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Rewarded Semi-Supervised Re-Identification on
Identities Rarely Crossing Camera Views

Ancong Wu, Wenhang Ge, Wei-Shi Zheng

Abstract—Semi-supervised person re-identification (Re-ID) is an important approach for alleviating annotation costs when learning to
match person images across camera views. Most existing works assume that training data contains abundant identities crossing
camera views. However, this assumption is not true in many real-world applications, especially when images are captured in
nonadjacent scenes for Re-ID in wider areas, where the identities rarely cross camera views. In this work, we operate semi-supervised
Re-ID under a relaxed assumption of identities rarely crossing camera views, which is still largely ignored in existing methods. Since
the identities rarely cross camera views, the underlying sample relations across camera views become much more uncertain, and
deteriorate the noise accumulation problem in many advanced Re-ID methods that apply pseudo labeling for associating visually
similar samples. To quantify such uncertainty, we parameterize the probabilistic relations between samples in a relation discovery
objective for pseudo label training. Then, we introduce reward quantified by identification performance on a few labeled data to guide
learning dynamic relations between samples for reducing uncertainty. Our strategy is called the Rewarded Relation Discovery (R2D), of
which the rewarded learning paradigm is under-explored in existing pseudo labeling methods. To further reduce the uncertainty in
sample relations, we perform multiple relation discovery objectives learning to discover probabilistic relations based on different prior
knowledge of intra-camera affinity and cross-camera style variation, and fuse the complementary knowledge of different probabilistic
relations by similarity distillation. To better evaluate semi-supervised Re-ID on identities rarely crossing camera views, we collect a new
real-world dataset called REID-CBD, and perform simulation on benchmark datasets. Experiment results show that our method
outperforms a wide range of semi-supervised and unsupervised learning methods. Project: https://github.com/wuancong/REID-CBD.

Index Terms—Person re-identification, semi-supervised person re-identification.

✦

1 INTRODUCTION

P ERSON re-identification (Re-ID) for matching person
images across non-overlapping camera views in video

surveillance has received substantial attention in recent
years. Many existing deep models [1], [2], [3], [4], [5], [6], [7]
have achieved high performance on benchmark datasets.

For reducing heavy annotation costs, semi-supervised
learning [8], [9], [10], [11], [12] and unsupervised domain
adaptation (UDA) [13], [14], [15], [16], [17], [18] have un-
dergone fast development and the performance is increas-
ingly close to that of supervised learning, and we focus on
studying semi-supervised learning in this work. In these
advanced Re-ID methods, explicitly or implicitly associating
cross-camera positive pairs can effectively alleviate cross-
camera scene variations such as lighting, view angle and
background clutters for representation learning, which are
the key challenges for Re-ID. An underlying assumption
for these methods is that a large number of identities
crossing camera views can be captured for training, e.g.,
data collected in adjacent scenes in small-scale surveillance
systems. However, this assumption is violated in many
cases of real-world training data collection. It is difficult to
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Fig. 1. Assumption of identities crossing camera views v.s. assumption
of identities rarely crossing camera views. (a) An underlying assump-
tion for conventional semi-supervised Re-ID methods is that there are
abundant identities crossing camera views in unlabeled training data.
For example, images captured in adjacent scenes usually satisfy this
assumption. (b) Our relaxed assumption for semi-supervised Re-ID is
that there are identities rarely crossing camera views for training. For
example, when Re-ID is extended to more distant nonadjacent scenes,
it is more difficult to capture underlying identities crossing camera views
because of uncertain possible paths indicated by red dotted arrows. The
underlying relations between training data are increasingly uncertain,
since deterministic relations of cross-camera positive/negative pairs are
rare, and the underlying relations are mainly modeled by probabilistic
relations of dissimilar degrees.

capture identities crossing some camera views, especially
for nonadjacent scenes in large-scale surveillance systems.

To show some examples, we compare the statistics of
multi-site dataset and single-site datasets in Table 1. Existing
benchmark datasets MSMT17 [19] , Market-1501 [20] and
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TABLE 1
Comparison of average number of cameras passed by per identity

(#camerapass) between multi-site dataset Person30K and single-site
datasets. In multiple disjoint sites, #camerapass is much smaller than

the total number of cameras #cameratotal.

Datasets Person30K1 [23] MSMT17 [19] Duke [21] Market [20]
#site 89 1 1 1

Avg #camera passed by
per identity (#camerapass) 16.01 4.67 2.67 4.42

#cameratotal 6,497 15 8 6
#camerapass/#cameratotal 0.01 0.31 0.33 0.74

#identity 30,000 4,101 1,812 1,501

many other datasets [1], [21], [22] were captured in local ar-
eas of only one site. As shown by “#camerapass/#cameratotal”
in Table 1, each identity appears in 31%-74% of cameras on
average. While collecting data in 89 disjoint sites in a large-
scale dataset Person30K1 [23], each identity only appears
in 1% of cameras on average. Therefore, it is significant to
operate under a relaxed assumption that identities crossing
camera views are rare for training Re-ID model, which is
still largely ignored by existing Re-ID methods.

For real-world applications in large-scale systems such
as matching between camera views in distant nonadjacent
scenes, it is necessary to explore the underlying relations
between cross-camera sample pairs under the assumption
of identities rarely crossing camera views, because anno-
tating cross-camera positive pairs is difficult. We show the
comparison between the conventional assumption of iden-
tities crossing camera views and our relaxed assumption of
identities rarely crossing camera views for semi-supervised
Re-ID in Figure 1. When there are only identities rarely
crossing camera views (Figure 1 (b)), deterministic relations
of cross-camera positive/negative pairs are rare and the
underlying relations are mainly modeled by probabilistic
relations of dissimilar degrees. This causes high uncer-
tainty during the exploration of the underlying relations
between cross-camera sample pairs. High uncertainty incurs
more serious noise accumulation problem [24] for existing
pseudo labeling methods for Re-ID [9], [11], [17], [18] that
are effective for the cases with identities crossing camera
views (Figure 1 (a)). Our experimental findings in Section
3.2 demonstrate that applying pseudo labeling for training
data with identities rarely crossing camera views results
in performance degradation caused by wrongly associating
cross-camera negative pairs.

To overcome the problem of high uncertainty in cross-
camera unpaired training data, we propose a rewarded
pseudo label training strategy called Rewarded Relation
Discovery (R2D). To quantify the uncertainty, we represent
similar samples via clusters and parameterize the prob-
abilistic relations between the unlabeled sample pairs by
cluster relation matrix in the relation discovery objective for
pseudo label training. To discover the probabilistic relations,
we introduce reward for the relation discovery objective.
We regard the identification performance on limited labeled
data as reward, which is quantified by a few-shot validation
objective. By maximizing the reward using bi-level opti-
mization [25], the cluster relation matrix as the parameter
of the relation discovery objective is dynamically updated
during training. As a result, the high uncertainty is explicitly

1. So far, Person30K is not publicly available.

quantified by the learned probabilistic relations and reduced
by minimizing the relation discovery objective.

Based on our rewarded relation discovery, we further
propose multiple relation discovery objectives learning to
investigate prior knowledge of intra-camera affinity and
cross-camera style variation for two different relation dis-
covery objectives, respectively. Then, we fuse the comple-
mentary knowledge learned by different relation discovery
objectives in a single model by similarity knowledge dis-
tillation, in order to further reduce the uncertainty in the
underlying sample relations.

To evaluate semi-supervised Re-ID on identities rarely
crossing camera views, existing public benchmark datasets
cannot be directly applied, since the images are manually
selected and annotated to guarantee all identities are cross-
ing camera views. We collect a more large-scale real-world
dataset REID-CBD in nonadjacent scenes, which contains
identities rarely crossing camera views. It can be publicly
available after data masking.

2 RELATED WORK

2.1 Person Re-identification
Current person re-identification methods mainly focus

on supervised learning [1], [3], [4], [5], [6], [7], [26], [27],
[28], [29], [30], [31] and unsupervised learning [13], [14],
[15], [17], [18], [19], [32], [33], [34], [35], [36], [37]. When
sufficient labeled data is available, deep supervised mod-
els [1], [2], [3], [4], [5], [6], [7], [28], [38], [39], [39] have
achieved remarkable performance on benchmark datasets.
To get rid of the dependence on labeled data, unsupervised
domain adaptation (UDA) techniques [13], [14], [15], [17],
[18], [19], [32], [33], [34], [35], [36], [37] are explored for
unsupervised Re-ID. For learning Re-ID on identities rarely
crossing camera views, the supervised methods are prone
to overfitting limited cross-camera positive pairs and the
unsupervised learning methods have difficulties to reduce
high uncertainty in unlabeled cross-camera unpaired data.

Generally, identity annotations are available for training
but limited due to budget in real-world applications. Semi-
supervised learning is a realistic setting for this scenario.
Semi-supervised learning methods [8], [9], [10], [11], [12],
[13], [40] exploit limited labeled data and unlabeled data to
learn Re-ID model. Pseudo label training [13] is an effective
approach for exploiting the unlabeled data for cluster dis-
crimination. Representative pseudo label training methods
include PUL [13], MVC [9] and one-example [11]. MVC [9]
applies multi-view clustering to obtain more reliable pseudo
labels. Liu et al. [8] model representations of unlabeled data
by dictionary learning. Chang et al. [12] propose a graph-
based transductive hard mining method for hard triplets
in unlabeled data. Hao et al. [41] propose a two-stream
encoder-decoder structure for disentangled feature learning.

Pseudo labeling methods for unsupervised Re-ID can
also be applied to exploit the unlabeled data in semi-
supervised learning. Some training strategies are proposed
to progressively refine and exploit the noisy pseudo la-
bels, such as mutual mean-teaching (MMT) [17], self-paced
contrastive learning [42], asymmetric metric learning [15],
camera-aware proxy [34], pose disentanglement [43], group-
aware label transfer [18] and online pseudo label gener-
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ation [35]. Some methods such as MAR [44] and PCSL
[45] take soft labels into account to model probabilistic
relations. MEB-Net [37] adopts mutual learning among
multiple networks with different architectures to exploit
their heterogeneity. MeanTeacher [46] and MMT [17] exploit
logit-based knowledge distillation between different models
to refine the noisy labels; our method exploits similarity-
based knowledge distillation for fusing complementary
knowledge learned by different relation discovery objec-
tives. The above discussed methods including MEB-Net
[37], MeanTeacher [46] and MMT [17] do not operate under
the assumption of identities rarely crossing camera views,
so that they cannot tackle the high uncertainty problem
caused by identities rarely crossing camera views as our
method. UNRN [47] measures uncertainty of each sample
by soft multilabel agreement of mean teacher model and
student model to alleviate the influence of noisy labels. For
cross-camera sample pairs, UNRN [47] relies on smoothness
assumption that neighboring input points are probably from
the same class; while our method does not rely on this
assumption. Since our method reduces uncertainty with
reward from labeled data, the cluster relations learned by
our method are able to improve validation performance
on target domain, while UNRN [47] quantifies uncertainty
based on empirical uncertainty estimation principle and the
uncertainty may be incorrectly estimated without using the
reward in our method. Compared with pseudo labeling in
UNRN [47], our method additionally takes camera labels
into account for intra-camera clustering, and thus can avoid
wrong association of cross-camera negative pairs in the
scenario with rare identities crossing camera views. DG-
Net [48] synthesizes fake images to increase diversity of
training data regardless of camera label. Our method takes
the assumption of rare identities crossing camera views
into account and synthesizes cross-camera images to pro-
vide knowledge of cross-camera image style variation to
initialize the learnable cluster relations for reducing the
uncertainty when the identities rarely cross camera views;
while DG-Net [48] cannot provide such knowledge by the
synthesized images and cannot learn cluster relations with
reward as our method. Fu et al. [49] collect LUPerson dataset
from Internet and propose contrastive learning method LUP
[49] for pre-training model on unlabeled data with limited
potential cross-camera positive pairs. Compared with this
setting, we do not concern the pre-training problem for
model initialization. Moreover, in the target scene for Re-
ID deployment, the setting of LUPerson [49] still requires
training data with cross-view positive pairs for each identity,
while we assume that training data contains only limited
cross-view positive pairs. When LUP [49] is applied for
Re-ID on identities rarely crossing camera views, it cannot
tackle the high uncertainty problem as our method.

