-0,0])X,)
=tr(XT(1- ©,01)X,)
=tr(XI'X;) - tr(X7'©,07'X;)
=[IXi[|F — 107 X|%

Here, ¢r(-) represents a matrix trace operator. By discarding the
constant term || X; ||%., the reconstruction term can be reformulated
as

Ry({©;}) = =10 X;||3- )

Regularization term R3(Wo, {W,}). The regularization term
2 ||Wol|% + BI/W;||%. a Frobenius Norm on matrices W and
‘W, parameterized by o and 8 (S is a constant, the number of
heterogeneous features), aims to achieve a reliable generalization
of our joint learning model. The two parameters can also control
the values of the mined shared and specific components. Larger «
leads to a smaller shared component and larger (3 results in smaller
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specific components. Integrating this regularization term can also
help deriving a closed form solution of Wy and W during the
iterative optimization presented later.

By substituting all the terms into the objective function, our
problem can be rewritten as:

S (lOWo + (1= WW)Tel'X; - Y43
=1,...,8

—OFXil[2) + [ Wolz+8 > [Will:
i=1,...,8

min
WO:{Wi}v{ei}i

5t.0T@; =1,i=1,2,..5
3
4.2 Three-step lterative Optimization
We solve our joint learning model by a coordinate descent algo-
rithm that optimizes over one set of the parameters at each step
while keeping the others fixed. The optimization is achieved by
iterating the following three steps, which in a row monotonically
decreases the objective function in Formula (2) with a guaranteed
convergence to a local optimal solution.
STEP 1. Fixing the coefficients W; and ©;, minimize the
following function J; over W:
S
miny_[|(AWo + (1 = YW) " O X; = Yil[f + af[Wo 7
i=1

“)
This is an unconstrained minimization problem, whose so-
lution can be given by Wi = X\X\2Y, ©IX;XTO, +
al) 1Y (O X (YT — (1 - M)XTO,W))).
We also note that the second derivative of the objective
function J; can be given by

0%,
W2

s

=2\ OX;X]®; +al) = 0

i=1
where >~ 0 indicates positive semidefinite. Hence, the derived
optimal solution W§ would decrease the value of the objective
function.
STEP 2. Fixing the coefficients W and ®;, optimize W ;:

s
min

Fan, AW + (1 = NW)T O X; = Y,[|7 + BI|Wil %

i=1
The above problem can be decomposed into S independent
Frobenius-regularized unconstrained least square problems:

min [[(AWo + (1 = YW3) "0 X; = YillE + BIWill% (5)

By setting the first order derivatives of the above function (3) to
zero, we can obtain the optimal solution: W} = (1 — X)((1 —
N2OTX,XTO,; + BI)1OT X (Y] — AXT©®,;W). Similar
to STEP 1, we can easily derive the second derivative as
02 Jy
IW?
Here, J» indicates the objective function in Formula (5). Hence,
it is convex with respect to W, which indicates that the updating
scheme at STEP 2 would decrease the value of our objective
function in Formula (3)) and minimize the function.
STEP 3. Finally, we fix Wy, W; and optimize ©;:

S
min Y _(|(AWo + (1 = )W) " ©7 X; — Yil[f — 707 Xil|%)
ti=1

=2((1-N?0TX;XT@,; + 1) = 0

54.070;,=1,i=1,2,..5
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Note that all the ®;s in the above system are independent. Hence,
we turn to solving the following S independent subproblems:

min||(AWo + (1 = )Wi)"O7X; — Y[ — 11|07 X%

51070, =1
(6)

It is not easy to solve the problem in Formula (6) directly in the
Euclidean space due to the non-convex constraints. We optimize
each subproblem with a gradient based method on the Stiefel
manifold where the approximate solution is required to satisfy
the orthogonality constraint in each iteration [42]]. Specifically,
given the t step estimator of ®;(t), we first define a skew-
symmetric matrix V = GO, (1) — ©,(t)G”, where G is the
gradient of the objective function in the Euclidean space and it can
be indicated by G = X; (AW + (1 = \)W,;)70;(t)TX; —
Y)T(AW + (1 = M)W)T — 29X, XT©,(t). Then the new
updated point can be determined by the Grank-Nicolson-like
scheme ©;(t+1) = (I+ZV) 1 (I—-ZV)O;(t), where 7 is the
iteration step size and an optimal step size would be determined
by a line search method within each iteration. We summarize
the optimization for the objective function in Formula @) in
Algorithm [I]

Here, we would like to point out that the employed updating
scheme at STEP 3 still makes the objective function decrease. We
provide our proof in the supplementary file based on some tricks
provided in [42]].

As discussed above, all the three steps in our optimization
method would decrease the objective function in our JOULE
model. Since

—107 X% = ~IIXil7 + 1Xi — ©:07 X5 > ~||1Xi%,

the objective function in Formula is lower bounded when
a, 8,7 > 0. Therefore, the proposed optimization algorithm can
converge to a minimum in practice.

