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Supplementary Material for “Rewarded
Semi-Supervised Re-Identification on Identities

Rarely Crossing Camera Views”
Ancong Wu, Wenhang Ge, Wei-Shi Zheng

Abstract—This supplementary material contains detailed description of the training algorithm and more visualizations of entropy
distribution and learned probabilistic relations for comprehensively understanding our method rewarded relation discovery (R2D).

✦

1 TRAINING ALGORITHM

The training algorithm of our Rewarded Relation Dis-
covery (R2D) is shown in Algorithm 1.

Algorithm 1: Rewarded Relation Discovery
Input: unlabelled data set DU , labelled data set DL

Output: model F ( · ;Θ(tmax))
Require: label smooth parameter λ, step sizes
α, γR, γθ, γp, maximum iteration number tmax

1 Initialize model parameters Θ(0) by pretraining
2 Initialize cluster relation matrix R̂dyn(0) by Eq. (3)
3 t = 0
4 while t ≤ tmax do
5 Sample batch BU and BL from DU and DL,

respectively
6 Compute dynamic cluster discrimination loss

Ldyn
cd (BU ; R̂dyn,Θ, {pc}) in Eq. (4)

7 Approximate optimal model parameter Θ′ and
prototype parameter p′

c by Eq. (6) and Eq. (7)

Θ′ = Θ(t) − α
∂Ldyn

cd (BU ;R̂dyn(t),Θ(t),{p(t)
c })

∂Θ(t)

p′
c = p

(t)
c − α

∂Ldyn
cd (BU ;R̂dyn(t),Θ(t),{p(t)

c })
∂p

(t)
c

8 Compute identification loss Lid(BL;Θ, {pc}) in
Eq. (5)

9 Update cluster relation matrix R̂dyn by Eq. (8)
R̂dyn(t+1) = R̂dyn(t) − γR

∂Lid(BL;Θ′,{p′
c})

∂R̂dyn(t)

10 Update model parameter Θ and prototype pc

with updated cluster relation matrix R̂dyn(t+1)

by Eq. (9) and Eq. (10)

Θ(t+1) = Θ(t)− γθ
∂Ldyn

cd (BU ;R̂dyn(t+1),Θ(t),{p(t)
c })

∂Θ(t)

p
(t+1)
c = p

(t)
c − γp

∂Ldyn
cd (BU ;R̂dyn(t+1),Θ(t),{p(t)

c })
∂p

(t)
c

11 t← t+ 1
12 end

2 MORE VISUALIZATIONS

Visualization of Entropy Distribution. To better under-
stand the effect of reducing uncertainty of the underlying
sample relations, we quantify the uncertainty by entropy for
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Fig. S1. Entropy distributions of our method R2Daff, clustering-based
pseudo label training (Clusteraff) and direct transfer.

our method R2Daff, rewarded relation discovery based on
affinity-based cluster construction. To quantify the sample
relations on DukeMTMC [1], we exploit the ground-truth
attribute annotations [2] of outfit colors of upper body
and lower body, including black, white, red, purple, gray,
blue, green, brown of upper body and black, white, red,
gray, blue, green, brown of lower body. These attributes
are represented by a 15-dimensional vector. We regard the
samples with the same attribute vector as samples of the
same pseudo class. We expect that the underlying sample
relations satisfy that the intra-pseudo-class similarity should
be larger than inter-pseudo-class similarity. For each sample,
the pseudo class probabilities are computed by a Softmax
classifier parameterized by pseudo class center features, i.e.,
mean features of each pseudo class normalized by L2-norm.
We quantify the uncertainty of the underlying sample rela-
tions by the entropy of pseudo class probabilities and show
the entropy distribution of the training set of DukeMTMC.

Besides our method R2Daff, we compare the entropy
distributions of clustering-based pseudo label training
(Clusteraff) and direct transfer. Clusteraff uses affinity-based
clusters for pseudo label training on unlabeled data without
reward. Direct transfer is a baseline method of testing the
pretrained model. The entropy distribution comparison is
shown in Figure S1.

Compared with direct transfer, our method R2Daff re-
duces entropy more significantly than Clusteraff learned
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(a) Probabilistic cluster relation improvement (b) Probabilistic cluster relation degradation

Fig. S2. Visualization of probabilistic relation between randomly selected query images and clusters. Each cluster is represented by an image in it
and the value on the top of the image is the Cosine distance between the query image and cluster center. In each two rows, the distances in the
first/second row are computed by model before/after using our method R2D. In sub-figure (a)/(b), the green/red arrows show the cluster relation
changes that bring improvement/degradation. For the normal query images in sub-figure (a), the feature similarities become more consistent with
visual similarities of human perception. For the query samples with occlusions or non-target persons in sub-figure (b), the interferences cause
cluster relation changes that are contradictory to visual similarities of human perception. The cases of degradation are only in the minority.

without reward for updating the pseudo labels, which
demonstrates the effectiveness of uncertainty reduction by
our rewarded relation discovery method.

Visualization of Learned Probabilistic Relations. In section
6.5.5 in the main manuscript, we visualize some randomly
selected clusters and the cluster relation changes after using
our method R2Daff. For more comprehensive understanding
of the effect of our method, we provide more examples
of normal cases and hard cases on MSMT17-NA [3]. We
randomly select query images and 10 clusters to visualize
the Cosine distances between them in Figure S2. Each cluster

is represented by an image in it and the value on the top of
the image is the Cosine distance between the query image
and cluster center. In each two rows, the cluster relations
before and after using our method are shown in the first
row and the second row, respectively. In Figure S2 (a), the
green arrows show the cluster relation changes that bring
improvement; in Figure S2 (b), the red arrows show the
cluster relation changes that bring degradation.

It can be observed that, in the normal cases shown
in Figure S2 (a), our method can make the features of
visually similar clusters closer to the features of query
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images. The cluster relations become more consistent with
human perception; in the hard cases shown in Figure S2
(b), our method wrongly increases the feature similarities
between the query image and some visually dissimilar clus-
ters, because the target query person is occluded by other
objects or other non-target pedestrians. Note that, in the first
three groups of Figure S2 (b), the appearances of the top-
ranking clusters are similar to those of occlusions or non-
target persons in the query image. In the training set, these
hard cases are only in the minority. Thus, our method can
learn to improve the cluster relations in most normal cases
and better quantify the uncertainty of underlying sample
relations.
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