Existing semi-supervised Re-ID methods as well as some
unsupervised Re-ID methods rely on the smoothness as-
sumption that neighboring input points are probably of the
same identity, so that they associate cross-camera sample
pairs that are close in the feature space to reduce the identity
uncertainty. However, the smoothness assumption is invalid
for cross-camera sample pairs when learning Re-ID on iden-
tities rarely crossing camera views in our study. This makes
the relations between cross-camera sample pairs become

highly uncertain, which is ignored by the pseudo labeling
methods and incurs serious noise accumulation problem
[24]. Rather than determining the sample relations based on
the smoothness assumption, our method learn the relations
between unlabeled sample pairs with reward from limited
labeled data to quantify and reduce the high uncertainty.

2.2 General Semi-Supervised Learning Methods

In general, semi-supervised learning [50] leverages unla-
beled data as well as limited labeled data for training mod-
els. A broad variety of semi-supervised learning methods
have been proposed. Pseudo labeling [51], [52], [53] is a type
of advanced semi-supervised learning method that assigns
pseudo labels to unlabeled data for training. Co-training
[54] is a type of disagreement-based method that trains
multiple models to exploit unlabeled data. Graph-based
methods [55], [56] construct similarity graph to propagate
labels from labeled samples to unlabeled samples. Curricu-
lum learning is combined with semi-supervised learning
in FlexMatch [57] to leverage unlabeled data according to
the learning status of the model. The common assumptions
for semi-supervised learning methods include the smooth-
ness assumption, low-density assumption or manifold as-
sumption. Based on these assumptions, some regularizers
are introduced, such as density regularization [58], Lapla-
cian regularization [59] and manifold regularization [60].
Perturbation-based methods aim to learn representation by
making predictions for the noisy and the clean inputs be
similar, such as Ladder Network [61], pseudo-ensembles
[62], mean teacher [63], and virtual adversarial training
[64]. Self-supervised learning has also been explored for
semi-supervised learning. Chen et al. [65] perform semi-
supervised learning by three steps of self-supervised pre-
training, fine-tuning and knowledge distillation.

Existing semi-supervised learning methods [50], [66] op-
erate under the smoothness assumption that neighboring
inputs are probably of the same class, which is invalid for
the large amount of unlabeled cross-camera unpaired data
for Re-ID on identities rarely crossing camera views. Our
method does not rely on this assumption and considers
reducing the high uncertainty of cross-camera unpaired
data by using the identification performance on labeled
data as reward to update the pseudo label training loss,
which is an under-explored learning paradigm for pseudo
labeling methods. Moreover, compared with previous semi-
supervised learning settings, additional camera labels are
specifically available for unlabeled training data in per-
son re-identification, and more importantly the large dis-
crepancy between different camera views is a challenging
problem to be addressed. Our method can perform camera-
specific modeling to address the high uncertainty problem
caused by limited cross-camera positive pairs, but previous
semi-supervised methods cannot be straightforwardly ex-
tended to effectively make use of the camera labels.

2.3 Training Objective Optimization

To optimize the training process of the model, bi-level
optimization [25] has been widely applied for hyperpa-
rameter optimization [67], meta learning [68] and neural
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architecture search [69], [70]. In bi-level optimization prob-
lem, the feasible region of the upper-level optimization
problem is restricted by the solution of the lower-level
optimization problem. Training objective optimization [71],
[72], [73] is closely related to our proposed rewarded pseudo
label training method. These methods generally regard the
performance on a clean unbiased validation set as reward to
guide optimizing the training objectives. MSLG [71] learns
meta soft labels for each sample to correct the noisy labels.
Ren et al. [72] learn to reweight samples for more robust
deep learning. Pham et al. [73] propose meta pseudo labels
(MPL) by using a teacher model to generate pseudo labels
to help the student model to generalize.

These related training objective optimization methods
are designed for closed-set image classification where all
samples belong to known classes, so that they are not
suitable for Re-ID without known identities in the unlabeled
data. Our method discovers the underlying probabilistic re-
lations between the cross-camera sample pairs of unknown
identities by rewarded pseudo label training strategy.

3 REWARDED SEMI-SUPERVISED RE-ID
As introduced in Section 1, when there are rare identities

crossing camera views under our relaxed assumption for
semi-supervised Re-ID, there are hardly deterministic rela-
tions of cross-camera positive/negative pairs to be explored.
This causes high uncertainty during the exploration of the
underlying relations between cross-camera sample pairs.
To quantify and reduce such uncertainty, we propose a
rewarded semi-supervised Re-ID strategy called Rewarded
Relation Discovery (R2D) to discover the probabilistic rela-
tions for unlabeled data that can maximize the reward of
identification performance on labeled data.

3.1 Problem Formulation for Semi-Supervised Learn-
ing on Identities Rarely Crossing Camera views

We assume that only a small amount of cross-camera
positive pairs can be captured and labeled. The labeled
data set is denoted by DL = {(ILi , yi, vLi )}

NL
i=1, where ILi

is person image, yi = 1, ..., CL is the identity label and
vLi = 1, ..., Vcam is the camera view label that can be
obtained without annotation. The number of identity CL is
10 in our case. Images of the same identity are captured from
at least two different cameras. Besides the small amount of
labeled data, we can easily obtain a large amount of unla-
beled data by pedestrian detection. The unlabeled data set is
denoted by DU = {(IUi , vUi )}

NU
i=1, where IUi is person image

and vUi = 1, ..., Vcam is camera view label. Underlying cross-
camera positive pairs hardly exist in unlabeled data, that is,
IUk and IUl are unlikely from the same person if vUk ̸= vUl .

Given labeled data set DL and unlabeled data set DU ,
we aim to learn a model F ( · ;Θ) for extracting feature
xi = F (Ii;Θ) for matching by similarity measurement. We
do not rely on the assumption of existence of cross-camera
positive pairs in unlabeled data.

3.2 Noise Accumulation Problem of Pseudo Labeling
on Identities Rarely Crossing Camera Views

To discover the underlying relation between unlabeled
samples for Re-ID, pseudo label training is popular in

Direct transfer
Training on cross-camera 

paired data

Training on cross-camera 

unpaired data

Fig. 2. Comparison between unsupervised learning by pseudo labeling
method Sbase [47] on cross-camera paired data and cross-camera
unpaired data. The feature distributions of randomly selected 8 identi-
ties on training set of Market-1501 dataset [20] indicated by different
colors are shown by t-SNE [74]. Training on cross-camera unpaired data
suffers from more severe noise accumulation problem than training on
cross-camera paired data.

TABLE 2
Performances (%) of using pseudo labeling methods on subsets of

cross-camera unpaired data and cross-camera paired data on
Market-1501. “-intra” denotes intra-camera clustering.

Method
cross-camera unpaired cross-camera paired

mAP rank-1 rank-10 mAP rank-1 rank-10
Sbase [47] 34.8 58.6 79.8 47.5 72.1 89.6

Sbase-intra [47] 35.9 59.6 81.2 41.1 64.1 83.4
MMT [17] 29.7 52.5 74.1 42.4 64.9 85.2

MMT-intra [17] 34.1 54.5 79.1 37.7 58.8 82.2
GLT [18] 34.7 60.7 80.1 39.6 66.0 83.8

GLT-intra [18] 36.2 61.7 81.7 35.4 59.7 78.9

existing Re-ID methods for utilizing unlabeled data [11],
[12], [15], [17]. For learning Re-ID on abundant identities
crossing camera views, associating samples of similar visual
appearances to reduce the identity uncertainty contributes
to the success of these methods.

However, for cross-camera unpaired data with identities
rarely crossing camera views, the uncertainty of the under-
lying relations between cross-camera sample pairs becomes
much higher, which challenges existing pseudo labeling
methods for Re-ID. Generally, they discover the underlying
relations and associate unlabeled sample pairs without re-
ward from labeled data. They are prone to suffer from noise
accumulation problem [24] caused by wrongly associating
unlabeled cross-camera samples pairs of different identities.

To show the noise accumulation problem, we conducted
an experiment to evaluate typical unsupervised pseudo-
labeling-based Re-ID methods Sbase [47], MMT [17] and
GLT [18] on Market-1501 dataset [20]. To simulate two dif-
ferent cases of learning Re-ID on identities crossing camera
views and learning Re-ID on identities rarely crossing cam-
era views, we modified the training set to two subsets of the
same size that contain cross-camera paired data and cross-
camera unpaired data, respectively. We also modified these
methods by using intra-camera clustering to avoid wrong
association of cross-camera negative samples for cross-
camera unpaired data, denoted by “Sbase-intra”, “MMT-
intra”, “GLT-intra”. A ResNet-50 [75] was initialized by
pretraining on MSMT17 dataset [19]. The experiment results
are shown in Table 2. t-SNE [74] was applied to visualize the
features of 8 randomly selected identities learned by Sbase
[47] on these two subsets in Figure 2.

Compared with SBase, MMT and GLT, the intra-camera
clustering versions perform better on cross-camera unpaired
data and perform much worse on cross-camera paired data.
Compared with SBase, MMT and GLT on cross-camera
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TABLE 3
Definitions of important notations.

Notation Definition
Θ, pc Parameter of model F , the c-th prototype
Θ∗, p∗

c Optimal Θ, pc

Θ′, p′
c Approximated optimal Θ, pc

R̂dyn (R̂dyn(0)) Cluster relation matrix (initial value)
xU
i (xL

i ) Feature of unlabeled (labeled) data

paired data, the performances of SBase-intra, MMT-intra
and GLT-intra on cross-camera unpaired data are signif-
icantly degraded. The high uncertainty in cross-camera
unpaired data is not well quantified and reduced in existing
advanced pseudo labeling methods for Re-ID. Identities
rarely crossing camera views lead to such high uncertainty
in underlying relations of training data.

3.3 Rewarded Relation Discovery
For semi-supervised learning on identities rarely cross-

ing camera views, the uncertainty of underlying sample
relations is significantly increased as compared with learn-
ing Re-ID on abundant identities crossing camera views.
How to quantify and reduce the uncertainty in cross-camera
sample pairs is important for pseudo label training.