4.3 Inference

Given the model parameters W, W, and ©;, the inference is to
predict the best activity label for a new sample with heterogeneous
features x;,7 = 1, 2, ...,.S. We first define two confidence vectors
to encode the shared and specified components of x; as

P TaT L
izharcd :)‘WO 91 x;, €R

7
(1-MNWlelx; ¢ R* @

Cipeci fied —
Here, A is the model parameter used to balance the contribution
of the shared and specific structures during training. Specifically,
when A = 0, a model without forming any shared components
is formulated, while setting A = 1 formulates a baseline without
specific structures explored. The effect of A will be discussed in
the experimental section.

Inspired by the construction of augmented features in [17]],
here we treat all the shared and specific confidence vectors as
higher-level augmented features and concatenate them together to
form our final representation. To speed up our testing, a linear
SVM classifier was first trained on the augmented features from
the training set and then subsequently used to make the final
decision for a test image.

6

Algorithm 1 Optimization for the objective function in Formula
(B). Terms objUpdate and objUpdateln; indicate the value
variation of the objective function of Formula and the it"
subproblem (6) at STEP 3, respectively.
Require:
Input: M7 «, /87 7> Aa Yi7 Xu
Initialization: Wy, W, € RMXL are random matrices, ©®; is set
as the top M principal components of X;, IterOut = 1;
Ensure:
1: while objUpdate > thr and IterOut < maxIter do
2 Wo+ (MY, 0 X XTO; +al)™
3 >, OX(Y! - (1 - NXTe,W,);
4 W, « (01 - Nerx,x’e; + p'erx,(y! -
MXTO; W), i=1,2,...,5;

5. fori=1;1 < S;i+ + do

6: IterIn = 1,0bjUpdateln; = 1 + thr;

7: while objUpdateln; > thr and IterIn < 50 do

8: G+ X;(AWWo+ (1 = OWH)TOTX, — Y, ) (AW, +
1-2NW)T — 29X, X7 ©;

9: V + GO - e,GT

10: O+ I+ZV) 'I1-3V)O;;

11: IterIn++;

12: end while

13:  end for

14: IterOut++;
15: end while
16: return Wy, W;, ©;

5 TRANSFER JOINT HETEROGENEOUS FEATURE
LEARNING

It is challenging to learn a set of reliable i-transforms and shared-
specific structures from a target set (a set where testing is carried
out) with limited training samples. This situation could be mit-
igated by using some non-target sets (widely known as transfer
learning). Thanks to the nature of joint learning, our JOULE
model could generalize well to this case. Here, we introduce
a transfer learning model to enhance our feature learning on
the target set by the assistance of learning on other non-target
datasets [29], [56].

Specially, we utilize samples from a non-target set as our
auxiliary set to assist our feature learning on the target set and
train our model on both sets in one framework. For clarity, in
the following, we will use auxiliary set to denote non-target set.
Let Wo, {W,} (and Wy, {W,}) be the shared and specific
structures to be mined in the target (and auxiliary) set, respectively.
For transferring the learning from an auxiliary set to a target set,
we assume that the i-transforms {@;} can be shared for the same
type of features across datasets, so that the data in the auxiliary set
can provide a strong prior for our feature learning on the target set.
Therefore, the feature learning on the target and auxiliary sets are
connected by {©;} and they can be optimized jointly. Let {X¢},
{Y2} (and {X!},{Y!}) denote the feature representation and
label information of the auxiliary set (and the training samples
from target set). Our transfer joint learning model is formulated
as:

wltin e FUXi} (Y} Wo, (Wi}, {04))

{©;}, W,,{W;} Learned on the training samples of target set

Learned on the auxiliary set

+ (1 - p) F({Xf’}, {Yg}aWOa {Wz}v {91})
5t.0T@; =1,i=1,2,..5

®)
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Here, function F'(-) is the objective function of our JOULE model
in the form of 7 (R (-) + Ra(-) + Rs(-)). The first F(-)
function is defined on the training samples from the target set
and the second F'(-) function on the auxiliary sets. We use the
parameter p € [0, 1] to control the effect of the auxiliary set.
Specifically in the case of p = 0, the i-transforms {©;} are solely
determined by the feature learning in the auxiliary set.

