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Abstract Person re-identification (Re-ID) is an important
problem in video surveillance for matching pedestrian im-
ages across non-overlapping camera views. Currently, most
works focus on RGB-based Re-ID. However, RGB images
are not well suited to a dark environment; consequently, in-
frared (IR) imaging becomes necessary for indoor scenes
with low lighting and 24-hour outdoor scene surveillance
systems. In such scenarios, matching needs to be performed
between RGB images and IR images, which exhibit dif-
ferent visual characteristics; this cross-modality matching
problem is more challenging than RGB-based Re-ID due to
the lack of visible colour information in IR images. To ad-
dress this challenge, we study the RGB-IR cross-modality
Re-ID (RGB-IR Re-ID) problem. Rather than applying ex-
isting cross-modality matching models that operate under
the assumption of identical data distributions between train-
ing and testing sets to handle the discrepancy between RGB
and IR modalities for Re-ID, we cast learning shared knowl-
edge for cross-modality matching as the problem of cross-
modality similarity preservation. We exploit same-modality
similarity as the constraint to guide the learning of cross-
modality similarity along with the alleviation of modality-
specific information, and finally propose a Focal Modality-
Aware Similarity-Preserving Loss. To further assist the fea-
ture extractor in extracting shared knowledge, we design a
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Fig. 1 Examples of RGB images and infrared (IR) images captured in
two outdoor scenes during the day and at night, respectively. The im-
ages in every two columns are of the same person. Captured by devices
that detect light of different wavelengths, RGB images and IR images
of the same person look very different (best viewed in colour).

modality-gated node as a universal representation of both
modality-specific and shared structures for constructing a
structure-learnable feature extractor called Modality-Gated
Extractor. For validation, we construct a new multi-modality
Re-ID dataset, called SYSU-MM01, to enable wider study
of this problem. Extensive experiments on this SYSU-MM01
dataset show the effectiveness of our method.

Keywords Person Re-Identification · Cross-Modality
Model · RGB-Infrared Matching

1 Introduction

Person re-identification (Re-ID) is an important problem in
video surveillance for which the available solutions have
undergone fast-growing development in recent years, from
feature design [17,14,46,40,49,95,77] to distance metric
learning [77,51,17,6,41,93,31,52,39,40,10] and end-to-end
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deep learning [37,1,73,75,88,96,60,5,63]. Currently, in most
cases of Re-ID, it is assumed that the appearance (e.g., cloth-
ing) of a person remains unchanged in the short term; conse-
quently, the majority of studies focus on cross-view match-
ing between RGB images, i.e., RGB-RGB cross-view match-
ing of visual imagery.

However, the capabilities of such single-modality RGB-
RGB Re-ID are limited when pedestrians appear in poor
lighting or dark conditions, e.g., at night. RGB images be-
come uninformative (not merely noisy) at night (see Fig-
ure 1). In such a case, relying on visible light results in unre-
liable and less meaningful cross-view matching. Many mod-
ern surveillance cameras can automatically switch between
RGB and infrared (IR) modes at any time when the lighting
conditions change significantly. Therefore, it is necessary to
solve the interesting problem of enabling an IR image of a
person captured in a dark camera view to be matched with
an RGB image from a disjoint bright camera view. We call
this problem RGB-IR Re-ID.

This work addresses the RGB-IR Re-ID problem. RGB-
IR Re-ID has rarely been studied and remains a challenging
problem due to the significant visual differences between the
two modalities. There are two factors contributing to the d-
ifficulty of the problem. First, there are intrinsic differences
between RGB and IR images caused by the different wave-
length ranges used in the imaging process. As shown in Fig-
ure 1, RGB images (the first row) have three channels, con-
taining colour information obtained from visible light, while
IR images (the second row) have only one channel, contain-
ing information obtained from invisible light. Consequent-
ly, it is highly improbable to find image patches with the
same colour in RGB and IR images, meaning that colour in-
formation, which is the most important appearance cue [46,
40] used to identify people in existing Re-ID methods, has
become uninformative. Second, variations of viewpoint and
person poses, which already make single-modality RGB-
based Re-ID a challenging problem, can cause even greater
difficulties in RGB-IR Re-ID because of the severe imagery
misalignment across images in the two modalities captured
from the same subject.

RGB-IR Re-ID is a cross-modality matching problem.
Handling the intra-class imaging discrepancies caused by
cross-modality transformation is the key challenge. While
RGB images and IR images are visually different, they actu-
ally share some information (such as shape) in images of the
same object. Therefore, it is possible and critical to extract
the shared knowledge in two modalities for cross-modality
matching. A common technique for cross-modality match-
ing is to minimise the gap in some feature space between dif-
ferent modalities by identity classification and feature distri-
bution alignment (e.g., [22,80,23,11]). However, these tech-
niques assume that the data distributions are identical for
training and testing, whereas this assumption is invalid for
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Fig. 2 Visualisation of features in the training set and testing set by
dimensionality reduction using t-SNE [48]. The features are extract-
ed by a ResNet-50 model [63] trained on an RGB-IR Re-ID dataset
SYSU-MM01 introduced later. The figure shows that the feature dis-
tributions are different for the training set and testing set because of
non-overlapping identities during training and testing.

Re-ID since there is a discrepancy between these two data
distributions due to non-overlapping person identities in the
training and testing sets. To visualise the effect of the distri-
bution discrepancy between training and testing, we evaluate
a ResNet-50 model [63] trained on an RGB-IR person Re-
ID dataset called SYSU-MM01 that is introduced later. We
show the distributions of the training and testing sets in the
feature space after dimensionality reduction by t-SNE [48]
in Figure 2. The distribution discrepancy between training
and testing sets is significant in the feature space.

In this work, we do not operate under the assumption of
identical data distributions between training and testing data,
and mine the shared knowledge for cross-modality match-
ing in the similarity space, because similarity value is rela-
tive information between samples and does not require the
assumption of identical training and testing data distribu-
tions. In particular, we expect that the shared knowledge for
cross-modality matching should be valid for same-modality
matching, so that the modality-specific information in the
shared feature space of the two modalities can be alleviat-
ed. To this end, we cast learning effective shared knowledge
across RGB and infrared modalities as a cross-modality sim-
ilarity preservation problem. We guide learning cross-modality
matching by same-modality matching as a constraint for reg-
ularisation in terms of similarity preservation and propose a
Focal Modality-Aware Similarity-Preserving Loss.

To further assist the extraction of shared knowledge for
matching, we propose a structure-learnable network called
Modality-Gated Extractor by using Modality-Gated Node as
a universal representation of modality-specific and shared
structures. When constructing feature extractor for cross-
modality matching, it is important to learn appropriate shared
and modality-specific structures. In contrast, in existing neu-
ral networks for cross-modality matching (e.g., [80,22]), fixed
shared and modality-specific model structures are used. In
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Table 1 Comparison between SYSU-MM01 and existing Re-ID
datasets. (-/- denotes the numbers of RGB/IR images.)