To quantify the high uncertainty of cross-camera sample
relations, we parameterize the probabilistic relations be-
tween unlabeled samples in the relation discovery objective
for pseudo label training and introduce reward quantified
by identification performance on limited labeled data for
this process. The probabilistic relations are learned to maxi-
mize the reward, so that minimization of the relation discov-
ery objective can reduce the uncertainty of the underlying
sample relations. The overview of rewarded pseudo label
training is shown in Figure 3. Some important notations are
defined in Table 3 for clarity.
Rewarded Pseudo Label Training. To guide relation dis-
covery for pseudo label training on unlabeled data, we make
use of a small amount of labeled data to provide reward of
identification performance.

The rewarded pseudo label training strategy consists of
two objectives: the relation discovery objective on unlabeled
data for pseudo label training and a few-shot validation
objective on limited labeled data for quantifying the identi-
fication performance as reward. The strategy is formulated
by bi-level optimization [25] as:

min
ΘRD

Lval(DL;Θ
∗),

s.t. Θ∗ = argmin
Θ

LRD(DU ;ΘRD,Θ),
(1)

where ΘRD is the parameter of the relation discovery
objective function LRD on unlabeled data; Lval is the few-
shot validation objective function on labeled data; Θ is the
parameter of the feature extractor F .

When minimizing the relation discovery objective func-
tion LRD , we expect to achieve maximization of the reward
of identification performance on limited labeled data, i.e.,
minimization of the few-shot validation loss Lval. By min-
imizing Lval, the parameter ΘRD of the relation discovery
objective function LRD is learned to discover the proba-
bilistic relations of cross-camera sample pairs. To realize
this strategy, we propose Rewarded Relation Discovery (R2D),

of which the pipeline is shown in Figure 3. The objective
functions are formulated as follows:

min
R̂dyn

Lid(DL;Θ
∗, {p∗

c}),

s.t. (Θ∗, {p∗
c}) = arg min

Θ,{pc}
Ldyn

cd (DU ; R̂
dyn,Θ, {pc}),

(2)

where R̂dyn is the cluster relation matrix that plays the
role of ΘRD in Eq. (1) for parameterizing the probabilistic
relations; Θ is the parameter of feature extraction model F ;
{pc} is the set of cluster prototypes; the dynamic cluster
discrimination loss Ldyn

cd plays the role of the relation dis-
covery objective LRD in Eq. (1); the identification loss Lid

plays the role of the few-shot validation objective Lval in
Eq. (1). These losses and parameters are detailed below.
1) Relation Discovery Objective: To efficiently model the
probabilistic relation between different samples, we first
represent similar samples by clusters, and then learn the
probabilistic cluster relations instead of the probabilistic
instance relations. We design the relation discovery objective
based on cluster discrimination. For unlabeled data set DU ,
we divide the unlabeled samples into CU clusters by some
clustering algorithm and use CU prototypes {pc}CU

c=1 to
represent each cluster. For labeled data set DL, we use
CL prototypes {pc}CU+CL

c=CU+1 to represent CL identities. By
merging the prototypes of unlabeled data and labeled data,
there are totally C = CU + CL prototypes denoted by
{pc}Cc=1. To quantify the probabilistic relation between sam-
ple IUi and the samples in data set DU ∪ DL, we assign
soft label r̂i ∈ RC to sample IUi as learning target to
indicate the affinity between the unlabeled feature xU

i and
the prototypes {pc}Cc=1.

We define a cluster relation matrix R̂dyn ∈ RCU×C as
a learnable parameter. The non-diagonal elements represent
the probabilistic relations between the unlabeled prototypes
and all prototypes; the diagonal elements represent the
degree of variation within a cluster. To embed prior knowl-
edge of the clusters in R̂dyn, its initial value R̂dyn(0) is

r̂dyn(0)
ck,cl =


λ ck = cl and ck, cl ∈ YU ,

(1− λ)/CU ck ̸= cl and ck, cl ∈ YU ,

0 ck ∈ YU and cl ∈ YL,

(3)

where r̂
dyn(0)
ck,cl is the element in the ck-th row and the cl-

th column of R̂dyn(0); r̂dyn(0)ck,cl indicates the target affinity
between cluster ck and cluster cl; λ is a hyper-parameter
of label smoothing for balancing the affinity of the cor-
responding cluster and other clusters, which is set as 0.8
empirically to allow uncertainty in the affinity between
different clusters and intra-cluster variations; YU and YL

denote the index sets of prototypes of unlabeled data and
labeled data, respectively. We assume that the identities are
non-overlapping in unlabeled data and labeled data, so that
r̂
dyn(0)
ck,cl is 0 when ck ∈ YU and cl ∈ YL.

For unlabeled sample IUi of which the cluster index is
ci, its pseudo soft label is r̂i = r̂dynci , the ci-th row of the
cluster relation matrix R̂dyn. For pseudo label training, we
minimize the dynamic cluster discrimination loss Ldyn

cd as
follows:

Ldyn
cd (DU ; R̂

dyn,Θ, {pc}) = −
NU∑
i=1

C∑
c=1

r̂dynci,c log
exp(p⊤

c x
U
i )∑C

k=1 exp(p
⊤
k x

U
i )

,

(4)
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Fig. 3. Pipeline of Rewarded Relation Discovery (R2D). It is a rewarded pseudo label training strategy formulated by bi-level optimization. First,
clusters are constructed based on features of unlabeled data to initialize the relation discovery objective. Different cluster construction methods can
embed different prior knowledge for the relation discovery objective. Then, the relation discovery objective of cluster discrimination on unlabeled
data is regarded as the lower-level problem and the validation objective on limited labeled data is regarded as the upper-level problem. The cluster
relation matrix R̂dyn explicitly quantifies uncertainty of sample relations. By updating it with bi-level optimization, the probabilistic relations between
clusters can be discovered for dynamic cluster discrimination loss Ldyn

cd with the reward from identification loss Lid on labeled data. Minimization
of Ldyn

cd can reduce the uncertainty in training data with identities rarely crossing camera views.

where xU
i = F (IUi ;Θ) is the feature extracted by model F ;

Θ and pc are parameters of the model; R̂dyn is the parame-
ter of the relation discovery objective. During training, both
the affinities between different clusters and the degrees of
intra-cluster variations are learned in R̂dyn.
2) Few-Shot Validation Objective: To learn R̂dyn in the
relation discovery objective, we exploit a small amount
of labeled data DL to provide reward for learning R̂dyn

by formulating a few-shot validation objective to quantify
identification performance. Following popular representa-
tion learning methods for Re-ID [76], we jointly apply a
cross entropy classification loss and a triplet loss on the
labeled data DL to measure identity discriminative degree
more strictly. The identification loss Lid is formulated as:

Lid(DL;Θ, {pc}) = −
NL∑
i=1

C∑
c=1

yi,clog
exp(p⊤

c x
L
i )∑C

k=1 exp(p
⊤
k x

L
i )

+
∑

(a,p,n)∈Itri

max(
∥∥∥xL

a − xL
p

∥∥∥
2
−

∥∥∥xL
a − xL

n

∥∥∥
2
+m, 0),

(5)

where the first term is cross entropy classification loss and
the second term is triplet loss. In the cross entropy loss,
xL
i = F (ILi ;Θ) is the feature of labeled sample ILi ; yi,c is

the c-th element of the groundtruth one-hot label yi ∈ RC .
In the triplet loss, m is the parameter of margin; Itri is the
index set of triplets. (a, p, n) denotes the indices of anchor
sample, positive sample and negative sample, respectively.
Analysis. In the nested bi-level optimization problem [25],
minimizing the dynamic cluster discrimination loss Ldyn

cd
(the relation discovery objective) on unlabeled data DU

is regarded as the lower-level problem in the inner loop;
minimizing the identification loss Lid (the few-shot vali-
dation objective) on labeled data DL is regarded as the

upper-level problem in the outer loop. The cluster relation
matrix R̂dyn is the key parameter that connects the relation
discovery objective and the few-shot validation objective.
In the inner loop, it parameterizes the probabilistic cluster
relations for pseudo label training by Ldyn

cd . In the outer
loop, it is optimized for discovering probabilistic relations
by maximizing the reward of the identification performance
(i.e., minimizing Lid) on limited labeled data.

Comparison between conventional pseudo labeling
methods and our proposed rewarded pseudo label training
strategy is shown in Figure 4. Conventional pseudo labeling
methods in Figure 4(a) performs pseudo label training with-
out reward from labeled data, while our method in Figure
4(b) can learn the probabilistic relations parameterized by
ΘRD with the reward from labeled data to quantify and
reduce the high uncertainty in training data with identities
rarely crossing camera views. To better understand uncer-
tainty reduction, we quantify the uncertainty by entropy of
classification probabilities and compare the entropy distri-
butions in Section 2 of the supplementary material.

3.4 Bi-Level Optimization
To make the bi-level optimization problem [25] in Eq. (2)

feasible, we relax the constraint of using the optimal Θ∗

and {p∗
c} in the inner loop following the gradient-based

hyperparameter optimization methods [67]. The optimal Θ∗

and {p∗
c} are approximated by Θ′ and {p′

c} obtained by
one-step gradient descent as follows:

Θ′ = Θ(t) − α
∂Ldyn

cd (DU ; R̂
dyn(t),Θ(t), {p(t)

c })
∂Θ(t)

, (6)

p′
c = p(t)

c − α
∂Ldyn

cd (DU ; R̂
dyn(t),Θ(t), {p(t)

c })
∂p

(t)
c

, (7)
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Fig. 4. Comparison between pseudo label training without and with
reward. (a) Conventional pseudo labeling methods discover probabilistic
relations and associate unlabeled sample pairs without reward from
labeled data. The probabilistic relations are highly uncertain. (b) In our
method, the probabilistic relations are parameterized by ΘRD in the
relation discovery loss LRD on unlabeled data. Then, the probabilistic
relations are learned with the reward from labeled data.

where α is the step size and the superscript (t) denotes that
the parameter is in the t-th iteration of optimization.

By substituting Θ′ and {p′
c} into Eq. (2), the objective

becomes minimizing Lid(Θ
′, {p′

c}). The cluster relation ma-
trix R̂dyn is updated by

R̂dyn(t+1) = R̂dyn(t) − γR
∂Lid(DL;Θ

′, {p′
c})

∂R̂dyn(t)
, (8)

where γR is learning rate for cluster relation matrix R̂dyn.
We use the updated relation discovery objective param-

eterized by R̂dyn(t+1) to learn the feature extraction model
parameter Θ and the prototype parameters {pc} by

Θ(t+1) = Θ(t) − γθ
∂Ldyn

cd (DU ; R̂
dyn(t+1),Θ(t), {p(t)

c })
∂Θ(t)

, (9)

p(t+1)
c = p(t)

c − γp
∂Ldyn

cd (DU ; R̂
dyn(t+1),Θ(t), {p(t)

c })
∂p

(t)
c

, (10)

where γθ and γp are learning rates for model parameter Θ
and prototypes {pc}, respectively.

In summary, the bi-level optimization problem in Eq. (2)
is relaxed and solved by iterative update. Given parameters
Θ(t), {p(t)

c } and R̂dyn(t) of the t-th iteration, the update
process from Eq. (6) to Eq. (10) is a loop for obtaining Θ(t+1),
{p(t+1)

c } and R̂dyn(t+1) in the next iteration. The pseudo
code of training is shown in the supplementary material.