Similar to JOULE, we develop a three-step optimization algo-
rithm to solve problem (8)), i.e., iteratively optimizing the objective
function over one set of parameters with the others fixed (e.g., at
one step, we optimize over the shared components W and W§
by fixing the others.). The only difference is that the i-transforms
{©®,} are optimized simultaneously on both target and auxiliary
datasets. The gradient of the objective function in problem (8)) with

respect to @; can be given by pBF({XE}’{Yz}ggo’{wi}’{@i}) +

(I-p) ZileSate s g’go’{wl}’{ei}) , which is a combination of
gradients in the target set and auxiliary set. It is easy to see that in
the extreme cases when p = 0 (or p = 1), the i-transforms {©;}
will be derived solely from the auxiliary set (or the target set).
After all the parameters are learned, the inference step is actually
identical to the JOULE model described in Section and the
corresponding decisions are made on the testing samples from the
target set using the learned parameters: Wo, {W;}, {©;}.

6 EXPERIMENTS

We evaluated our methods extensively on three benchmark 3D
activity datasets and one newly collected human-object interaction
dataset. In the following, we first briefly introduce the implemen-
tation details, and then describe the experiments and results.

6.1 Implementation Details

The model parameters a, 3,7, A were fixed as 10~1, 107!, 1 and
%, respectively through all our experiments. The dimensionality
M of the subspace is specified empirically for each dataset.
Intuitively, it is suggested to be smaller than the number of training
samples. We will investigate its effect in detail in Section [6.6]
When computing DCP and DDP features, one image patch of size
60 x 60 was extracted around each joint position in a trajectory
in order to capture the context cues. A set of image patches were
extracted for each trajectory. For computational efficiency, all the
image patches were then resized to 32 x 32 and the cell size of
HOG was set to 8.

6.2 MSR Daily Activity Dataset

We tested the proposed methods on the MSR Daily Activity
dataset [39]], which has become a standard set for studying 3D
human activities. It contains 320 video clips of 16 different
activities (drinking, eating, walking, cheering up, reading book,
etc) performed by 10 participants in two different poses, namely
sitting and standing. Most of the activities involve human-object
interactions (see Table ). We followed the same experimental
settings as in other related works, where half of the participants
were used for training and the rest for testing.

To evaluate our proposed JOULE model, we compare with
a baseline implementation that fuses different features together
with a standard SVM classifier, MTDA [53]] and HFM [4]. We
denote these baselines as “SVM”, MTDA, and HFM. In addition,
we also compare with the MPCCA model presented in [3],
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which intends to discover shared-specific structures in a non-
discriminative learning framework. We also present the recently
reported results of other 10 different methods for comparison. The
dimensionality M for our JOULE model was set to 40.

Results. Table |1| shows the results and comparison. Our method
obtains an accuracy of 95%, which exceeds most of the latest
reported results and is comparable with the state-of-the-art [21]].
However, we would like to point out that Lu et al. [21]] requires
a clear pixel-wise segmentation of the actor, background and
occlusion objects, which may render it unsuitable for activi-
ties with more complex interactions and cluttered background.
Compared to the closely related methods focusing on feature
fusion using deep model [20] and structured sparse model [30],
our model outperforms both of them by a considerable margin
(more than 9.4%), which implies our feature learning system is
superior to other RGB-D activity fusion systems. Compared with
the baseline of SVM, the performance gain (95% vs. 90%) by
our JOULE model demonstrates the benefits of the shared and
specific components modeling. Our JOULE outperforms MTDA
and HFM considerably by 4.4% and 10.6% using exactly the same
set of features. It is worth noting that MTDA did not seek to
learning feature-specific structures. The superior performance of
our JOULE over MTDA indicates that modeling feature-specific
structures is essential for capturing the complex connections
among the employed heterogeneous features. It is also observed
that HFM performed worse than the baseline of SVM. Bear in
mind that, in order to compute the similarity of two training
instances, HFM needs to manually select a proper kernel for each
feature type, which is a big challenge in the presence of noisy het-
erogeneous features (e.g., part of our DCP features were extracted
from the background pixels). Therefore, the resulting similarity
matrix could be unreliable and HFM might not cope with our
features well. In our implementation of HFM, we used both RBF
kernel and linear kernel to measure the similarity between two
features, which was suggested in [4]. In contrast, the SVM will
adaptively learn a set of weights to encode the contribution of each
feature dimension in a discriminative framework and thus can be
more applicable in our RGB-D activity recognition. The MPCCA
is an approach close to the proposed JOULE, but it performed
clearly inferior to JOULE. One of the reasons is that the Gaussian
noise assumption in MPCCA is not sufficient to describe the
specific information of each feature channel. Moreover, JOULE
also benefited from learning discriminant shared-specific structure.

The confusion matrix of the results by our JOULE model is
shown in Figure |4} It can be seen that our model achieves perfect
classification results on 10 classes. The larger error is due to the
mis-classification of the activity of writing on a paper as reading
book, which may be largely attributed to high similarity between
the object and activity contexts in these two activities.