Dataset #IDs #Images #Cams RGB IR
ViPER [16] 632 1,264 2 Yes No
iLIDS [92] 119 476 2 Yes No

PRID2011 [24] 200 971 2 Yes No
CUHK01 [36] 972 1,942 2 Yes No

SYSU [19] 502 24,448 2 Yes No
CUHK03 [37] 1,467 13,164 6 Yes No
Market [91] 1,501 32,668 6 Yes No
MARS [90] 1,261 1,191,003 6 Yes No

DukeMTMC [55] 1,404 36,411 8 Yes No
RegDB [50] 412 4,120/4,120 2 Yes Yes (thermal)

SYSU-MM01 491 30,071/15,792 6 Yes Yes (NIR)

these structures, the parameters indicating whether and to
what extent a node should be shared are manually designed.
Since these parameters cannot be learned based on train-
ing data, the designed structures are suboptimal and can-
not be dynamically adjusted to suit the data to better ex-
tract shared knowledge across modalities. By introducing
modality-gated nodes in our model, we enable our feature
extraction network to implicitly learn both modality-specific
and shared network structures from training data without
manual intervention.

To study the RGB-IR Re-ID problem, due to the lack
of public RGB-IR benchmark datasets, we construct a new
SYSU Multiple-Modality Re-ID dataset (SYSU-MM01).
Compared to existing commonly used single-modality Re-
ID datasets, as summarised in Table 1, this new RGB-IR
cross-modality Re-ID dataset provides, for the first time, a
meaningful public benchmark for the study of RGB-IR Re-
ID. It contains 30,071 RGB images and 15,792 IR images
corresponding to 491 person IDs captured from 6 camer-
a views. Compared with another multi-modality pedestrian
dataset RegDB [50] in Table 1, our SYSU-MM01 dataset
contains more samples from more identities captured in more
cameras. Moreover, for capturing IR images, RegDB [50]
used thermal cameras, whereas our SYSU-MM01 used n-
ear infrared (NIR) cameras, and thus SYSU-MM01 is more
practical for surveillance systems. Extensive experiments on
this SYSU-MM01 dataset show the effectiveness of our pro-
posed framework for RGB-IR Re-ID when compared to con-
temporary methods for Re-ID, cross-modality matching and
domain adaptation.

In summary, the contributions of this work are as fol-
lows: (1) This work presents an early comprehensive at-
tempt to address the challenging RGB-IR cross-modality
Re-ID problem for matching images of persons captured
under normal lighting with those captured in dark environ-
ments (e.g., for 24-hour surveillance). (2) We cast mining
shared knowledge for cross-modality matching as the prob-
lem of cross-modality similarity preservation, and we pro-
pose a Focal Modality-Aware Similarity-Preserving Loss,

which does not operate under the assumption of identical
distributions between the training and testing data. (3) We
propose a modality-gated node for constructing a structure-
learnable deep neural network to assist in learning more ef-
fective shared and modality-specific structures in a data-driven
manner for RGB-IR Re-ID. (4) We construct, for the first
time, a public benchmark dataset called SYSU-MM01 for
studying RGB-IR Re-ID. Extensive experiments were con-
ducted to evaluate the proposed model against a wide range
of computer vision models for cross-modality matching.

2 Related Work

2.1 Single-Modality Re-ID

Most existing works rely solely on RGB visual appearance
features. Among them, colour is most frequently used and
is often encoded in histograms [17,14,46,40], as in SDALF
[14] and LOMO [40]. Texture-based features are also em-
ployed, such as HOG features [95] and LBP features [77].
Some other types of hand-crafted features have also been
developed, such as the covariance-based GOG descriptor
[49] and custom pictorial structures [13]. Recently, more ad-
vanced feature learning methods, such as saliency learning
[89], mirror representation [8,10], pose prior feature learn-
ing [74], invariant colour feature learning [79,33], dictio-
nary learning [26,29], attribute learning [58,61] and binary
representation learning [7,100], have been studied.

In addition to feature representations, a large number
of metric/subspace learning models [17,53,31,93,52,39,77,
51,40,9,41,94,83,87,95,38,67,3] have been developed to
achieve more reliable matching; such models include RD-
C [93], KISSME [31], LADF [39], LFDA [52], MLAPG
[41] and DNS [87]. In particular, deep learning methods for
Re-ID [37,1,75,88,96,60,5,63,78,82] have received sub-
stantial attention in recent years due to their more power-
ful deep features, which enable superior performance com-
pared to hand-crafted features, especially when large train-
ing datasets are available. Various other problems have also
been studied, such as unsupervised learning [30,85,68,35,
84], re-ranking [45,97] and person search [76].

Given the fast development of recent imaging devices,
Re-ID studies have also been extended beyond methods re-
lying on RGB visual images. For instance, depth-based Re-
ID methods [70,20] have been exploited for the case of cloth-
ing changes. However, depth-sensing devices have not yet
been widely deployed in practical applications. Similarly,
very few Re-ID methods use IR images, with the excep-
tion of the method of Jungling et al. [27], who studied IR-
IR video matching for Re-ID at night but did not consider
RGB-IR matching.
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In summary, the overwhelming majority of techniques
for single-modality person Re-ID in the literature are not
suitable for cross-modality matching.

2.2 Cross-modality Matching Models

Very few works have studied cross-modality Re-ID. Recent-
ly, TONE + HCML [80] and BDTR [81], which are based
on two-stream networks, were developed for RGB-thermal
Re-ID. Although RGB-thermal matching can also be used
for person Re-ID across day and night conditions, thermal
imaging devices are far more expensive than IR cameras, es-
pecially for large-scale surveillance systems; therefore, such
methods are impractical for wide use. cmGAN [11] was de-
veloped for cross-modality Re-ID based on a one-stream
network with adversarial training. The task of matching vi-
sual (VIS) face images with near-infrared (NIR) ones [34,
99,22,23] is related to the task of cross-modality RGB-IR
Re-ID. However, compared with VIS-NIR face recognition,
RGB-IR Re-ID is a much more challenging problem be-
cause the visual appearance variations between RGB and IR
images of pedestrians are much more significant than those
between VIS and NIR images of faces due to pose variations
and the lack of colour information.

Unlike our method, these cross-modality methods as-
sume that the distributions of the training and testing data
are identical, which is not valid for Re-ID because of non-
overlapping person identities between training and testing;
in comparison, we do not operate under this assumption and
learn our cross-modality model using data similarity infor-
mation. Moreover, these related methods do not have the ca-
pabilities of structure learning in a deep CNN framework.

In addition, for solving the RGB-IR person Re-ID prob-
lem, the general cross-modality models for information re-
trieval and face verification are related. Cross-modality re-
trieval models can be categorised into real-valued represen-
tation learning and binary representation learning. Methods
for real-valued representation learning include CCA [54],
CDFE [42], GMA [57], MMD [98], DeepCCA [2], Corr-
AE [15], deep-SM [69], and MDNN [66], whilst methods
for binary representation learning include SCM [86], QCH
[72], and SePH [44]. More recently, deep domain adaptation
methods have been developed, e.g., an MMD-based domain
adaptation net [47], DeepCORAL [62], and ADDA [65].
These methods aim to minimise the distance between the
feature distributions in two modalities. In contrast to these
models, which align two modalities in the feature space, a
characteristic of our model is to use same-modality match-
ing as a constraint to guide the learning of cross-modality
matching in the similarity space, which does not require
the assumption of identical data distributions in training and
testing, as held by the above discussed methods.
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Fig. 3 Three commonly used CNN structures for cross-modality im-
age matching. The colours of the convolution blocks and fully con-
nected (FC) layers indicate whether the parameters are shared. Red and
blue indicate modality-specific parameters, and green indicates shared
parameters (best viewed in colour).