Finally, after the iteration of the maximum times tmax,
the feature extractor F ( · ,Θ(tmax)) is used for inference.

4 MULTIPLE RELATION DISCOVERY OBJECTIVES
LEARNING

In our proposed rewarded relation discovery strategy,
the initialization of the cluster relation matrix R̂dyn(0) in

Affinity-based 

clusters

?
?

?

? ?

?

Camera 1 Camera 2

?

?

?

?

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Camera c

Cluster 5

?
?

Cluster

1

Cluster

2

Cluster

3

Cluster

4

Cluster 5

StarGAN

…

?

Cross-camera

style transferReal

Fake

Camera 1

Camera 2

Camera c

?? ?
?

Cluster 1 Cluster 2 Cluster 3

?

? Style-based 

clusters

Initialization for relation discovery objective 1

Initialization for relation discovery objective 2

𝐹aff

𝐹sty

Model 1

Model 2

𝐹fuse

Fused 

model

Similarity 

knowledge 

distillation

(Eq. (13))

…

Fig. 5. Overview of multiple relation discovery objectives learning.
Based on different initializations of affinity-based clusters and style-
based clusters for the relation discovery objectives, model 1 Faff and
model 2 Fsty are learned by rewarded relation discovery (R2D). The
complementary knowledge of probabilistic relations learned by two
different relation discovery objectives is fused by similarity knowledge
distillation.

the dynamic cluster discrimination loss Ldyn
cd embeds prior

knowledge in the initial relation discovery objective. To ben-
efit from different types of prior knowledge (intra-camera
affinity and cross-camera style variation), we investigate
affinity-based cluster discrimination and style-based cluster
discrimination. Furthermore, we fuse the complementary
knowledge of different probabilistic relations learned by
different relation discovery objectives in a single model
by similarity knowledge distillation, in order to further
reduce the uncertainty of underlying sample relations. The
overview is shown in Figure 5.

4.1 Affinity-based Cluster Construction

We assume that the initial Re-ID model F ( · ;Θ(0)) is
pre-trained on a source domain. The affinity between sam-
ples determined by the pre-trained model contains prior
knowledge for matching. Because of unseen cross-camera
scene variations in the target domain, the affinities between
cross-camera sample pairs are less reliable than the affinities
between intra-camera sample pairs. Thus, we apply intra-
camera clustering on unlabeled data.

For unlabeled data set DU = {(IUi , vUi )}
NU
i=1, a feature

set X (0)
U = {xU(0)

i }NU
i=1 is extracted by the initial Re-ID

model F ( · ;Θ(0)). Then, a pairwise distance matrix D is
computed based on the features. To avoid associating cross-
camera sample pairs, we convert D to an intra-camera
distance matrix Dintra by replacing the distances between
cross-camera pairs with the maximum distance. By applying
DBSCAN [77], a popular clustering algorithm for Re-ID [78],
the cluster index vector cintra is determined by

cintra = DBSCAN(Dintra), (11)

where the i-th element cintrai in cintra denotes the cluster
index of unlabeled sample IUi .
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By substituting cluster index cintrai into ci in Ldyn
cd (Eq.

(4)), we embed the prior knowledge of intra-camera sample
affinity for rewarded relation discovery, as shown in relation
discovery objective 1 in Figure 5.

4.2 Style-based Cluster Construction

Affinity-based cluster construction embeds affinity-
based prior knowledge for intra-camera sample pairs. More-
over, we expect that the learned features can be robust to
cross-camera image style variations, such as lighting con-
dition and background, but the identities crossing camera
views are rare for aligning the features of cross-camera
positive pairs. To take the place of the missing cross-camera
positive pairs, we generate cross-camera fake samples by
using an image-image translation model TCamStyle based
on StarGAN [79] following the approach in HHL [14].
TCamStyle is trained on unlabeled data DU with camera
view labels to enable translation between any camera pairs.
Given an image IUi and the target camera view label
v ∈ {1, 2, ..., Vcam}, a fake image ĨU,v

i of camera view v
is generated by image-image translation as

ĨU,v
i = TCamStyle(I

U
i , v). (12)

To generate fake images more efficiently, we select rep-
resentative real unlabeled samples by clustering for image
translation. Similar to affinity-based clusters in Section 4.1,
we apply intra-camera clustering based on DBSCAN [77] for
real unlabeled samples IUi . For each cluster, we randomly
select Nreal samples denoted as IU,sel

1 , IU,sel
2 , ..., IU,sel

Nreal
and

remove the other samples in this cluster. Then, for each
selected real sample IU,sel

i , we translate it to all camera
views to obtain ĨU,1

i , ĨU,2
i , ..., ĨU,Vcam

i . We regard the real
image IU,sel

i and the fake images ĨU,1
i , ĨU,2

i , ..., ĨU,Vcam

i as
images of the same identity and assign the same cluster
index to them.

By augmenting the real unlabeled training set DU with
the translated unlabeled samples, we embed the prior
knowledge of cross-camera image style variations for re-
warded relation discovery, as shown in relation discovery
objective 2 in Figure 5.

4.3 Knowledge Fusion for Relation Discovery Objec-
tives

We denote the model learned based on affinity-based
clusters as Faff and denote the model learned based on
style-based clusters as Fsty. As shown in Figure 5, the
intra-cluster variations for affinity-based clusters are mainly
poses and orientations; while the intra-cluster variations for
style-based clusters are mainly lighting and background. By
discriminating these two types of clusters, Faff and Fsty learn
features that are robust to different types of variations and
thus complementary to each other. We fuse the complemen-
tary knowledge of different probabilistic relations in a single
model Ffuse to further reduce the uncertainty in underlying
sample relations without increasing inference costs.

To achieve this, we regard Faff and Fsty as two teacher
models to learn a student model Ffuse by similarity knowl-
edge distillation [40]. Given the unlabeled data set DU , we
extract feature matrices Xa, Xs and Xf by Faff( · ;Θa),

TABLE 4
Comparisons between our constructed datasets REID-CBD,

DukeMTMC-NA, MSMT17-NA for learning Re-ID on identities rarely
crossing camera views and benchmark datasets DukeMTMC,

MSMT17. “#site” denotes the number of sites. “#ID” denotes the
number of identities. “#bbox” denotes the number of bounding boxes.

“#cam” denotes the number of cameras. “UKN” denotes unknown.
Compared with existing publicly available benchmark datasets, our

dataset REID-CBD was captured in 6 sites and there were rare
identities crossing camera views in the training set. DukeMTMC-NA
and MSMT17-NA were simulated by removing samples of identities

crossing camera views.

Dataset #site #cam #cross-camera
ID (train)

#ID
(train)

#ID
(test) #bbox

REID-CBD 6 6 10 UKN 103* 146,510
DukeMTMC-NA 1 8 10 702 1,110 26,199

MSMT17-NA 1 15 10 1,041 3,060 100,777
DukeMTMC [21] 1 8 702 702 1,110 36,411

MSMT17 [19] 1 15 1,041 1,041 3,060 126,441

* 103 is the number of identities in query set. Since there are 113,031
distractors in gallery set, the total number of identities is unknown.

Fsty( · ;Θs) and Ffuse( · ;Θf ), respectively. In the feature ma-
trices Xa, Xs and Xf , the vector in the i-th column denotes
the feature vector normalized by ℓ2 norm for sample IUi .
The similarity knowledge distillation loss is

min
Θf

wa

∥∥∥X⊤
a Xa −X⊤

f Xf

∥∥∥
1
+ ws

∥∥∥X⊤
s Xs −X⊤

f Xf

∥∥∥
1
,

(13)
where Θf is the parameter of the fused model Ffuse( · ;Θf )
and ∥·∥1 is the entry-wise ℓ1 norm; wa and ws are trade-off
parameters.

For training, the similarity knowledge distillation loss in
Eq. (13) was applied on unlabeled data. The identification
loss in Eq. (5) is applied on labeled data in addition to the
distillation loss. In the inference stage, only the fused model
Ffuse is used to extract features for matching.

5 CONSTRUCTING DATASETS WITH IDENTITIES
RARELY CROSSING CAMERA VIEWS

We have introduced a rewarded semi-supervised learn-
ing strategy for learning Re-ID on identities rarely crossing
camera views, which is still an under-explored problem.
Existing benchmark datasets Market-1501 [20], DukeMTMC
[21] and MSMT17 [19] were captured in small-scale surveil-
lance systems in a local area of one site. Most persons
appear in at least two cameras in the training set. Person30K
[23] was captured in multiple sites, but it does not contain
identities crossing sites for evaluating Re-ID across sites
and it is not public yet. Since existing publicly available
benchmark datasets were captured only in one site and not
suitable for evaluation of learning Re-ID on identities rarely
crossing camera views, we construct new datasets in two
ways: collecting a new real-world dataset in nonadjacent
scenes and simulating this scenario on existing benchmark
datasets. The comparisons between our constructed datasets
and existing benchmark datasets are shown in Table 4.

5.1 Real-World Dataset REID-CBD

We collected a new multi-site dataset called REID-
CBD captured in nonadjacent scenes in real-world scenario,
which can be publicly available after data masking. We



9

TABLE 5
Splits of our constructed datasets REID-CBD, DukeMTMC-NA and

MSMT17-NA. “#bbox” denotes the number of bounding boxes. “#ID”
denotes the number of identities. “UKN” denotes unknown.

Dataset

Training set Testing set
unlabeled labeled query gallery

#bbox #ID #bbox #ID #bbox #ID #bbox #ID
REID-CBD 24,000 UKN 131 10 4,647 103 117,732 UKN

DukeMTMC-NA 6,148 692 162 10 2,228 702 17,661 1,110
MSMT17-NA 6,607 1,031 350 10 11,659 3,060 82,161 3,060

1
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4

56

Camera 1

Camera 2

Camera 3

Camera 4

Camera 5

Camera 6

Camera

Locations of cameras

0     500m

Fig. 6. Samples of our REID-CBD dataset. In each row for a camera, ev-
ery two images are of the same identity. Since the images were captured
in different distant sites, identities crossing camera views hardly exist in
the unlabeled training data. The locations of the cameras are shown on
the map. To avoid privacy problem, the last step of data processing is
masking the faces of all persons.

selected 6 nonadjacent crowded scenes as 6 sites in the
central business district (CBD) of a city to capture videos
by cellphone cameras in the day. The locations of cameras
on the map and the examples in each camera are shown
in Figure 6. Occlusion problem makes it difficult to au-
tomatically annotate intra-camera identities by pedestrian
trackers. Different locations are distant to each other, so that
most persons unlikely appear in different locations in the
period of video recording. There are illumination variations,
viewpoint change and occlusions in different scenes. The
person images are approved to be shown in research papers
with privacy licenses of the captured pedestrians.

Data Collection and Processing. We captured long image
sequences in 6 nonadjacent scenes by cellphone cameras. To
obtain person images as training data, we applied Mask R-
CNN [80] to detect person images from all captured frames
and selected the bounding boxes with high confidence to
form the unlabeled training data set DU , in which there was
hardly any underlying cross-camera positive pairs. For each
scene, there were 4000 person images in average.