6.3 Cornell Activity Dataset 60 (CAD 60)

This public dataset consists of 68 video clips captured by Mi-
crosoft Kinect device [33]]. Four actors were asked to perform
13 specific activities (still, talking on the phone, and etc.) and
one random activity in 5 different environments: office, kitchen,
bedroom, bath room, and living room. We followed the same
experimental setting in [39] by adopting the leave-one-person-out
cross validation for each environment, which ensures that person
participating in the training cannot be seen in the testing. The final
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TABLE 1
Comparison on the MSR Daily Activity dataset.

[ [Method [Accuracy(%))
Dynamic Temporal Warping [25]]|54
3D Joints and LOP Fourier [39] |78
HON4D [128] 80.00
SSFF [30] 81.9

Reported  |Ipeep Model (RGGP) [20]] 85.6
Results Actionlet Ensemble [39] 85.75
Super Normal [48] 86.25
Bilinear [[14] 86.88
DCSF+Joint [43] 88.2
LFF+IFV [51] 91.1
Group Sparsity [22] 95
Range Sample [21] 95.6
HFM [4] 84.38
SVM 90
Our Results |\ ipcca 3] 90.62
MTDA [53] 90.62
JOULE 95
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Fig. 4. Confusion matrix of JOULE on MSR Daily dataset.

accuracy was calculated by averaging the accuracies of all the
possible splits (totally 20 in this set).

Our methods are compared with the results reported in the
state-of-the-art [39]]. We also ran the released code of HON4D on
this set and listed the recognition results as “Reported Results” in
Table [2] Since there is no default parameter settings suggested by
the author on this set, we report the best results by varying their
parameters in a wide range. Similar to MSR Daily set, we also
highlight the benefits of using JOULE model by comparing with
the baseline SVM, MTDA and HFM. Here, the dimensionality M
of W, (and W) is set as 4 on this dataset.

Results. The results and comparison are shown in Table 2] Our
method achieves an accuracy of 84.1%, which significantly out-
performs the state-of-the-art result [39] by a large margin (9.4%).
It is worth noting that most of our baseline implementations in-
cluding the simple combination of our heterogeneous features with
a standard SVM classifier can achieve a performance comparable
to the state-of-the-art method with carefully designed classifiers,
which proves that our feature is superior to that developed in [39].
Especially, by considering the shared and specific components,

TABLE 2
Comparison on the CAD 60 dataset.

[ [Method [Accuracy(%)]

STIP [59] 62.5
Order Sparse Coding [26]|65.3
Reported Object Affordance [15] [71.4
Results HONA4D [28] 72.7
Actionlet Ensemble [39] (74.7
HEM [4] 727

SVM 75
Our Results MPCCA [3] 791
MTDA [53] 82.6
JOULE 84.1
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Fig. 5. Confusion matrix of JOULE on CAD 60 set.

our model (JOULE) obtains a gain of 9.1% compared with the
fusion methods using standard SVM classifier without explicitly
modeling shared and specific components (84.1% vs. 75%), and
a significant gain of 11.4% compared with HFM. In addition, our
JOULE works better than MTDA on CAD 60 set with a smaller
performance gain than on the MSR Daily set.

The confusion matrix of the results by our JOULE model
is presented in Figure [5] It can be seen that our model can
distinguish well the five activities of rinsing mouth with water,
wearing contact lenses, cooking(chopping), working on computer
and random activities, which demonstrates that our model can
effectively capture the interactions between human and the manip-
ulated object. It can also be observed that the activities of talking
on couch and relaxing on couch are often confused by our model,
mainly due to the inaccurate human skeletons captured by the
Kinect camera.

6.4 Composable Activities Dataset

This dataset consists of 693 video clips performed by 14 par-
ticipants [ﬂ Each participant was asked to perform 16 complex
activities (Walk while calling with hands, Walk while hand waving,
and etc.) several times. All the considered activities in this set
are composed by a number of mid-level actions such as walking,
waving hand, reading etc., and about 75% of them contain human-
object interactions. For a fair comparison, we followed exactly the

1. http://web.ing.puc.cl/~ialillo/ActionsCVPR2014/
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TABLE 3
Comparison on the Composable Activities dataset.
l [Method [Accuracy(%))]
Reported HON4D [28]] 83.29
Results Hierarchical Model [[19]){85.7

HEM [4] 84.44

SVM 88.32

Our Results MPCCA [3] 00.76
MTDA [53] 92.07

JOULE 94.24

same leave-one-subject-out experimental setting as in [[19]], where
each time the activity samples performed by 13 participants were
all used to train a model and the rest were used for testing. And
finally, the average accuracies were computed and reported.