In general, for cross-modality image matching, several
deep frameworks have been developed, e.g., a generalised
similarity net [43], Castrejon’s net [4] and a multi-view deep
network (MvDN) [28]. In these methods, the modality-specific
and shared structures are manually designed and remain fixed
during training; hence, these structures are likely to be sub-
optimal and do not provide flexibility for identifying infor-
mation shared across modalities for the challenging RGB-IR
Re-ID task. In comparison, we propose a structure-learnable
framework, in which the modality-specific and shared struc-
tures are more flexibly determined in a data-driven way.

2.3 Cross-modality Convolutional Network Structures

To lay the foundation for introducing our proposed modality-
gated node in Section 4, we revisit convolutional neural net-
work (CNN) structures for cross-modality matching. Gener-
ally, these structures can be categorised into three types, as
shown in Figure 3.

One-Stream Structure. As a preliminary approach, the com-
monly used one-stream network structure can be applied for
cross-modality image matching. As shown in the first net-
work in Figure 3, there is a single input stream, and al-
l parameters are shared. This structure is usually applied
for single-modality data. Representative networks include
AlexNet [32], VGG [59], GoogleNet [64], and ResNet [21].
For Re-ID, most networks for matching RGB pedestrian im-
ages have a one-stream structure, such as JSTL-DGD [75],
PCB [63], the part-aligned representation [88] and Ahmed’s
Siamese network [1]. cmGAN [11] for cross-modality Re-
ID also uses a one-stream structure.

Two-Stream Structure. As shown in the second network
in Figure 3, in the two-stream structure, there are two input
streams, corresponding to data from two different modali-
ties. In the shallower layers, the parameters of the network
are specific to a particular modality, while in the deeper lay-



RGB-IR Person Re-Identification by Cross-Modality Similarity Preservation 5

ers, shared parameters are used. A two-stream network uses
modality-specific structures in shallow layers to alleviate the
modality gap at a low level. Representative networks include
Lin’s generalised similarity net [43] for cross-modality im-
age matching, Castrejon’s net [4] for cross-modality retrieval
and MvDN [28] for cross-view classification. As for RGB-
thermal Re-ID, both TONE + HCML [80] and BDTR [81]
use the two-stream network structure.

Asymmetric FC Layer Structure. As shown in the third
network in Figure 3, nearly all parameters are shared ex-
cept in the last fully connected (FC) layer, with the purpose
of alleviating modality gap at feature level. Representative
methods include CVDCA [9], CAMEL [85] for Re-ID and
IDR [22], WCNN [23] for VIS-NIR face recognition.

Ultimately, networks for cross-modality image matching
are constructed by modality-specific and shared structures.

A preliminary result from our research was reported in
[71]. In this work, we significantly extend our research. We
do not operate under the assumption of identical distribu-
tions between training and testing data, and we cast learning
shared knowledge for cross-modality matching as a cross-
modality similarity preservation problem. In addition, we
extend our deep zero padding model by developing a structure-
learnable deep CNN framework based on modality-gated
nodes. Our early model based on the deep zero padding
method [71] is a special case of our proposed framework
in which fixed modality-gated nodes are used in the input
layer of a one-stream network.

3 Learning Cross-Modality Similarity Preservation

For cross-modality matching, we aim to extract shared knowl-
edge to bridge the two different modalities. For this purpose,
feature distribution alignment (e.g., [22,80,23,11]) is com-
monly used with the assumption of identical data distribu-
tions between training and testing. However, for Re-ID, the
non-overlapping identities in training and testing lead to da-
ta distribution discrepancies in training and testing, which
violates the assumption of feature distribution alignment, as
shown in Figure 2. To address this challenge, we do not op-
erate under this assumption, and cast mining such shared
knowledge for cross-modality matching as the problem of
cross-modality similarity preservation. The overview of cross-
modality similarity preservation is shown in Figure 4.

3.1 Modality-Aware Similarity-Preserving Loss

To eliminate the discrepancy between two modalities in the
similarity space, we expect that when performing cross-modality
matching and same-modality matching, the retrieval results
can be consistent in some feature space. Therefore, we force

the cross-modality similarity and same-modality similarity
between two objects to be as equivalent as possible, i.e.,
cross-modality similarity preservation, so modality-specific
information can be alleviated in the shared feature space
due to the consistent constraint between the retrieval result-
s of cross-modality matching and those of same-modality
matching. For this purpose, we propose a Modality-Aware
Similarity-Preserving Loss as follows.

To detail the proposed loss function, for an object Jk, we
first assume that a pair of synchronised RGB image Im1(Jk)

and IR image Im2(Jk) is given. For any two images I1 and
I2, we aim to learn a function fsim(I1, I2) to compute the
similarity between them. For two objects Jk and Jl, we ex-
pect that in some feature space the cross-modality similarity
fsim(Im1(Jk), I

m2(Jl)) and fsim(Im2(Jk), I
m1(Jl)) can be

preserved as the same-modality similarity fsim(Im1(Jk),

Im1(Jl)) and fsim(Im2(Jk), I
m2(Jl)); that is, cross-modality

matching is constrained and guided by same-modality match-
ing. Optimally speaking, the cross-modality similarity preser-
vation is formulated as∑
Jk,Jl∈J

(fsim(Im1(Jk), I
m1(Jl))− fsim(Im1(Jk), I

m2(Jl)))
2

+(fsim(Im2(Jk), I
m2(Jl))− fsim(Im2(Jk), I

m1(Jl)))
2,

(1)

where J is a set of objects.
However, in practice, for RGB-IR Re-ID, it is difficult

to have the synchronised RGB and IR image, as they are
not simultaneously captured by the same camera. To over-
come this problem, we introduce a relaxed version of the
cross-modality similarity preservation by using RGB and
IR image pairs of the same identity. More specifically, let
{Im1
i , ym1

i }
n1
i=1 and {Im2

j , ym2
j }

n2
j=1 denote the training sam-

ples from modality 1 and modality 2, respectively, where
Im1
i and Im2

j are images and ym1
i and ym2

j are identity la-
bels. Let fex denote the model for feature extraction. The
features are fm1

i = fex(I
m1
i ;Θ) and fm2

j = fex(I
m2
j ;Θ).

In our case, the features fm1
i and fm2

j are normalised by the
`2-norm; thus, the inner product of the two features is the
cosine similarity.