Besides unlabeled data, we annotated a small amount
of cross-camera positive pairs as labeled training data DL.
Since it is difficult to find cross-camera positive pairs in
nonadjacent scenes, we arranged for 113 actors to appear in
all 6 scenes and then captured and annotated their images.
Bounding boxes and identities of all actors were annotated
manually to guarantee the quality of labeled training set and
the testing set. For each camera, about 13 images of each
identity were annotated. For labeled training data set DL,
we used images of 10 actors. For testing set, we used images
of the other 103 actors. Moreover, we used Mask R-CNN
to additionally detect 113,031 person bounding boxes from

image sequences that were non-overlapping with those of
training sets DU and DL as distractors in gallery images.

The detailed statistics of the collected dataset are shown
in Table 4. The number of identities of unlabeled training
data and that of the gallery distractors are unknown, since
the images were detected automatically from raw videos
without annotation.
Evaluation Protocol. Training data includes the unlabeled
data set DU automatically detected from raw image se-
quences and the small labeled data set DL of 10 identities
captured and annotated manually.

For testing, the images of 103 actors are split half-and-
half for each identity to form the query image set and
the gallery image set. The 113,031 images as distractors
are added in gallery images for evaluation in real-world
situation. Each query image is matched with all gallery
images to evaluate the matching performance. The split is
shown in Table 5.

5.2 Simulated Datasets
Besides constructing real-world dataset, we used two

large benchmark datasets DukeMTMC2 [21] and MSMT17
[19] to simulate the scenario of Re-ID in nonadjacent scenes.
We randomly selected 10 identities in the training set and
used their images captured in multiple cameras to form the
labeled training set DL. For the other samples in the training
set, we randomly selected images of only one camera for
each identity to construct the unlabeled training set DU , in
which there was no cross-camera positive pair. The testing
data and protocols were kept the same as those of the
original datasets. The modified datasets are denoted by
DukeMTMC-NA and MSMT17-NA, of which the splits are
shown in Table 5. Compared with simulated datasets, the
number of samples in our REID-CBD is much larger.

6 EXPERIMENTS

To show the effectiveness of our method for semi-
supervised Re-ID on identities rarely crossing camera views,
we conducted comparative evaluations of our method
against a wide range of Re-ID methods and related rep-
resentation learning methods on three datasets specifically
constructed for Re-ID in nonadjacent scenes.

6.1 Experiment Settings

Datasets. The datasets include our real-world dataset REID-
CBD and two simulated datasets DukeMTMC-NA and
MSMT17-NA introduced in Section 5. In our default setting,
for each dataset, the training set consists of a labeled data
set DL of 10 identities and an unlabeled data set DU without
underlying cross-camera positive pairs.

Additionally, to simulate nonadjacent scenes with dif-
ferent distances, we evaluated using unlabeled data with
different ratios of underlying identities crossing camera
views for training. Moreover, we considered different types
of supervisions, such as increasing labeled identities and
annotating intra-camera identities.

2. In our evaluation, we used the data on DukeMTMC for academic
use without identifying or showing the person images.
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Evaluation Protocol. By default, the experiments were car-
ried out in semi-supervised setting. At the training stage,
the labeled training set of Market-1501 [20] was used for
pre-training to initialize the model, since it is challeng-
ing to learn from unlabeled cross-camera unpaired data
without prior knowledge of Re-ID. Then, on the target
domain (REID-CBD, DukeMTMC-NA or MSMT17-NA), a
large amount of unlabeled data DU and a small amount of
labeled data DL were used for training.

At the testing stage, for REID-CBD, we followed the
testing split in Section 5; for DukeMTMC-NA or MSMT17-
NA, we followed the original testing split of DukeMTMC
[21] and MSMT17 [19]. The rank-k accuracy and mean av-
erage precision (mAP) were applied as performance metrics
following the standard evaluations of Re-ID [20].

6.2 Implementation Details

Backbone Model. We applied ResNet-50 [75] as the back-
bone for our model and all compared methods. We replaced
the global average pooling (GAP) layer with generalized
mean pooling [7] and used batch normalization neck (BN-
Neck) [76] after the generalized mean pooling layer. The
stride size of the last residual layer was set as 1. The
prototypes {pc} in Section 3.3 were implemented by a fully
connected layer (FC) followed by Softmax function. Our
model took person images resized to 256× 128 as input.
Hyperparameters. For the initial value of cluster relation
matrix r̂

dyn(0)
ck,cl in Eq. (3), we set λ = 0.8. In the identification

loss Lid in Eq. (5), we set the margin parameter m = 0.3
for the triplet loss term. For DBSCAN clustering [77] in
affinity-based cluster construction and style-based cluster
construction, the maximum intra-cluster distance between
two samples ϵ was 0.6 and the minimum number of samples
was 2. For style-based cluster discrimination, the number of
real images selected in each cluster was Nreal = 2. In the
similarity knowledge distillation loss in Equation (13), we
set wa = ws = 1.

At the training stage of rewarded relation discovery
(R2D), the step size α for optimum approximation in Eq.
(6) and (7) was set as 0.1. The learning rate γR for cluster re-
lation matrix in Eq. (8) was set as 0.06. The learning rates for
model parameter Θ and prototypes {pc} were γθ = 6×10−5

and γp = 3× 10−3, respectively. For optimization, SGD [81]
was applied, for which we set weight decay as 5 × 10−4

and momentum as 0.9. In each batch, NBU = 128 images
were randomly sampled from the unlabeled data set and
NBL = 128 in the labeled data set were used. The training
process consisted of 120 epochs. The learning rates γθ and
γp were multiplied by 0.1 in epoch 40 and epoch 90.

As for multiple relation discovery objectives learning,
the image-image translation model TCamStyle was imple-
mented by following the method in HHL [14]. For training
of knowledge distillation, the weights of both the similarity
knowledge distillation loss and the identification loss were
set as 1. In each batch, 64 images were randomly sampled
from the unlabeled data set and all images in the labeled
data set were used. There were totally 60 epochs. The SGD
optimizer with the same parameters as that for R2D was
used. The learning rate was initialized as 3 × 10−3 and
multiplied by 0.1 in epoch 20 and epoch 40.

Our method was implemented on Pytorch and trained
on 1 NVIDIA NVIDIA RTX A6000 GPU.

6.3 Compared Methods

To show the uncertainty reduction ability on training
data with identities rarely crossing camera views, we com-
pared our method with existing semi-supervised, unsu-
pervised and supervised Re-ID methods, as well as some
closely related representation learning methods including
unsupervised domain adaptation, self-supervised learning,
training objective optimization and clustering.

6.3.1 Re-ID Models

Unsupervised Re-ID. Since the performances of the state-
of-the-art unsupervised Re-ID methods have been close to
the performances of supervised learning, we compared our
method with representative unsupervised Re-ID methods
HHL [14], MMT [17], GLT [18], UNRN [47] and MEB-
Net [37]. HHL [14] learns representation from generated
images by camera style transfer, which is a representative
generative adversarial method for Re-ID. MMT [17], GLT
[18], UNRN [47] and MEB-Net [37] are advanced unsuper-
vised Re-ID methods based on pseudo labeling. DG-Net
[48] jointly learns image generation and discrimination for
supervised learning and can be adapted for unsupervised
Re-ID by replacing the groundtruth labels with pseudo
labels. These unsupervised Re-ID models were applied on
only unlabeled training data DU .

Semi-Supervised Re-ID. To utilize both unlabeled data DU

and limited labeled training data DL, we adapted the state-
of-the-art unsupervised Re-ID methods to semi-supervised
learning by additionally applying a cross entropy classifi-
cation loss and a triplet loss for identifying labeled data as
in the identification loss Lid in Eq. (5). The semi-supervised
versions of unsupervised Re-ID methods HHL [14], MMT
[17], GLT [18] UNRN [47], MEB-Net [37] and DG-Net [48]
were denoted by HHL-semi, MMT-semi, GLT-semi, UNRN-
semi, MEB-Net-semi, and DG-Net-semi, respectively.

Few-Shot Supervised Re-ID. To avoid negative transfer
effect of unlabeled data, we evaluated using only the labeled
data DL for few-shot supervised learning. We compared
with the state-of-the-art supervised Re-ID model AGW [7].

6.3.2 Representation Learning Methods

Semi-Supervised Learning and Domain Adaptation. For
comparison with general unsupervised domain adaptation
methods, we evaluated some representative methods MMD
[82], CORAL [83], SpCL [42] and SBase [47]. MMD [82] and
CORAL [83] are loss functions for moment matching. They
were applied on our backbone model for camera-specific
feature distribution alignment. SpCL [42] and SBase [47]
are advanced pseudo labeling methods for domain adap-
tive object re-identification. Their semi-supervised versions
MMD-semi, CORAL-semi, SpCL-semi and SBase-semi were
adapted from the unsupervised versions in the same way as
the semi-supervised Re-ID models in Section 6.3.1.

Self-Supervised Learning. As for self-supervised represen-
tation learning, we compared with advanced contrastive
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TABLE 6
Comparisons with the state-of-the-art methods for person re-identification on unlabeled data DU without identities crossing camera views and

limited labeled data DL of 10 identities crossing camera views. “R-k” denotes the rank-k accuracy (%) and “mAP” denotes mean average precision
(%). The best performances are marked in bold. The second-best performances are marked by underline.

Methods Reference
REID-CBD DukeMTMC-NA MSMT17-NA

R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP
Few-shot supervised (DL) AGW [7] TPAMI’21 43.5 59.7 67.3 17.4 56.1 69.2 74.5 36.1 30.6 42.9 48.4 11.5

Unsupervised (DU )

HHL [14] ECCV’18 38.2 55.2 63.6 13.0 58.7 70.9 75.2 37.9 24.5 34.7 40.0 8.5
MMT [17] ICLR’20 35.2 45.2 50.5 13.8 44.1 59.0 66.9 32.0 18.1 27.8 33.1 7.7
GLT [18] CVPR’21 24.1 30.7 34.5 6.5 47.3 63.1 69.8 34.1 17.1 26.9 32.4 7.1

MMD [82] JMLR’12 29.2 36.7 40.9 9.8 48.5 63.5 68.9 30.3 14.3 22.9 27.8 6.0
CORAL [83] ECCVW’16 29.2 36.7 40.9 9.8 44.3 58.9 65.3 32.4 13.8 21.9 26.8 5.7

SpCL [42] NeurIPS’20 27.6 34.2 37.5 8.0 46.1 61.4 67.7 27.0 18.3 29.4 34.8 6.0
MEB-Net [37] ECCV’20 30.5 39.8 45.0 9.9 44.8 59.1 66.2 31.6 16.7 26.6 31.9 7.0
DG-Net [48] CVPR’19 37.4 49.6 62.3 14.6 56.5 67.8 76.1 38.4 25.6 35.7 42.6 9.1
UNRN [47] AAAI’21 38.1 48.4 53.1 16.6 53.2 65.6 71.5 38.8 20.1 29.5 34.7 8.4

SBase [47] (K-means) AAAI’21 30.1 38.5 43.1 9.2 46.8 60.9 67.3 33.4 17.6 26.7 31.8 7.2
SBase [47] (Mean shift) AAAI’21 29.1 35.6 39.9 8.9 44.7 57.8 64.1 32.1 17.2 26.1 31.5 7.0