Here, we directly compare the performance of our method
with the results reported in the state-of-the-art [19]. Meanwhile,
we also ran the released code of HON4D by the author on this set,
and again report the best results by varying their parameters in a
wide range. In addition, we further compared the JOULE with the
baseline “SVM”, MTDA and HFM. In this experiment, we set the
dimensionality M of the subspace as 100. Its influence would be
further discussed in Section

Results. The results and comparison are shown in Table [3| As
shown, simply feeding the concatenation of all primal heteroge-
neous features into a SVM classifier without explicitly considering
their hidden structures and connections achieves an accuracy of
88.32% and outperforms the state-of-the-art [19] by a margin of
2.6%. As expected, the performance gap becomes larger (> 5.9%)
when our proposed JOULE model is employed to explicitly model
the shared and specific structures among different heterogeneous
features. Similar to the observations on other datasets, our JOULE
outperforms MTDA by over 2% on the Composed Activities
Datasets, which once again experimentally confirms that the
learning of feature-specific structures is beneficial.

By closely examining the confusion matrix in Figure [6] we
can observe that JOULE achieves perfect recognition performance
on most of the activities. The most challenging activities for our
model are “Walk while calling with hands” and “Walk while hand
waving”, which are often confused with each other. This is not
surprising, because these two activities contain highly similar
motions, and the subtle difference between them is that activity
“calling with hands” often involves a motion of moving fingers
or hands back and forth, while “waving hands” refers to a slight
hand movement of moving between left and right. However, it is
quite challenging to capture these tiny differences by the prevailing
Kinect cameras available in the market with standard specification
of spatial and depth resolution.

6.5 SYSU 3D Human-Object Interaction Set

Dataset Description. We have collected a new RGB-D activity
dataset focusing on human-object interactions to further evaluate
all methods. We name this as SYSU 3D Human-Object Interaction
(HOI) dataset. For building this set, 40 participants were asked
to perform 12 different activities freely. For each activity, each
participant manipulates one of the six different objects: phone,
chair, bag, wallet, mop and besom. Therefore, there are totally 480
video clips collected in this set. The contained activity samples
have different durations, ranging from 1.9s to 21s. For each video
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Fig. 6. Confusion matrix of JOULE on Composable Activities dataset.

TABLE 4
Comparison of 3D HOI dataset with relevant datasets. Cla. denotes
class, and Sub. for subject, Vid for video, HOI Ra. for HOI ratio among
the dataset.

[ DataSet | Data [Cla. No.[Sub. NoJVid. No.JHOI Ra.|
CAD 60 [33] RGB-D| 14 4 68 85.7%
MSRDaily [39] [RGB-D| 16 10 320 |87.5%
MSRAction [[18] [ Depth | 20 10 567 |<70%
Comp. Activities [19][RGB-D| 16 14 693 75%
Multiview [41] |[RGB-D 8 8 3815 | 100%
SYSU 3D HOI [RGB-D| 12 40 480 100%

clip, the corresponding RGB frames, depth sequence and skeleton
data were captured by a Kinect camera. Activity samples are
shown in Figure We highlight the differences between our
3D HOI set and relevant existing sets in Table ] Compared to
those datasets (MSRDaily, CAD 60, MSRAction, Composable
Activities dataset, and Multiview set), our dataset presents new
challenges: 1) the involved motions and the manipulated objects’
appearance are highly similar among some activities; for instance,
the manipulated objects besom and mop involved in the activities
mopping and sweeping are highly similar; 2) the number of
participants is three times (or even larger than in most cases)
that of existing ones, so that more inter-subject variations could
be observed for the same type of activities due to the different
characteristics of participants.

Evaluation Protocol. We tested all the compared methods in two
different settings. In the first setting (setting-1), for each activity
class, we selected half of the samples for training and the rest
for testing. In the second setting (setting-2), video sequences
performed by half of the participants were used to learn model
parameters and the rest for testing, where there is no overlap
of participants between the training and test set. This is a cross-
subject setting. For each setting, we report the mean accuracy and
standard deviation of the results over 30 random splits.

Baselines. Similar to that on the MSRDaily and CAD60 sets,
the baselines SVM, HFM, MPCCA, MTDA and HON4D are
compared to show the effectiveness of our joint learning model
(JOULE). We set M = 30 in our model. In total, we report a
comprehensive set of results of up to six different implementations
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TABLE 5
Comparison on the SYSU 3D HOI dataset.

Mean Acctstd (%)

Method setting-1 [setting-2
HON4D [28] 73.39 (£2.59) [79.22 (£2.36)
HFM [4] 75.03 (£2.68) |76.74 (£2.63)
MPCCA [3] 76.25 (£2.36) [80.72 (£2.07)
SVM 77.34 (£2.53) |82.78 (£2.83)
MTDA [53] 79.19 (£4.27) |84.21 (£2.19)
JOULE 79.63 (1-2.13) |84.89 (4-2.29)

on this new dataset.