To model same-modality and cross-modality matching,
which are equivalent to similarity-based nearest neighbour
classification, we then introduce two modality-specific n-
earest neighbour classifiers C1 and C2 for modality 1 and
modality 2, respectively, as follows:

C1(f ,W1) = W>1 f , C2(f ,W2) = W>2 f , (2)

where f is the feature to be classified. For modality 1, W1 =

[fm1
id,1, f

m1
id,2, ..., f

m1
id,K ], where each column is a feature vector

fm1
id,k of a sample of ID k in modality 1. K is the number of

identities considered by classifier C1. C1(f ,W1) is a simi-
larity score vector computed by the inner product operation
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Fig. 4 Illustration of cross-modality similarity preservation. First,
cross-modality positive sample pairs (fm1

i , fm2
j ) (with identity labels

ym1
i =ym2

j ) are sampled, where � denotes the splitting of sample fea-
tures by modality. Then, the similarity scores for same-modality and
cross-modality matching are obtained using two modality-specific n-
earest neighbour classifiers,C1 andC2, for modality 1 and modality 2,
respectively. Finally, the Focal Modality-Aware Similarity-Preserving
Loss is applied to minimise the difference between same-modality sim-
ilarities and cross-modality similarities.

and consists of the similarity scores between the feature f

and the feature corresponding to each identity in modali-
ty 1. For modality 2, C2(f ,W2) is defined similarly with
W2 = [fm2

id,1, f
m2
id,2, ..., f

m2
id,K ]. During training, in each itera-

tion for a mini-batch, W1 and W2 are constructed by fea-
ture vectors extracted from the samples in the current mini-
batch. The gradients of loss functions with respect to W1

and W2 are propagated to parameters Θ of the feature ex-
tractor through the feature vectors fm1

id,k and fm2
id,k.

Given features fm1
i of modality 1 and fm2

j of modality
2 for the same identity (i.e., ym1

i = ym2
j ) as probes, W1 is

regarded as the gallery set of K identities in modality 1. For
same-modality matching and cross-modality matching, the
similarity score vectorsC1(f

m1
i ,W1) andC1(f

m2
j ,W1) can

be computed using the nearest neighbour classifier C1. We
guide the learning of cross-modality similarity given the con-
straint of preserving same-modality similarity by forcing the
similarity score vector C1(f

m2
j ,W1) to be as close as pos-

sible to C1(f
m1
i ,W1). The objective is similar for classifier

C2. For cross-modality similarity preservation, we minimise
the following objective function:

LMSP =
∑

(i,j)∈P

||C1(f
m1
i ,W1)− C1(f

m2
j ,W1)||2

+||C2(f
m2
j ,W2)− C2(f

m1
i ,W2)||2,

(3)

where P = {(i, j)|ym1
i = ym2

j , i ∈ {1, ..., n1}, j ∈ {1, ...,
n2}} is the index pair set of all cross-modality positive sam-
ple pairs. Negative sample pairs are not used because they
are from different identities, so the similarity scores out-
put by the classifiers should be different. We call LMSP the
Modality-Aware Similarity-Preserving Loss.

Focal Modality-Aware Similarity Preserving Loss. In the
above Modality-Aware Similarity-Preserving Loss (Eq. (3)),
the terms corresponding to all positive sample pairs are e-
qually weighted for learning. However, during training, when
the classification results from classifiers C1 and C2 are not
correct, preserving the corresponding similarities may not

always provide valuable information. Non-significant infor-
mation may be learned if the similarity preservation is en-
forced. Thus, in the learning process, we should focus on
the reliable positive sample pairs that are correctly classi-
fied and neglect unreliable sample pairs that are not correct-
ly classified. To address this problem, we dynamically ad-
just the weight of each cross-modality positive sample pair
(fm1
i , fm2

j ) by introducing two confidence factors, pC1
i,j and

pC2
i,j , for classifiers C1 and C2, respectively, which are de-

fined as follows:

pC1

i,j = fsm(C1(f
m1
i ,W1), y

m1
i ) · fsm(C1(f

m2
j ,W1), y

m2
j ),

pC2

i,j = fsm(C2(f
m2
j ,W2), y

m2
j ) · fsm(C2(f

m1
i ,W2), y

m1
i ),

(4)

where fsm is a softmax function defined as

fsm(s, y) =
exp(sy)∑K
k=1 exp(sk)

, (5)

in which s is the similarity score vector, sk is the k-th el-
ement of the similarity score vector s and y denotes an i-
dentity label. For example, fsm(C1(f

m1
i ,W1), y

m1
i ) is the

probability of correctly classifying the feature fm1
i as the

identity ym1
i with classifier C1. If fm1

i is correctly classi-
fied with high confidence, then fsm(C1(f

m1
i ,W1), y

m1
i ) is

close to 1. Similar interpretations hold for the other terms
involving fsm. If both samples fm1

i and fm2
j in a positive

sample pair can be correctly classified by C1 with high con-
fidence, then the confidence factor pC1

i,j is close to 1. Thus,
the confidence factors pC1

i,j and pC2
i,j have values ranging be-

tween 0 and 1 and indicate the reliability of the sample pair
(fm1
i , fm2

j ) with respect to C1 and C2, respectively.
By introducing the confidence factors pC1

i,j and pC2
i,j into

the expression for the Modality-Aware Similarity-Preserving
Loss given in Eq. (3), we obtain

LFMSP =
∑

(i,j)∈P

pC1

i,j ||C1(f
m1
i ,W1)− C1(f

m2
j ,W1)||2

+pC2

i,j ||C2(f
m2
j ,W2)− C2(f

m1
i ,W2)||2.

(6)

Hence, the effect of each sample pair (fm1
i , fm2

j ) on cross-
modality similarity preservation is dynamically adjusted by
the confidence factors. We call LFMSP the Focal Modality-
Aware Similarity-Preserving Loss. In Figure 4, we show the
process of cross-modality similarity preservation.

3.2 A Cross-Modality Matching Framework

We apply the Focal Modality-Aware Similarity-Preserving
Loss for training a feature extractor in a cross-modality match-
ing framework shown in Figure 5.
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Fig. 5 Overview of the cross-modality matching framework. The framework consists of two parts: cross-modality similarity preservation and a
Modality-Gated Extractor. Cross-modality similarity preservation is achieved by a Focal Modality-Aware Similarity-Preserving Loss (see Section
3.1) for guiding cross-modality feature learning. The Modality-Gated Extractor consists of a Modality-Gated CNN followed by a shared convolu-
tion layer for feature extraction. The Modality-Gated CNN (see Section 4.3) is constructed using modality-gated nodes (see Section 4.2) and can
flexibly learn modality-specific and shared structures that are suited to the training data. The softmax loss Lcls is applied for learning discrimi-
native features for classification. The implementation details of the framework are illustrated in Section 6.2. Note that, � denotes the splitting of
sample features by modality (best viewed in colour).