SBase [47] (AP) AAAI’21 29.6 36.3 39.8 9.4 45.6 59.3 65.4 32.2 17.5 26.3 31.8 7.1
SBase [47] (DBSCAN) AAAI’21 29.4 36.2 40.2 9.5 45.2 59.0 65.8 32.5 18.0 26.9 32.2 7.3

Semi-supervised
(DU + DL)

HHL-semi [14] ECCV’18 45.8 63.1 70.7 18.4 59.2 72.6 77.4 39.9 27.6 38.9 44.5 9.5
MMT-semi [17] ICLR’20 36.3 47.1 52.9 15.7 47.7 61.1 67.8 33.4 21.8 32.2 38.3 9.2
GLT-semi [18] CVPR’21 27.6 35.8 41.5 9.2 50.6 65.7 72.0 36.3 21.7 32.3 38.2 9.0

MMD-semi [82] JMLR’12 31.5 39.8 45.0 12.5 50.5 65.9 70.6 33.1 18.6 28.4 35.1 7.8
CORAL-semi [83] ECCVW’16 31.7 40.7 45.6 12.3 45.9 60.1 68.6 34.6 17.8 27.8 33.0 7.5

SpCL-semi [42] NeurIPS’20 30.2 37.3 41.1 9.8 47.1 63.5 68.9 29.6 18.5 27.8 33.1 7.8
MEB-Net-semi [37] ECCV’20 32.0 43.1 49.2 12.5 47.3 62.7 70.1 34.4 20.6 31.6 37.6 8.3
DG-Net-semi [48] CVPR’19 44.2 60.5 69.4 18.1 60.2 70.5 78.1 40.4 28.9 40.1 45.1 9.9
UNRN-semi [47] AAAI’21 38.9 49.7 55.6 17.9 55.6 67.8 74.2 41.3 22.8 33.4 39.0 9.7

SBase-semi [47] (K-means) AAAI’21 34.9 44.8 50.7 14.2 49.3 62.3 68.8 34.8 20.1 29.6 35.2 8.7
SBase-semi [47] (Mean shift) AAAI’21 33.5 43.3 49.1 13.7 46.2 60.1 67.5 33.8 21.4 31.4 36.7 8.5

SBase-semi [47] (AP) AAAI’21 35.1 43.9 51.7 14.1 47.1 61.6 68.7 34.5 20.5 30.3 35.8 8.8
SBase-semi [47] (DBSCAN) AAAI’21 35.4 46.8 52.7 14.3 47.0 61.2 68.1 34.2 21.8 31.9 37.4 8.9

Self-supervised + fine-tune
(DU + DL)

LUP [49] CVPR’21 32.4 46.5 53.7 10.4 44.3 57.9 63.2 26.0 15.1 24.6 29.5 4.9
SimSiam [84] CVPR’21 33.8 49.0 56.7 11.6 40.1 54.6 60.1 22.0 19.0 29.0 34.0 5.9

Training Objective Optimization
(DU + DL)

Reweight [72] ICML’18 37.7 51.9 58.3 15.3 53.0 67.5 73.3 36.1 27.6 39.6 45.5 10.8
MSLG [71] ICPR’21 33.1 45.4 50.4 10.4 51.4 65.7 71.9 35.1 24.0 34.7 39.7 8.9
R2D (ours) - 59.0 76.9 82.5 28.2 64.9 78.2 81.7 44.5 39.4 52.2 57.8 15.2

learning methods LUP [49] and SimSiam [84]. LUP is specif-
ically designed for Re-ID task and SimSiam is for general
image classification. After unsupervised pre-training on un-
labeled training set DU , the model was fine-tuned on the
labeled training set DL.
Training Objective Optimization. Our method can be re-
garded as learning the objective function on a small labeled
validation set by bi-level optimization, which is a type of
training objective optimization method. We compared with
two representative training objective optimization methods
Reweight [72] and MSLG [71]. Based on bi-level optimiza-
tion, Reweight [72] learns different weights for different
samples and MSLG [71] learns meta soft labels for each
sample. Since they are designed for supervised closed-set
image classification, we adapted these methods for semi-
supervised Re-ID by assigning pseudo labels obtained by
clustering to unlabeled data.
Clustering Algorithms. To compare with representative
clustering algorithms, we applied K-means [85], Mean shift
[86], affinity propagation (AP) [87] and DBSCAN [77] for
a pseudo-labeling-based strong baseline method SBase [47]
and its semi-supervised version SBase-semi.

6.3.3 Implementation for the Compared Methods
Implementations of all Re-ID models were based on the

codes released by the papers. ResNet-50 [75] was used as
backbone for all compared methods. By default, the models
were initialized by pre-training on Market-1501 [20] to pro-
vide prior knowledge for Re-ID. For self-supervised learn-
ing methods, the models were initialized by self-supervised
training and then further trained on Market-1501 [20].

6.4 Model Comparison and Analysis
Comparative experiments on REID-CBD, DukeMTMC-

NA and MSMT17-NA datasets are shown in Table 6.
Comparison with Semi-Supervised and Unsupervised Re-
ID Models. The performance of our method is clearly better
than all compared semi-supervised and unsupervised Re-ID
models. Our method outperformed the second-best method
on rank-1 accuracy by 13.2%, 4.7% and 8.8% on REID-CBD,
DukeMTMC-NA and MSMT17-NA, respectively.

When training with identities rarely crossing camera
views, the advanced pseudo-label-based unsupervised Re-
ID methods MMT [17], GLT [18] and their semi-supervised
versions failed and they were even worse than supervised
learning by AGW [7] on limited labeled data DL. These
results demonstrate that, these pseudo-label-based methods
cannot effectively discover the underlying sample relations
of cross-camera unpaired data with high uncertainty and
suffer from noise accumulation problem [24].

HHL-semi [14] and DG-Net-semi [48] can improve the
performance as compared with supervised learning on DL,
which indicates that diversifying training data variations by
GANs is effective for cross-camera unpaired data.

The above models either used affinity-based clusters
(MMT [17] and GLT [18]) or used style-based clusters (HHL
[14]), where the cluster relations are determined without
reward from labeled data. In comparison, our method auto-
matically discovers the probabilistic relations by the reward
from few-shot validation objective on limited labeled data
DL and thus can reduce uncertainty more effectively.
Comparison with Few-shot Supervised Training on DL.
Our method outperformed a strong supervised Re-ID base-
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line method AGW [7], since it overfitted limited labeled
data. This indicates that training data with identities rarely
crossing camera views is beneficial to improving identifica-
tion performance when it was exploited by our method.
Comparison with Self-Supervised Learning Models. Our
method outperformed all compared self-supervised learn-
ing methods. For LUP [49] and SimSiam [84], the pre-
training objectives are designed without reward from la-
beled data. In our method, the reward from validation
objective can guide the relation discovery objective to dis-
cover probabilistic relations for better alleviation of the
uncertainty in underlying sample relations.
Comparison with Training Objective Optimization. Our
method clearly outperformed Reweight [72] and MSLG [71].
During training, Reweight [72] learns to adjust the weights
of different samples and MSLG [71] learns the meta soft
labels for each sample individually. As Reweight [72] and
MSLG [71] are designed for supervised learning on training
sets with biases or noises, they ignore the cluster relations
of unlabeled data for unsupervised learning. In comparison,
our method parameterizes and learns the probabilistic rela-
tions between different clusters to reduce the uncertainty of
underlying sample relations.
Comparison with Domain Adaptation Models. Our
method outperformed the compared domain adaptation
methods. The distribution-level alignment by MMD [82]
and CORAL [83] ignore the probabilistic relations between
samples. As for pseudo-label-based approaches SpCL [42]
and SBase [47], the result analysis is similar to the above
analysis for unsupervised Re-ID methods.
Comparison with Clustering Algorithms. Compared with
SBase-semi based on different clustering algorithms, our
method outperformed all of them. These clustering algo-
rithms cannot learn the probabilistic relations between dif-
ferent clusters as our method to quantify the uncertainty.

6.5 Further Evaluations
We evaluated and analyzed the effectiveness of the com-

ponents and sensitivity of hyperparameters in our method.
To simulate different real-world scenarios, we evaluated
training on data with different ratios of underlying identities
crossing camera views. Moreover, we evaluated using dif-
ferent types of supervisions, such as more labeled identities,
intra-camera supervision. In addition, to better understand
the effect of rewarded relation discovery, we visualized
the differences of probabilistic relations between different
clusters before and after training. We also provide analysis
for running time and convergence of loss.

6.5.1 Ablation Study
We evaluated the effectiveness of the key components of

our method in Table 7. Our model based on different relation
discovery objectives are denoted by R2Daff and R2Dsty. The
subscripts “aff” and “sty” denote affinity-based clusters and
style-based clusters, respectively.
Comparison with Baseline Models. To evaluate the perfor-
mance of the baseline methods, we trained our backbone
model on a source dataset Market-1501 [20] (denoted by
“Direct transfer”) and then fine-tuned it on the small labeled

TABLE 7
Ablation study results of our method R2D. The subscripts “aff” and “sty”

denote the model learned based on affinity-based clusters and
style-based clusters. “Cluster” denotes clustering-based pseudo label

training on unlabeled data DU without reward. “GT intra-cam ID”
denotes groundtruth intra-camera identities. “Cluster + fine-tune”

denotes fine-tuning on labeled data DL based on the model learned by
clustering-based pseudo label training without reward. “rand R̂dyn(0)”
denotes initializing cluster relation matrix R̂dyn randomly. “R2Dxxx +

R2Dxxx” denotes score fusion of two models. “Distill two R2Dxxx”
denotes fusion of two models by knowledge distillation in our method.

“R-1” denotes the rank-1 accuracy (%) and “mAP” denotes mean
average precision (%).

Methods
REID-CBD DukeMTMC-NA MSMT17-NA
R-1 mAP R-1 mAP R-1 mAP

Direct transfer (baseline) 28.7 7.1 51.9 33.1 21.2 7.4
Fine-tune on DL (baseline) 43.1 17.1 53.5 35.6 29.9 11.2

Clusteraff 29.4 9.5 51.8 34.5 16.8 6.1
Clusteraff (GT intra-cam ID) - - 53.6 36.3 19.6 7.1

Clusteraff + fine-tune 44.7 18.6 55.5 38.1 28.3 10.5
R2Daff (rand R̂dyn(0)) 41.9 14.3 51.8 33.8 24.8 9.3

R2Daff 50.4 23.3 61.5 41.4 37.8 14.4
Clustersty 38.2 13.0 58.7 37.9 24.5 8.5

Clustersty + fine-tune 45.8 18.4 59.2 39.9 27.6 9.5
R2Dsty (rand R̂dyn(0)) 43.2 16.1 55.1 35.5 26.6 9.6

R2Dsty 55.0 24.5 62.4 41.2 38.1 14.4
R2Daff + R2Daff 51.2 23.5 61.7 41.8 37.9 14.3
R2Dsty + R2Dsty 55.3 24.8 62.6 41.3 38.3 14.4
R2Daff + R2Dsty 54.7 26.4 62.8 42.7 38.6 14.7

Distill two R2Daff 52.7 24.8 62.6 42.1 38.2 14.6
Distill two R2Dsty 56.0 25.7 63.1 41.8 38.6 14.7
R2D (full model) 59.0 28.2 64.9 44.5 39.4 15.2

data set DL of a few identities (denoted by “Fine-tune on
DL”) on the target dataset. Compared with “direct transfer”,
fine-tuning on labeled data of only 10 identities can improve
the performance, but the model suffered from overfitting
problem. Compared with the baseline models “Fine-tune on
DL”, our method achieved significant improvements of over
15% rank-1 accuracy on REID-CBD and about 10% rank-
1 accuracy on DukeMTMC-NA and MSMT17-NA, which
indicates the effectiveness of rewarded relation discovery
on unlabeled data in our method.