Results. Table [3] reported the results. Again, using the proposed
JOULE model to fuse different heterogeneous features is always
beneficial in all settings. The accuracies in setting-2 are higher
than that of setting-1 without considering cross-subject split. This
is because the prediction could be biased by appearance when
activities with similar motion and object context (e.g. mopping
vs. sweeping) performed by the same participant are contained in
both training and test sets, which may occur in the setting-1. The
performances of JOULE and MTDA are comparable with JOULE
performing perceivably better. It was noted that the performance
gap between our models and the baselines is smaller (e.g., 84.9%
vs. 82.8%) than that on the other three datasets. This somehow
indicates the new dataset is more challenging for feature fusion.
By examining the confusion matrices of our JOULE model in
Figure [/} we observed that our model often confuses the activities
of mopping with sweeping in both settings, which is mainly due to
similar motions and objects appearance in the two interactions. In
addition, the activities of faking from wallet share similar motions
with activities of playing phone and taking out wallet, which are
occasionally misidentified as playing phone or taking out wallet.

6.6 Analysis and Discussion

Convergence. Our method converges to a minimum after a limited
number of iterations. We empirically observed that 20 iterations
(outer iterations i.e. term IterQOut in Algorithm |1 are sufficient
for obtaining a reliable solution in all of our experiments. See
Figure[9]for an example illustrating the convergence of our method
on the MSR Daily activity set, where the objective value of each
step was recorded during each iteration. Excluding the time for
computing the features, one round training of our algorithm takes
about 1.26 minutes per training sample. However, our testing is
pretty fast, and takes about 0.5 second per sample. Computing the
DS, DCP, and DDP features costs time. It takes about 0.24 second
for processing each frame of a RGB-D video using MATLAB on
a normal desktop PC (CPU i5-4570, memory 28G).

Effect of dimensionality M. We investigate the effect of the
dimensionality M of the subspace. Figure shows the per-
formances of our method JOULE with different values of M.
Generally, a very small M leads to an inferior performance, as the
smaller dimensionality of the subspace is, the less representative it
is for the original features. When M becomes larger (typically
larger than a value about % ~ % of the number of training
samples), the performances start to remain stable, which means
our algorithm is not sensitive M in a reasonable range.

Effect of TPF on gradient signal. In this work, we have modified
temporal pyramid Fourier features (TPF) developed in [39] so as to
apply both the original feature signal and its gradient to implicitly
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Fig. 7. Confusion matrices of JOULE on SYSU 3D HOI set under setting-
1 (a) and setting-2 (b).

TABLE 6
Accuracy (%) of our methods with and without TPF on gradient. s-1
denotes setting-1 and s-2 for setting-2 applied on the SYSU 3D HOI
dataset.

| [MSRDJCADG0[Comp. Act.3DHOI(s- D[3DHOI(-2)|

With 95 84.1 94.24 79.63 84.89
Without gradient| 91.25 | 76.5 92.22 78.83 83.63

encode human motions, since they are complementary to each
other. The TPF of original signal captures the original signal cues,
whereas the TPF of gradient signal encodes the first derivative
(velocity) information. Table E] shows the results of our model
with and without temporal Fourier features computed from the
gradient signal on all of the three datasets. It can be seen that,
while the improvement on the SYSU 3D HOI dataset is relatively
mild, TPF features on gradient consistently improve the results
in all of the cases, with the biggest gain (7.6%) achieved on the
CADG60 dataset. This indicates that the proposed extension of TPF
features to the gradient signal is promising and effective.

Effect of o and 3. As discussed in previous sections, the parame-
ters « and 3 were employed to control the generalization ability of
our joint learning model. Here, we investigate their influence on



IEEE TRANS. ON PAMI

RGB Depth RGB

Depth

11

-— e

o

Fig. 8. Snapshots of activities in SYSU 3D HOI set, one sample per class. The rows headed with RGB show the samples in RGB channel and the
rows underneath headed with Deprh show the corresponding depth channel superimposed with skeleton data. Best viewed in color.

Fig. 9. lllustration of the convergence of our method. The vertical axis
indicates the value of objective function and the horizontal axis is the

number of iterations.
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Fig. 10. Effects of parameter M on the system performance.

Composable Activities dataset and SYSU with setting-2, where
cross-subject settings (i.e., half of the subjects for training, and
the rest for testing) are employed. In this test, parameters o and
3 were both selected from {0,1072,10~,10°, 101, 10%}, and
therefore we have a total of 36 different parameter settings. We
present the recognition results in Fig. [TT} It could be observed that,
generally large o and 8 (> 10) lead to an inferior performance.
This is because the larger the v and (8 are, the less the shared
and specific components are discovered for recognition. However,
when « and § are smaller than 1, the performance would remain
relatively stable in most cases, which demonstrates that our
method is insensitive to the parameters in a reasonable range.
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Fig. 11. Effects of parameters « (the vertical) and S (the horizontal) on
the system performance (%) on the cross-subject settings of Compos-
able Activities Dataset and SYSU set.