Probe

RGB

IR

Top-6 ranking IDs of RGB images

(a) Ours (b) Softmax (c) Softmax + MMD

6 overlapping IDs 3 overlapping IDs 4 overlapping IDs

Same-
modality
matching

Cross-
modality
matching

same ID

Fig. 6 Comparison of ranking results from same-modality matching
and cross-modality matching based on features learned using three dif-
ferent losses: (a) ours, (b) Softmax, and (c) Softmax + MMD [18]. RG-
B images in the training set are retrieved based on either a probe RGB
image or a probe IR image of the same identity. The top-6 ranking list-
s of identities are shown, where red lines indicate the same identity.
This shows that our Focal Modality-Aware Similarity-Preserving Loss
results in more overlapping identities in the ranking lists, demonstrat-
ing that the consistency between same-modality and cross-modality
ranking is better than those in the cases of “Softmax” and “Softmax +
MMD”.

In the training stage, the training images {Ii} and the
corresponding identity labels {yi} and modality labels {ymodi }
are required. We minimise the following loss function:

L = Lcls + λLFMSP , (7)

where Lcls is the softmax cross-entropy loss that is com-
monly used for classification,LFMSP is the Focal Modality-
Aware Similarity-Preserving Loss, and λ is a trade-off pa-
rameter. Lcls is designed for learning discriminative fea-
tures for classification without considering the discrepancy
between two modalities. LFMSP can alleviate the discrep-
ancy between two modalities for cross-modality matching
by cross-modality similarity preservation. They are comple-
mentary to each other.

Visualisation. A result of cross-modality similarity preser-
vation is that the ranking lists of identities are consistent for
cross-modality matching and same-modality matching. To
visualise the effect of the Focal Modality-Aware Similarity-
Preserving Loss, several examples of same-modality match-
ing and cross-modality matching using different losses are

shown in Figure 6, where (a) “Ours” is our Focal Modality-
Aware Similarity-Preserving Loss, (b) “Softmax” is the Soft-
max loss and (c) “Softmax + MMD” is a combination of
the Softmax and MMD losses [18] that is representative for
domain adaptation. RGB images in the training set are re-
trieved for either a probe RGB image or a probe IR im-
age of the same identity. The top-6 ranking lists of iden-
tities are shown, where red lines indicate the same identi-
ty. We also calculate the proportions of overlapping iden-
tities in the top-6 ranking lists of identities on the testing
set. The proportions are 38.0% for “Ours”, 31.8% for “Soft-
max” and 31.6% for “Softmax + MMD”. Our method can
retrieve more overlapping identities in the top ranking lists,
indicating that the cross-modality similarity is more consis-
tent with same-modality similarity. In this way, the modal-
ity discrepancy in the similarity space is alleviated, i.e., the
modality-specific information in the shared feature space
of two modalities is alleviated. Experiments in Section 6.5
show that cross-modality similarity preservation can improve
the performance of cross-modality matching significantly.

4 Modality-Gated Nodes

To determine how to assist the feature extractor in extract-
ing shared knowledge for cross-modality matching, we first
analyse the functionality of deep neural networks for cross-
modality image matching by means of defining the con-
cepts of modality-specific and shared nodes. Then, we pro-
pose the modality-gated node, a generalised structure that
can represent both modality-specific and shared nodes. We
use modality-gated nodes to construct a structure-learnable
feature extractor called Modality-Gated Extractor, which is
able to construct more complex modality-specific structures
compared with the manually designed and fixed modality-
specific structures used in existing methods [43,28,22,23].
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Fig. 7 Explanation of how a one-stream network with a modality s-
election block can be used to represent a two-stream network. The
modality selection block modifies the input by padding it with zeros
in different positions for different modalities so that only the weights
for non-zero nodes corresponding to the modality of the input data will
take effect (best viewed in colour).

4.1 Modality-Specific and Shared Nodes

As discussed in Section 2.3, the commonly used structures
for cross-modality image matching, namely, the one-stream
structure, the two-stream structure and the asymmetric FC
layer structure, all consist of both modality-specific and shared
structures. Although these three structures all seem to be dif-
ferent, the two-stream structure can actually be represented
as a one-stream structure if a modality selection block is em-
ployed in the network, as shown in Figure 7.

Modality Selection Block: The modality selection block
fsel is defined as follows:

fsel(x, y
mod) =

{
[Ed,Od]

>x, ymod = 1,

[Od,Ed]
>x, ymod = 2,

(8)

where x ∈ Rd is the input, ymod ∈ {1, 2} is a modality
label indicating modality 1 or modality 2, Ed ∈ Rd×d is the
identity matrix, and Od ∈ Rd×d is the zero matrix.

We attempt to analyse the two-stream structure in the
same way as the one-stream structure. To enable the de-
composition of a network into modality-specific and shared
structures for analysis, we define modality-specific nodes
and shared nodes as the basic network components.

Definition 1. For a neural network with input from two modal-
ities, modality 1 and modality 2, the nodes in each layer can
be categorised into three types: modality-1-specific nodes,
modality-2-specific nodes and shared nodes. Let xm1

(l) and
xm2
(l) denote the inputs to layer l + 1 from modality 1 and

modality 2, respectively. In particular, xm1
(0) and xm2

(0) are the
inputs to the network. Let η(l),i denote the i-th node in lay-
er l, and let η(l),i(x(0)) denote the output of η(l),i with the
network input x(0):

η(l),i(x(0)) = σ(
∑
j

w(l),j,iη(l−1),j(x(0)) + b(l),i), (9)

where σ(·) is the activation function, and w(l),j,i and b(l),i
are the weight and bias parameters of layer l, respectively.

The type of node type(η(l),i) is defined as follows:

type(η(l),i) =


modality-1-specific, η(l),i(x

m1
(0) ) 6≡ 0

and η(l),i(x
m2
(0) ) ≡ 0,

modality-2-specific, η(l),i(x
m2
(0) ) 6≡ 0

and η(l),i(x
m1
(0) ) ≡ 0,

shared, otherwise.

(10)

Note that for modality-1-specific nodes, we use the iden-
tity sign in η(l),i(xm2

(0) ) ≡ 0, which means that for any input
from modality 2, the output of node η(l),i is always zero. A
similar condition holds for modality-2-specific nodes.

We assume that nodes of all three types exist in a net-
work, and analyse the properties of modality-specific and
shared nodes, where the corresponding derivations are pre-
sented in the section of “Properties of Modality-Specific and
Shared Nodes” in the Appendix.
Properties of Modality-Specific Nodes: In forward prop-
agation, the modality-specific weight parameters w1spe

(l+1),i

and w2spe
(l+1),i affect only the input from corresponding modal-

ity. In backward propagation, these parameters can only be
updated based on input from corresponding modality.
Properties of Shared Nodes: In forward propagation, the
shared weight parameters wsh

(l+1),i affect both modalities.
In backward propagation, they are updated based on inputs
from both modalities.

Analysis. Based on the properties described above, we find
that all of the existing networks for cross-modality matching
constructed with modality-specific and shared structures as
discussed in Section 2.3 can be represented by a one-stream
network consisting of modality-specific and shared nodes.
We take a two-stream network as an example. As shown in
Figure 7, according to Definition 1, in layer 0 of the one-
stream network with a modality selection block, the first two
nodes are modality-1-specific nodes, and the last two nodes
are modality-2-specific nodes. The nodes in the subsequent
layer 1 and layer 2 are shared nodes.