Effectiveness of Reward. To maximize the reward for R2D,
the cluster relation matrix R̂dyn is learned by bi-level op-
timization in Eq. (2) during training to update the relation
discovery objective for minimizing the few-shot validation
objective. To evaluate the effectiveness of using reward, we
learned relation discovery objective and validation objective
separately with fixed R̂dyn. We trained models with fixed
soft pseudo labels obtained by clustering on unlabeled data
DU (denoted by “Clusteraff” and “Clustersty”) and then fine-
tuned the models on labeled data DL (denoted by “Clusteraff
+ fine-tune” and “Clustersty + fine-tune”). For “Clusteraff”,
we additionally used the groundtruth intra-camera identi-
ties to replace the pseudo labels for evaluating the ideal
case for clustering that each cluster contains samples of one
identity. This is denoted by “Clusteraff (GT intra-cam ID)”.

Compared with the baseline model “Direct transfer”
and “Fine-tune on DL”, the performance gains of re-
warded relation discovery R2Daff and R2Dsty were much
more significant than clustering on unlabeled data without
reward (“Clusteraff”, “Clusteraff (GT intra-cam ID)” and
“Clustersty”) as well as using clustering-based pseudo la-
bel training and few-shot validation objective separately
without reward (“Clusteraff + fine-tune” and “Clustersty +
fine-tune”). Reward from labeled data can guide relation
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TABLE 8
Effect of smoothness parameter λ for initialization of R̂dyn in Eq. (3) for

R2Daff on rank-1 (R-1) accuracy and mAP (%) on REID-CBD.
λ 0.6 0.7 0.8 0.9 1

R-1 48.7 49.9 50.4 50.0 50.4
mAP 21.5 22.0 23.3 22.5 22.8

TABLE 9
Effect of using different ϵ in DBSCAN and different clustering algorithms

for R2Daff on rank-1 (R-1) accuracy and mAP (%) on REID-CBD.

Methods
DBSCAN

K-means Mean-shift APϵ = 0.4 ϵ = 0.5 ϵ = 0.6 ϵ = 0.7
R-1 49.9 50.7 50.4 48.8 49.6 49.3 50.1

mAP 22.5 22.9 23.3 21.5 22.9 22.6 23.1

discovery on unlabeled data to better quantify and reduce
the uncertainty of underlying sample relations.

Effectiveness of Cluster Relation Initialization. The ini-
tialization of cluster relation matrix R̂dyn is the key to
embedding either affinity-based prior knowledge or style-
based prior knowledge in the relation discovery objective.
Instead of using Eq. (3), we initialized each row of R̂dyn by
a random soft label obtained by applying Softmax function
to a random vector. We denote the cases of random initial-
ization of R̂dyn for relation discovery objectives based on
affinity-based clusters and style-based clusters by “R2Daff

(rand R̂dyn(0))” and “R2Dsty (rand R̂dyn(0))”, respectively.
Compared with “R2Daff” and “R2Dsty”, random initial-

ization of the cluster relation matrix significantly degraded
the performance, which demonstrates that initialization
of the cluster relation matrix can effectively embed prior
knowledge in relation discovery objective for rewarded
relation discovery.

Effectiveness of Knowledge Fusion for Relation Discovery
Objectives. To show the effectiveness of similarity knowl-
edge distillation for fusing the knowledge of two relation
discovery objectives, we evaluated score fusion for models
R2Daff and R2Dsty by summing up the distances, which is
denoted by “R2Daff+R2Dsty”. We also evaluated score fusion
(R2Daff + R2Daff” and “R2Dsty + R2Dsty”) and distillation-
based fusion in our method (“Distill two R2Daff” and “Distill
two R2Dsty”) for two models trained individually by the
same relation discovery objective.

Compared with “Distill two R2Daff” and “Distill two
R2Dsty”, our full model R2D that fuses knowledge of dif-
ferent relation discovery objectives achieves better perfor-
mance, which indicates that complementary knowledge is
learned from affinity-based clusters and style-based clusters.
Score fusion methods “R2Dxxx+R2Dxxx” only bring marginal
improvement on single models, since late fusion ignores the
relation between features of different samples; while our
similarity knowledge distillation fuses the complementary
knowledge of two models more effectively. We note that the
style-based clusters provide more signal than the affinity-
based clusters for Re-ID, because the style-based clusters
contain variations of lighting and background that dominate
cross-camera variations of Re-ID, while the affinity-based
clusters contain pose and orientation variations within the
same camera. For inference, the fused model is of the
same size as a single model and thus more computationally
efficient than model ensemble.

TABLE 10
Effect of margin parameter m of triplet loss in Equation (5) for R2Daff on

rank-1 (R-1) accuracy and mAP (%) on REID-CBD.
m 0.0 0.1 0.3 0.5 0.7 0.9
R-1 49.7 50.2 50.4 50.3 50.1 50.0

mAP 22.9 23.1 23.3 23.2 23.0 23.1

TABLE 11
Effect of weights wa and ws in distillation loss in Equation (13) for

R2Daff on rank-1 (R-1) accuracy and mAP (%) on REID-CBD.
wa 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ws 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0
R-1 54.4 55.8 57.1 57.8 58.6 59.0 58.1 57.2 56.5 54.9 53.6

mAP 25.3 25.9 26.7 27.4 27.9 28.2 27.6 27.1 26.2 25.4 24.4

6.5.2 Parameter Analysis
We analyzed the effect of some key hyperparameters of

our method R2Daff on REID-CBD dataset.
Smoothness Parameter λ for Initialization of R̂dyn. For
initialization of cluster relation matrix R̂dyn, λ in Eq. (3)
controls the smoothness of the initial soft labels. We varied λ
from 0.6 to 1.0 with step size of 0.1. The results on REID-CBD
are shown in Table 8. The performance variation is small
and the best performance is achieved when λ = 0.8. When
λ decreases, the soft labels become increasingly smooth and
excessive uncertainty in the cluster relations degrades the
effect of the embedded prior knowledge.
Parameter ϵ of DBSCAN Clustering and Different Clus-
tering Algorithms. The maximum intra-cluster distance
between two samples ϵ is the key parameter for DBSCAN
clustering used in our relation discovery objectives. We
varied ϵ from 0.4 to 0.7 for R2Daff. Moreover, as our method
does not depend on specific clustering algorithm, we also
evaluated cluster construction by K-means [85] (k = 2000),
Mean shift [86], affinity propagation (AP) [87]. The results
on REID-CBD are shown in Table 9. The results show that
the performance of our method is insensitive to variation of
ϵ in the range of [0.4,0.7] and different clustering algorithms,
because the clustering results only determine the initializa-
tion of the relation discovery objective. The cluster relation
matrix is further updated during training.
Margin Parameter m of Triplet Loss. We varied m in Lid in
Equation (5) from 0 to 0.9. The results in Table 10 show that
our method is not sensitive to the margin parameter.
Weights wa and ws of Distillation Loss. We varied wa from
0 to 2 and set ws = 2 − wa in Equation (13) to control the
contributions of knowledge learned by R2Daff and R2Dsty,
respectively. As shown in Table 11, the best performance is
achieved when wa = ws = 1, which indicates that using
equal contributions for R2Daff and R2Dsty to distill make
them complement each other better.
Batch Size. In our training strategy, a batch consists of NBL

labeled samples and NBU unlabeled samples. By default,
we set NBL = 128 and NBU = 128 and the batch size is
NBL + NBU = 256. We varied NBU from 32 to 256 and
varied NBL from 32 to 128 for learning our full model R2D
on REID-CBD. The results are shown in Table 12. When
using our default batch size 256 (NBL = NBU = 128),
the best performance is achieved. Compared with the best
performance, the performance degradation on mAP is fewer
than 2% when varying the batch size. The results demon-
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TABLE 12
Performances (%) of using different batch sizes for our R2D on

REID-CBD. NBU is the number of unlabeled samples and NBL is the
number of labeled samples.

NBU 32 64 128 256
NBL 32 64 128 32 64 128 32 64 128 32 64 128

Batch size 64 96 160 96 128 192 160 192 256 288 320 384
R-1 57.2 57.5 58.6 56.7 58.1 58.6 57.7 58.5 59.0 57.1 57.9 58.7

mAP 26.6 27.1 27.9 26.5 27.4 28.0 27.1 27.9 28.2 26.7 27.2 28.0

TABLE 13
Training on subsets with different ratios of identities crossing camera
views by R2Daff (affinity-based clusters), HHL-semi and GLT-semi.

Performance metrics are rank-1 (R-1) accuracy and mAP (%).
Ratio of ID crossing camera 0 25% 50% 75% 100%

HHL-semi [14]
R-1 59.2 59.0 59.3 59.7 59.5

mAP 39.9 40.1 40.2 40.4 40.1

GLT-semi [18]
R-1 50.6 55.3 58.8 61.1 63.6

mAP 36.3 40.5 43.1 45.2 47.4

R2Daff (ours)
R-1 61.5 62.7 68.0 69.5 71.1

mAP 41.4 44.3 48.5 50.1 51.2

strate that our method is robust to batch size when NBL is
in [32, 128] and NBU is in [32, 256].

6.5.3 Training on Data with Different Ratios of Underlying
Identities Crossing Camera Views

For training data collection in nonadjacent scenes with
different distances, the closer the distance between two non-
adjacent scenes is, the more possible there exist underlying
identities crossing camera views. The visually similar sam-
ples that probably contain underlying cross-camera positive
pairs can be associated to reduce identity uncertainty by
pseudo labeling methods. To simulate different real-world
scenarios, we varied the ratios of identities crossing camera
views from 0% to 100% on DukeMTMC [21]. We sampled
different unlabeled training subsets of the same size by
removing samples of identities crossing camera views for
fair comparison between different ratios. Two competi-
tive semi-supervised learning methods style-transfer-based
HHL-semi [14] and pseudo-label-based GLT-semi [18] were
compared with our method “R2Daff” (affinity-based clus-
ters). The results are shown in Table 13.

When varying the ratios of identities crossing camera
views in the subsets from 0% to 100%, our method con-
sistently outperformed HHL-semi [14] and GLT-semi [18].
HHL-semi [14] cannot bring about improvement with the
ratio increasing. GLT-semi [18] can reduce identity uncer-
tainty more effectively when the ratio is high. However,
when the ratio was 0, GLT-semi [18] was worse than the
baseline model in Table 7 (Rank-1 53.5% and mAP 35.6%)
due to noise accumulation problem [24]. In real-world ap-
plications, the ratio is uncertain to be high or low in the
unlabeled data captured in unseen scenes. With reward from
labeled data to guide relation discovery, our method can
stably improve the baseline model with the ratio increasing.