TABLE 7
Effects of parameter A on recognition (%).

[ Dataset_ |\ = O]\ = 0.25]x = 0.5\ = 0.75]A = 1|

MSRD [90.62] 91.87 | 95 | 925 [91.25
CAD60 [8258] 83.33 | 841 | 85.61 (8258
Comp. Act[91.21] 93.80 | 94.24 | 93.37 |91.50
SYSUG-1)[78.83| 80.24 | 79.63 | 79.50 |78.89
SYSU(s-2)[83.81| 84.65 | 84.89 | 85.15 |84.58
[ Average [8541] 86.78 | 87.57 | 87.23 [85.16]

This study also reveals that the optimal ranges of « and [ are
approximately the same, which indicates that we can simply set
a = f3 (e.g., both were set as 0.1 in all of the other experiments)
to reduce the number of parameters without affecting the system
performance too much.

Influence of A. In our joint learning framework, we introduce a
parameter A to explicitly control the trade-off between the shared
structure W and feature-specific structures {W;}i=12, . .
Here, we evaluate its influence by setting A as 0, 0.25, 0.5, 0.75,
and 1, respectively, and then report the achieved performances in
Table [7] As expected, a proper combination of the shared and
specific structures gives a better result; generally too small or
too large A would result in an inferior performance. Especially,
without modeling the specific structures (A = 1) or shared
structure (A = 0), the performance decreased in both cases.
Overall, albeit not always the best, on all of the four datasets
considered, A = 0.5 is an acceptable setting.
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TABLE 8
Effects of parameter ~ on recognition accuracy (%).

[ Dataset_[y = 0y = 0.01]y = 1]y = 100}y = 10000|

MSRD [90.6 | 91.5 95 93.8 90

CAD60 | 79.6| 81.1 |[84.1| 78.0 76.5

Comp. Act.| 91.4 | 934 942 | 93.7 92.80

SYSU(s-1)| 77.0 | 80.0 |79.6| 76.8 76.9

SYSU(s-2)| 81.6 | 83.0 |84.9| 84.1 82.9
TABLE 9

Effects of jointly learning in different channels. s-1 denotes setting-1
and s-2 for setting-2 applied on the SYSU 3D HOI dataset (%).

[ Data Channel [MSRDICAD60[Comp. Act[SYSU(s-1)[SYSU(s-2)|

RGB 86.9 | 780 | 889 71.6 80.0
DEP 84.4 [ 796 | 883 743 82.3
SKL 75 | 779 | 912 755 76.9
DEP+RGB [ 87.5 | 803 | 90.1 74.8 82.6
RGB+SKL | 91.3 | 81.1 | 932 76.9 814
DEP+SKL | 906 | 826 | 93.2 79.7 83.5
[DEP+RGB+SKL| 95 | 841 | 942 | 802 | 849 |

Influence of +y. In the JOULE model (Formula [I)), we employed
a reconstruction loss term (parametered by <) to regularize the
i-transforms learning in order to preserve as much information as
possible. Here, we investigate its influence by varying it system-
ically. The results are presented in Table |8} As shown, the model
performed the best when v = 1 on most of the datasets. In general,
a smaller or larger v would lead to lower recognition accuracies. In
particular, when -y is zero and the reconstruction term is not used
to constrain the i-transforms learning, lower recognition results
were observed.

Single vs. Multi Channels. In the JOULE model, we have
integrated the learning of features from different channels (RGB,
depth (DEP) and skeleton (SKL)) in a framework so that the learn-
ing of one channel can facilitate the learning of other channels. To
investigate the benefits of joint learning, we tested the JOULE by
feeding it with 1) features from one channel only and 2) features
from two or more channels, respectively. Therefore, we tested
7 cases for each dataset. In total we conducted 35 experiments,
and results are summarized in Table [9l It can be seen that the
performances of learning features from two channels are higher
than each of them alone. Using features from three channels
always outperform one or two channels. This demonstrates that
jointly learning the features from different channels is beneficial.

6.7 Experiments on Transfer-JOULE

In this section, we tested the performance of Transfer-JOULE
(Formula (8)) and show how the auxiliary set can benefit our
heterogeneous features learning on the target set. The experiments
were carried out on the SYSU 3DHOI and Composable Activities
sets as they are the two largest datasets among those considered.
Firstly, we evaluated the effect of the control parameter p
by varying its value from O to 1. In this evaluation, one of the
two datasets is considered as a target set, and the other as the
auxiliary set. When SYSU 3DHOI was used as the target set,
we followed two different settings (setting-1 and setting-2) as in
Section [6.5] When Composable Activities dataset was used as
the target set, we followed the leave-one-subject-out setting as
described in Thus in total, we have three different test cases: 1)

12

TABLE 10
Comparison of Transfer-JOULE and JOULE, and the effects of p,
where — indicates the direction of transfer (%).