However, it is difficult to manually determine how many
nodes in a network should be of the modality-specific or
shared type because this number depends on the task-specific
data distribution. We overcome this problem by designing a
modality-gated node based on a one-stream network, as de-
scribed in the following section.

4.2 Modality-Gated Nodes

While modality-specific and shared nodes are the keys to
modality-specific modelling in neural networks, construct-
ing modality-specific structures using modality-specific n-
odes (e.g., the unshared convolution layers in the two-stream
structure) as defined in Section 4.1 is a “hard” strategy. This
“hard” strategy only allows a node to be either unshared or
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Fig. 8 Structure of a modality-gated node (sub-figure (a)) and how it
can represent a shared node (sub-figure (b)), a modality-1-specific n-
ode (sub-figure (c)) or a modality-2-specific node (sub-figure (d)) with
different values of the coefficients a1 and a2 (best viewed in colour).

shared between the two modalities; there is no way to ex-
press the extent to which a node can be shared, i.e., partial
sharing. Thus, this approach is not sufficiently flexible for
the challenging RGB-IR Re-ID task.

Therefore, we aim to develop a model structure that al-
lows partial sharing between two modalities with different
weights. To achieve such “soft” modelling, we propose the
modality-gated node as a universal structure that can repre-
sent both modality-specific and shared nodes and has learn-
able parameters that control the degree of modality specifici-
ty. We regard such a modality-gated node as a soft modality-
specific node.

The structure of a modality-gated node is shown in (a)
of Figure 8. For a normal node η, the original output of the
node is xη . Then, there are two branches with modality s-
election weights of a1 and a2, with values ranging from 0

to 1, by which xη will be multiplied. The modality gate is
controlled by the modality label ymod ∈ {1, 2}, which indi-
cates whether the sample belongs to modality 1 or modality
2. The output of the modality-gated node, oη , is determined
as follows:

oη =

{
a1xη, ymod = 1,

a2xη, ymod = 2,
where a1 + a2 = 1, a1, a2 ≥ 0.

(11)

To avoid the case in which both a1 and a2 are 0, result-
ing in a dead node, we subject a1 and a2 to the constraints
a1 + a2 = 1 and a1, a2 ≥ 0. In the optimisation process, to
avoid directly clipping the values of a1 and a2 to satisfy the
constraints, we parameterise a1 and a2 using two parameters
a′1 and a′2 as follows:

a1 =
|a′1|

|a′1|+ |a′2|
, a2 =

|a′2|
|a′1|+ |a′2|

, (12)

where a′1 and a′2 are unconstrained non-zero real numbers.

Forward Propagation Analysis. In a modality-gated node,
the key parameters are the modality selection weights a1
and a2, which take continuous values ranging from 0 to

1. With different values of the modality selection weight-
s, modality-gated nodes can represent nodes with different
degrees of modality specificity. Sub-figures (b)∼(d) in Fig-
ure 8 show three examples of different types of nodes that
modality-gated nodes can represent when the modality se-
lection weights are varied. Given two modalities (modality
1 and modality 2), three special cases are listed below:
(1) When a1 = 0.5 and a2 = 0.5, the modality-gated node
represents a shared node (see Figure 8 (b)).
(2) When a1 = 1 and a2 = 0, the modality-gated node rep-
resents a modality-1-specific node (see Figure 8 (c)).
(3) When a1 = 0 and a2 = 1, the modality-gated node rep-
resents a modality-2-specific node (see Figure 8 (d)).

In these three cases, the conditions in Definition 1 are
strictly satisfied; thus, modality-gated nodes are able to rep-
resent both modality-specific and shared nodes.

The analysis shows that modality-specific and shared n-
odes are the extreme cases of modality-gated nodes. When
the modality selection weights a1 and a2 have values be-
tween 0 and 1, the node is a soft modality-specific node,
which is partially shared by both modalities; such a node
tends to show higher modality 1 (or modality 2) specificity
when the weight a1 (or a2) is higher. Therefore, modality-
gated nodes provide more flexible means of constructing
more complex modality-specific structures compared with
the manually designed, fixed modality-specific structures used
in existing methods (e.g., [43,28,22,23], as discussed in Sec-
tion 2.3).

Backward Propagation Analysis. Let us further analyse
the behaviour of modality-gated nodes in backward prop-
agation. We compute the derivative of the node output oη
with respect to xη:

∂oη

∂xη
=

{
a1, ymod = 1,

a2, ymod = 2.
(13)

When a gradient flow passes through the modality gate, it is
weighted by a1 and a2 for modality 1 and modality 2, re-
spectively. Thus, the learning processes for the two modali-
ties are different but partially shared.

Since the modality selection weights a1 and a2 can be
learned through end-to-end training, a network constructed
of modality-gated nodes can evolve both modality-specific
and shared structures by learning from data without requir-
ing any manual design. During training, the nodes can auto-
matically evolve into soft modality-specific nodes under the
guidance provided by the loss function.

Remarks: Connection with Deep Zero Padding. Deep ze-
ro padding [71] was exploited in our previous work. In this
approach, modality-specific nodes are generated in the input
layer by padding the input images with zeros; in this way,
the input layer acts as a modality selection block (Section
4.1). This approach is a special case in which fixed modality-
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Fig. 9 A one-stream network consisting of modality-gated nodes that
can serve as a representation of the two-stream network shown in Fig-
ure 7 for the case of forward propagation. We assume that in this spe-
cial case, the modality selection weights are set as shown in this figure.
In layer 1a, the black solid lines denote weights of 1, and the black
dotted lines denote weights of 0. This is a simple example showing the
structural representation ability of modality-gated nodes (best viewed
in colour).

gated nodes are applied only in the input layer; thus, this ap-
proach is not as flexible as the approach formulated in this
work, in which the entire network is constructed from learn-
able modality-gated nodes.

Connection with Existing Network Structures. As dis-
cussed in Section 2.3, most neural networks for cross-modality
modelling, e.g., networks with the two-stream structure or
the asymmetric FC layer structure, consist of both modality-
specific nodes and shared nodes. Modality-gated nodes can
be used to represent soft modality-specific nodes and pro-
vide sufficient flexibility to allow a network to evolve both
modality-specific and shared structures; thus, the network
can act as a structure-learnable feature extractor. An exam-
ple of how a one-stream network consisting of modality-
gated nodes can be used to represent a two-stream network
is shown in Figure 9, and the corresponding analysis is pre-
sented in the section of “Structure Representation Ability”
in the Appendix.

4.3 Modality-Gated Extractor

To extract features from input images, we use modality-gated
nodes to construct a CNN as the basis for the Modality-
Gated Extractor shown in the dashed box in Figure 5. We
build the modality-gated CNN based on a given backbone
model (e.g., ResNet [21]) by replacing all nodes in the back-
bone model with modality-gated nodes. A subsequent shared
convolution layer is included for further learning of shared
feature representation. The modality-gated CNN and the shared
convolution layer form the Modality-Gated Extractor fex.