6.5.4 Training with Different Types of Supervision

We evaluated using different types of supervisions, in-
cluding more labeled identities and additional intra-camera
identity labels on modified DukeMTMC-NA. We also eval-
uated unsupervised domain adaptation.

TABLE 14
Evaluation of using different numbers of labeled identities in training set
CL for our method R2Daff (affinity-based clusters). The values in the

brackets for “R2Daff (ours)” are the gains compared with the baseline.

CL 10 30 50 70
Fine-tune on
DL (baseline)

R-1 53.5 57.6 60.6 62.1
mAP 35.6 37.8 40.2 42.0

R2Daff (ours)
R-1 61.5 (+8.0) 66.0 (+8.4) 68.2 (+7.6) 71.1 (+9.0)

mAP 41.4 (+5.8) 46.7 (+8.9) 49.3 (+9.1) 51.5 (+9.5)

TABLE 15
Evaluation of using additional intra-camera identity labels. The

performances are indicated by rank-k (R-k) accuracy and mAP (%).

Methods R-1 R-5 R-10 mAP
MCNL [88] 63.1 77.4 82.3 44.3

MCNL [88]+ R2D (ours) 67.1 80.4 85.1 48.3

The Number of Identities CL in Labeled Data DL. When
more labeled data can be obtained for training, we com-
pared with the baseline model of “Fine-tune on DL” to show
the effectiveness of our method “R2Daff”. We increased the
number of labeled identities CL from 10 to 70 with step
size of 20 and evaluated our method on DukeMTMC-NA.
The results are shown in Table 14. With more labeled iden-
tities, the improvement of our R2D on the baseline model
is increasingly significant from 5.8% mAP to 9.5% mAP,
since the validation objective with stronger supervision can
provide better guidance for discovering the probabilistic
cluster relations for the relation discovery objective.
Additional Intra-Camera Supervision. Although identities
crossing camera views are rare, intra-camera identity labels
can still be annotated, so we considered additional intra-
camera supervision for training. We compared with the
state-of-the-art intra-camera supervised Re-ID loss MCNL
[88] that is specifically designed for cross-camera unpaired
data. For fair comparison in the implementation, our iden-
tification loss (Eq. (5)) was applied on the cross-camera
paired labeled data DL in addition to the MCNL loss based
on the codes released by the authors. Our method R2D
was applied on the model pre-trained by MCNL. As intra-
camera supervision is available, we used ImageNet for pre-
training instead of Market-1501 [20].

The results on DukeMTMC-NA (with intra-camera su-
pervision) are shown in Table 15. When combining our R2D
with MCNL, clear improvement can be achieved, since our
method can learn to discover probabilistic cluster relations
by the rewarded pseudo label training strategy to quantify
and reduce uncertainty of underlying sample relations.
Unsupervised Domain Adaptation. Our method can also
be applied to unsupervised domain adaptation (UDA) task.
We compared with the state-of-the-art unsupervised Re-ID
method UNRN [47] on REID-CBD, DukeMTMC-NA and
MSMT17-NA (with rare cross-camera positive pairs) and
the original DukeMTMC [21] and MSMT17 [19] (with cross-
camera positive pairs for each identity).

To adapt our method for UDA task, we replace the
labeled image set with pseudo labeled image set for com-
puting the few-shot validation objective to provide reward
for relation discovery objective. Since there exists limited
cross-camera positive pairs, we construct the pseudo labeled
image set by potential cross-camera positive pairs with high
confidence level.



15

Probabilistic cluster relation before R2D

0.717 0.783 0.855 0.889

0.842 1.024 1.054 1.148

0.948 0.993 1.031 1.099

Probabilistic cluster relation after R2D

Change of probabilistic 

cluster relation

0.992 1.029 1.083 1.090

Fig. 7. Visualization of probabilistic relations between randomly selected
clusters. Each cluster is represented by an image in it and the value in
the rectangle is the Cosine distance between the prototype of the two
clusters. After learning cluster relations by R2D, the feature similarities
between different clusters become more consistent with visual similari-
ties of human perception and thus the uncertainty of underlying sample
relations are better quantified.

TABLE 16
Comparisons with UNRN [47] in unsupervised domain adaptation

(UDA) setting on REID-CBD, DukeMTMC-NA, MSMT17-NA (with rare
cross-camera positive pairs) and DukeMTMC, MSMT17 (with

cross-camera positive pairs for each identity).

Methods
REID-CBD Duke-NA MSMT17-NA DukeMTMC MSMT17
R-1 mAP R-1 mAP R-1 mAP R-1 mAP R-1 mAP

UNRN [47] 38.3 16.9 53.7 39.5 20.7 8.7 82.0 69.1 52.4 25.3
R2D (ours) 57.5 26.7 62.6 42.3 38.5 14.6 82.8 70.4 53.3 25.8

The results of comparative evaluations are reported in
Table 16. Our method outperforms UNRN [47] on all eval-
uated datasets. The improvements of our method are espe-
cially significant in the cases with rare cross-camera positive
pairs on REID-CBD, DukeMTMC-NA and MSMT17-NA,
because the uncertainty of sample relation is higher than
that on the original DukeMTMC and MSMT17. Our method
learns to reduce uncertainty with reward from labeled data;
while UNRN [47] reduces uncertainty based on empirical
uncertainty estimation principle of soft multilabel agree-
ment, which may cause incorrect estimation without using
reward in our method.

6.5.5 Visualization of Learned Probabilistic Relations
To understand the effect of learning cluster relations in

rewarded relation discovery (R2D), we visualize the images
of 9 randomly selected clusters and the Cosine distances
between the prototypes of corresponding clusters for R2Daff
on MSMT17-NA dataset, as shown in Figure 7. Due to
space limitation, more examples of probabilistic relation
improvement and degradation in both normal cases and
hard cases are shown in the supplementary material.

The cluster relations before and after using R2D are
shown in the first row and the second row, respectively.
Intuitively, the distances between different clusters should
reflect the degrees of visual differences. For example, the
distance between two persons in tops of the same color
and bottoms of the same color should be smaller than that
between two persons in tops or bottoms of different colors.
Before applying R2D, such rankings of distances that are
contradictory to human perception exist in both two groups

TABLE 17
Running time of each step of our method in training and testing on

REID-CBD. The style transfer method is StarGAN [79].

Step R2Daff
Style

transfer [79] R2Dsty
R2Daff,R2Dsty

knowledge fusion Inference Retrieval

Time 3.5h 12.0h 4.0h 1.7h 2min 2min

0 1000 2000 3000 4000 5000
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Fig. 8. Variations of the identification loss LID along with increasing
iterations on REID-CBD, DukeMTMC-NA and MSMT17-NA.

of images in the first row. After learning the cluster relations
by R2D, as indicated by the arrows, the feature similarities
between different clusters change and become more con-
sistent with visual similarities of human perception. Thus,
the uncertainty of underlying sample relations are better
quantified by the learned probabilistic relations.

6.5.6 Complexity Analysis and Running Time

We analyze the model size and computation costs for
our method R2D. ResNet-50 [75] was applied as backbone
model for our method. The number of parameter is 25.6M
and the dimension of feature is 2048. We use floating-point
operations per second (FLOPs) to indicate computation cost.
The computation cost for a forward pass is 2.7G FLOPs.
For training rewarded relation discovery, an iteration con-
tains three forward passes and three backward passes, of
which the cost is 24.6G FLOPs. For similarity knowledge
distillation, an iteration contains one forward pass and one
backward pass, of which the cost is 8.2G FLOPs.

We evaluated the running time of each step of our
method in training and testing on REID-CBD. The numbers
of samples in training set and testing set are 24,131 and
122,379, respectively. The results are reported in Table 17.
The style transfer method StarGAN [79] applied in the style-
based cluster construction of our method took longer time
than other steps. Since our method does not depend on
specific style transfer methods, alternative methods can be
applied to improve training efficiency.

6.5.7 Convergence of Loss

In the training phase, we show the variations of the
identification loss LID along with increasing iterations on
REID-CBD, DukeMTMC-NA and MSMT17-NA in Figure 8.
Generally, the loss converges after 4000 iterations.

6.5.8 Evaluation on Vehicle Re-Identification

Our method is not limited to applications of person re-
identification. We also evaluated on vehicle Re-ID dataset
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TABLE 18
Performances (%) of the state-of-the-art methods and our method R2D

for vehicle re-identification in semi-supervised learning setting.

Methods
VeRi-776-NA VeRi-776

R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP
SpCL [42] 25.1 37.1 45.0 8.5 68.1 77.8 82.3 29.7
PPLR [90] 26.6 34.8 42.6 9.6 80.3 84.2 85.7 38.5

SpCL-semi [42] 29.3 44.7 53.7 10.7 70.2 79.6 85.1 32.2
PPLR-semi [90] 34.9 44.8 52.6 14.1 82.5 86.5 88.1 39.1

R2D (ours) 50.4 65.4 72.2 18.0 83.2 87.6 89.4 39.5

VeRi-776 [89]. Following the processing of simulating non-
adjacent scenes for MSMT17-NA [19] in Section 5.2, we
processed VeRi-776 to obtain the simulated dataset VeRi-
776-NA by selecting samples in one random camera for each
class. On both VeRi-776-NA and VeRi-776, we evaluated
in semi-supervised setting as the person Re-ID setting in
Section 6.1. For training, our model and the compared
models were initialized by ImageNet pre-training. We com-
pared with the state-of-the-art vehicle Re-ID methods SpCL
[42], PPLR [90] and their semi-supervised versions SpCL-
semi, PPLR-semi. The results in Table 18 show that, our
method significantly outperformed the compared methods
on VeRi-776-NA simulated for nonadjacent scenes and the
performance of our method is comparable with the state-of-
the-art performance on VeRi-776.

7 CONCLUSION

In this work, we study semi-supervised person re-
identification on training data with identities rarely crossing
camera views. Compared with existing Re-ID approaches
especially for semi-supervised Re-ID that rely on abun-
dant identities crossing camera views, we operate semi-
supervised Re-ID under a relaxed assumption of identities
rarely crossing camera views. To overcome the problem
of high uncertainty in such cases, we propose Rewarded
Relation Discovery (R2D) to discover the underlying prob-
abilistic relations by a rewarded pseudo label training
strategy. In this strategy, we quantify the uncertainty by
parameterizing the probabilistic relations in the relation
discovery objective for pseudo label training. The reward
quantified by the identification performance on limited la-
beled data is introduced for this objective. By maximizing
the reward to learn probabilistic relations parameterized
by cluster relation matrix, minimization of the relation dis-
covery objective can reduce the uncertainty of underlying
sample relations. Furthermore, we embed prior knowledge
of intra-camera affinity and cross-camera style variation in
different relation discovery objectives and further fuse the
knowledge of different probabilistic relations by similarity
knowledge distillation to further reduce the uncertainty of
sample relations. Extensive evaluations for semi-supervised
Re-ID on identities rarely crossing camera views were car-
ried out on our new public real-world dataset REID-CBD
captured in nonadjacent scenes and two simulated datasets
DukeMTMC-NA and MSMT17-NA. The results show the
effectiveness of our method as compared with a wide range
of semi-supervised, unsupervised and self-supervised rep-
resentation learning methods.
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