JOULE Transfer-JOULE
p=1][p=0.8p=06p=0.4p=0
SYSU — Comp. |94.24 | 95.10 | 94.81 | 92.80 |92.07
Comp. — SYSU(s-1)[ 79.63 | 80.10 | 80.71 | 79.54 |78.58
Comp. — SYSU(s-2)| 84.89 | 84.92 | 85.15 | 84.51 |81.14

Dataset ExTrain

91.93
77.19
81.11

SYSU 3DHOI — Composable Activities dataset; 2) Composable
Activities dataset — SYSU 3DHOI (setting-1); 3 Composable
Activities dataset — SYSU 3DHOI (setting-2), where — indicates
the direction of transfer, i.e. auxiliary set — target set. In each
case, we employed the same evaluation protocol as that in section
[ by reporting the average accuracy over a number of different
training/test splits (i.e., 14 in Composable Activities dataset and
30 in SYSU 3DHOI set) on the target set. To illustrate the
effectiveness of the proposed transfer learning framework, we also
implemented a baseline that directly trains a JOULE (Formula [3)
model on the pooled dataset that contains both the training set
(from the target set) and the entire auxiliary set. This is a naive
case denoted as “ExTrain”.

The results are summarized in Table As shown, a proper
combination (p > 0.6) of the feature learning in target set and
auxiliary set usually improves the recognition accuracy compared
to the performance of using target training set only (p = 1).
The performance decreases when p is getting smaller. In general,
setting p = 0.6 produces the best overall performance. It is
observed that the direct use of i-transforms learned on auxiliary
set (p = 0) can also result in a good performance on the target set,
which indicates that the i-transforms could generalize well from
one to the other. The superior performance of “Transfer-JOULE”
over “ExTrain” shows the better capability of Transfer-JOULE in
transferring information gained in auxiliary set to target set. Note
that the Transfer-JOULE always performs better than the (non-
transfer) JOULE trained on the pooled dataset. This suggests that
simply merging the auxiliary and target datasets together is not an
optimal way to exploit the transferrable shared-specific structures.

Finally, we investigate the influence of the number of the
training samples in the target set. Here, we compare the perfor-
mances of our JOULE model with and without transfer learning
(i.e. Transfer-JOULE (8) and JOULE (I)). As suggested in the
last experiment, the parameter p for Transfer-JOULE is set as
0.6. The methods are evaluated when the SYSU-3DHOI set is
used as the target set under two different settings (setting-A and
setting-B). In setting-A, we randomly selected a certain number of
samples per class to train the model and used the rest for testing. In
setting-B, we randomly selected a certain number of participants
and used all the samples performed by them as the training set.
For a fixed number of training samples (or participants) in each
setting, we report the average accuracy obtained by 30 trials. The
Composable Activities dataset is used as the auxiliary set in both
settings. The results are presented in Figure [I2} It is observed
that in all of the cases tested, with the help of auxiliary set, the
performance of our Transfer-JOULE model is consistently higher
than that of JOULE. When the number of training samples is
smaller (e.g., less than 15), the performance gap gets much larger.
The performance gain of using the auxiliary set becomes smaller
but clearly noticeable when the number of training samples gets
larger, which is as expected. In particular, in the case of one-shot



IEEE TRANS. ON PAMI

KoeInooy
Koemnooy

—
/0

O
=

o8 =0 04 =) Transfer JOULE
Number of samples | 2@ ot "™ Number of subjects

0 5 10 15 20 25 30 3 40 0 5 10

Setting-A

20 25 30 35 40

1
Setting-B

Fig. 12. Effects of the number of training samples per class (left - setting-
A), and the number of subjects (right - setting-B) when the SYSU set is
used as the target set.

activity recognition where only one target training sample per class
is available for the model training, our Transfer-JOULE model
can obtain accuracies of 39.17% and 43.04% in the setting-A and
setting-B, respectively, which are about 13% higher than the (non-
transferred) JOULE model. This clearly demonstrates that with the
help of an auxiliary set, our Transfer-JOULE model can learn a set
of parameters with better generalization than the (non-transferred)
JOULE model.

7 CONCLUSION

We have proposed a new RGB-D method called joint heterogenous
features learning (JOULE) model to jointly learn heterogeneous
features with different number of dimensions for RGB-D activity
recognition. A transfer version is also introduced to further facil-
itate the joint learning on target set via exploiting shared inter-
mediate transforms (i-transforms) from non-target data. Extensive
results are reported on four RGB-D activity sets, demonstrating
the effectiveness of the proposed methods. A limitation of our
method is the assumption that all the considered activities should
be fully executed and observed by the system, which makes
it less applicable for identifying ongoing activities containing
partial activity execution. In the future, we would like to extend
the JOULE model so that it can be used for real-time activity
recognition or prediction.
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