The nodes in fully connected (FC) network correspond
to channels in the CNN. For each feature map channel Xη ,

the output Oη of a modality-gated node as in Eq. (11) is

Oη =

{
a1Xη, ymod = 1,

a2Xη, ymod = 2,
where a1 + a2 = 1, a1, a2 ≥ 0,

(14)

where a1 and a2 are scalars with values in [0, 1] correspond-
ing to RGB and IR feature map channels, respectively.

In the training stage, the modality-gated nodes in Modality-
Gated Extractor assist our Focal Modality-Aware Similarity-
Preserving Loss to learn effective features for cross-modality
matching, as shown in Figure 5. In the testing stage, given
a test image Ii with a corresponding modality label ymodi ,
the Modality-Gated Extractor is used for feature extraction.
To measure the similarity between an RGB image and an IR
image, the cosine distance is computed.

5 An RGB-IR Person Re-ID Dataset

5.1 Dataset Description

Since there is currently no available RGB-IR person Re-
ID dataset collected by surveillance cameras, we collected a
new multi-modality Re-ID dataset called SYSU-MM01 for
evaluating the RGB-IR cross-modality person Re-ID (RGB-
IR Re-ID) problem. SYSU-MM01 contains images captured
by 6 cameras, including two IR cameras and four RGB ones.
Unlike RGB cameras, IR cameras detect near infrared (NIR)
light and function well under dark conditions. We present
the details of the dataset in Table 2 and show some examples
from each camera view in Figure 10. The RGB images from
camera 1 and camera 2 were captured in two bright indoor
rooms (room 1 and room 2). For each person, at least 400
RGB images were captured, of different poses and from dif-
ferent viewpoints. The IR images from camera 3 and camera
6 were captured in the dark. IR images have only one chan-
nel, unlike RGB images, which consist of three channels.
Camera 3 was in room 2 in a dark environment, while cam-
era 6 was in an outdoor passage with background clutter.
Camera 4 and camera 5 were RGB surveillance cameras in
two outdoor scenes, named gate and garden.

The images captured by IR cameras (camera 3 and cam-
era 6) are distinct from RGB images in terms of both colour
and exposure. Specifically, although camera 2 and camer-
a 3 were both placed indoors, their images show dramatic
colour shifts and exposure differences. For example, for the
first person shown in Figure 10, her yellow clothes are dis-
tinct from her black trousers in RGB images, but this colour
distinction is nearly eliminated in IR images (columns 1 and
2, rows 2 and 3 in Figure 10). IR images have only one chan-
nel and may lose some textural details. The exposure of IR
images captured at different distances is also an issue. These
concerns all make the RGB-IR Re-ID problem challenging.
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Table 2 An overview of the SYSU-MM01 dataset.

Cam Location In-/Outdoors Lighting #IDs #RGB/ID #IR/ID
1 room 1 indoors bright 259 20+ -
2 room 2 indoors bright 259 20+ -
3 room 2 indoors dark 486 - 20
4 gate outdoors bright 493 20 -
5 garden outdoors bright 502 20 -
6 passage outdoors dark 299 - 20

Cam2

Cam3

Cam4

Cam6

Cam5

Cam1

Fig. 10 Examples of RGB images and IR images in our SYSU-MM01
dataset. Cameras 1, 2, 4 and 5 were RGB cameras, and cameras 3 and
6 were IR cameras. Cameras 1 to 3, as shown on the left, captured
indoor scenes, and cameras 4 to 6, as shown on the right, captured
outdoor scenes. Every two columns contain images of the same person
(best viewed in colour).

5.2 Evaluation Protocol

There are 491 valid identities in the SYSU-MM01 dataset.
We have established a fixed split with 395 identities for train-
ing and 96 for testing. During training, all images of the
395 persons in the training set from all camera views can
be used.

For cross-modality person Re-ID matching, we have de-
signed two search modes, namely, the all-search mode and
the indoor-search mode. For the all-search mode, the gallery
images are from RGB cameras 1, 2, 4 and 5, and the probe
images are from IR cameras 3 and 6. For the indoor-search
mode, the gallery images are from RGB cameras 1 and 2
(excluding the outdoor views from cameras 4 and 5), and
the probe images are from IR cameras 3 and 6.

Matching. For both modes, we adopted single-shot setting.
For every identity in each RGB camera view, we randomly
chose one image of that person to form the gallery set for the
single-shot setting. For the probe set, all images were used.
Given a probe image, matching was conducted by comput-
ing the similarities between the probe image and the gallery
images. Note that matching was conducted only between
camera views from different locations, as shown in Table
2. Camera 2 and camera 3 captured data of different modali-
ties, but they were deployed in the same indoor scene; there-
fore, for the probe images from camera 3, the gallery images
from camera 2 were skipped.

Measurement. For a quantitative evaluation, we computed
the cumulative matching characteristic (CMC) curve and the
mean average precision (mAP) based on the ranking list ob-

RGB 
camera

Thermal 
camera

Fig. 11 Examples of RGB images and thermal images in the RegDB
[50] dataset. The images were captured by two cameras, an RGB cam-
era and a thermal camera. Every two columns contain images of the
same person (best viewed in colour).

tained by measuring the similarities between the probe and
gallery images. The above evaluation was repeated 10 times
with random splits of the gallery and probe sets, and the av-
erage performance is reported.

6 Experiments

We conducted extensive comparative evaluations of our cross-
modality matching framework against existing Re-ID, cross-
modality matching and domain adaptation models on our
SYSU-MM01 dataset for RGB-IR Re-ID. In addition, we e-
valuated on an RGB-thermal person dataset called RegDB
[50] for cross-modality RGB-thermal matching.

6.1 Experimental Settings

Datasets. Our evaluations were conducted on our SYSU-
MM01 dataset and the RegDB dataset [50]. A description of
the SYSU-MM01 dataset is presented in Section 5.1. RegDB
[50] contains 8,240 images associated with 412 identities
captured by an RGB camera and a thermal camera. For each
identity, there are 10 RGB images and 10 thermal images.
Some examples of RegDB [50] are shown in Figure 11.

Compared with RegDB [50], our SYSU-MM01 includes
images from more cameras and samples with more vari-
ations. The thermal images in RegDB are not as suitable
for surveillance applications as the NIR images in SYSU-
MM01 because of the high price of thermal cameras. Al-
though RegDB was not collected specifically for the Re-
ID task, we additionally tested our method on this dataset
to achieve a more extensive evaluation of cross-modality
matching.

Evaluation Protocols. For our SYSU-MM01 dataset, we
followed the evaluation protocol introduced in Section 5.2.
For RegDB [50], we followed the evaluation protocol report-
ed in [80]. Half of the identities were used for training, and
the remaining identities were used for testing. The thermal
images were used as the gallery set, and the RGB images
were used as the probe set.
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6.2 Implementation Details

Backbone One-stream Model. In our implementation, we
adopted PCB [63], which is based on ResNet-50 [21], as
the backbone one-stream model. Compared with ResNet-50
[21], in PCB [63], the global average pooling layer is re-
placed by a 1 × 1 convolution layer for channel number re-
duction. The IR images were converted into three-channel
images by replicating their single channel three times. The
input images were resized to 384×128 as inputs to the mod-
el. Our Modality-Gated Extractor and the baseline models
considered for comparison were all based on this backbone
one-stream model.
Model Structure and Hyperparameters. Our Modality-
Gated Extractor was based on the backbone one-stream mod-
el introduced above. As shown in Figure 5, a Modality-Gated
Extractor is formed of a modality-gated CNN and a shared
convolution layer. The structure of the modality-gated CN-
N was based on ResNet-50 with the global average pool-
ing layer discarded and all nodes replaced with modality-
gated nodes. Following the structural design of PCB [63],
the shared convolution layer was a 1 × 1 convolution lay-
er for reducing the number of channels from 2048 to 256.
Then, the feature map was equally split into 6 horizontal
stripes, and global average pooling was applied to each stripe.
Finally, the output feature map was reshaped as a vector and
normalised using the `2-norm.

The default value of λ, the weight of the Focal Modality-
Aware Similarity-Preserving Loss LFMSP , was 10.0. In the
modality-gated nodes, the values of the modality selection
weights a1 and a2 were initialised to 0.5 with a′1 = a′2 =

1.0, i.e., all nodes were initialised as shared nodes. For train-
ing, we followed the strategy described in [63].

6.3 Compared Methods

We mainly compared our method with existing Re-ID, cross-
modality matching, domain adaptation frameworks and CN-
N structures for cross-modality image matching discussed in
Section 2.3.

Cross-Modality Methods. We compared our method with
several recently developed deep cross-modality methods, in-
cluding cross-modality RGB-thermal Re-ID method TONE
+ HCML [80], BDTR [81] and cmGAN [11]; the cross-
modality face recognition method IDR [22]; cross-modality
matching methods DeepCCA [2] and generalised similar-
ity measure (GSM) [43]; the domain adaptation methods
MMD [18] and DeepCORAL [62]; and a method using a
triplet loss [56] for domain alignment (Softmax + triplet).
Among these methods, TONE + HCML [80] and BDTR
[81] are based on the two-stream network structure, and cm-
GAN [11] is based on the one-stream network structure.

TONE + HCML [80], BDTR [81] and cmGAN [11] have
previously been evaluated on our SYSU-MM01 dataset and
RegDB [50]; thus, we directly used their reported results.
The generalised similarity measure (GSM) approach [43]
proposed by Lin et al. (referred to as Lin’s method) is based
on a deep framework with a two-stream structure. For M-
MD [18] (denoted by DeepMMD when implemented with
a deep neural network), DeepCORAL [62] and Softmax +
triplet [56], since these methods do not require specific net-
work structures, we adopted our backbone one-stream mod-
el and used their loss functions to ensure fair comparisons.
By contrast, DeepCCA [2], IDR [22] and Lin’s method [43]
require specifically designed structures in the feature extrac-
tors; therefore, we used the codes released by the authors.

We also evaluated the three CNN structures for cross-
modality matching shown in Figure 3 and discussed in Sec-
tion 2.3, including the one-stream network structure, the two-
stream network structure and the asymmetric FC layer net-
work structure, all of which were based on the same back-
bone one-stream model in our evaluation. The “FC” layer
in Figure 3 corresponded to the last 1 × 1 convolution lay-
er in the backbone one-stream model. For the one-stream
network structure, we simply used the backbone one-stream
model, i.e., the PCB model [63]. For the two-stream and
asymmetric FC layer network structures, we used the same
convolution blocks as in the one-stream network, and the
modality-specific parts used unshared parameters (i.e., twice
the number of parameters). The softmax loss was used, as in
the backbone model PCB [63].

Metric/Subspace Models. We combined favourable hand-
crafted features with metric/subspace learning models for
RGB-IR cross-modality Re-ID to show that features learned
from data are superior to conventional hand-crafted features
in solving the problem. The hand-crafted features consid-
ered for comparison included HOG [12], LOMO [40] and
HIPHOP [10] features. For the 1-channel IR images, when
the hand-crafted feature extraction methods required 3-channel
images, the existing channel was duplicated three times. The
metric/subspace models considered for comparison includ-
ed XQDA [40], LFDA [52]; the cross-modality methods C-
CA [54], CDFE [42], GMA [57], and CRAFT [10]; and the
cross-modality binary representation learning method SCM
[86].

6.4 Model Comparison and Analysis

The experimental results on our SYSU-MM01 dataset are
reported in Table 3, including the rank-1, rank-5, and rank-
10 accuracies and the mAP values of our method and all
compared methods in the all-search and indoor-search modes.
The results obtained on RegDB [50] are reported in Table 4.



RGB-IR Person Re-Identification by Cross-Modality Similarity Preservation 13

Table 3 Performances in the all-search and indoor-search modes on
SYSU-MM01. Here, r1, r5, and r10 denote the rank-1, rank-5, and
rank-10 accuracies (%). “*” denotes re-implementation using the same
backbone model as our method. “-” denotes a result not reported in the
published paper.

Method
All-search Indoor-search

mAP r1 r5 r10 mAP r1 r5 r10
Ours 44.98 43.56 74.61 86.25 57.50 48.62 79.01 89.50
DeepMMD [18]* 41.69 40.70 71.77 83.46 51.89 42.29 74.38 86.17
DeepCORAL [62]* 40.83 39.30 70.32 82.48 50.84 41.03 72.77 84.82
Softmax + triplet [56]* 41.10 38.96 71.78 84.03 53.83 43.50 78.15 89.36
One-stream (PCB [63]) 38.39 36.91 68.88 81.67 50.46 40.38 73.70 85.55
Two-stream 39.59 38.10 68.38 80.30 50.75 40.82 72.83 84.16
Asymmetric FC 40.03 38.71 69.70 81.80 50.62 40.55 72.62 85.07
Deep zero padding 41.77 40.95 71.61 82.59 52.13 42.31 73.87 85.60

cmGAN [11] 27.80 26.97 - 67.51 42.19 31.63 - 77.23
BDTR [81] 19.66 17.01 - 55.43 - - - -
TONE + HCML [80] 16.16 14.32 - 53.16 - - - -
Lin’s [43] 9.96 7.28 24.48 38.39 19.49 10.30 32.21 50.42
IDR [22] 14.84 13.13 34.99 50.20 26.38 16.56 44.48 62.31
DeepCCA [2] 14.92 12.10 33.67 47.94 25.57 16.20 41.00 55.97

HIPHOP + CRAFT [10] 3.67 1.88 8.01 14.78 8.95 2.95 12.81 23.52
HOG [12] + XQDA [40] 5.69 3.68 13.11 23.18 11.25 4.57 17.28 30.71
HOG [12] + LFDA [52] 5.37 3.36 12.73 21.92 10.06 3.84 15.34 26.78
HOG [12] + CCA [54] 4.59 2.91 11.58 20.01 11.45 4.70 18.56 31.30
HOG [12] + CDFE [42] 4.54 2.32 10.33 19.01 9.86 3.30 15.25 27.69
HOG [12] + GMA [57] 2.78 1.01 5.28 10.31 6.93 1.74 8.97 17.63
HOG [12] + SCM [86] 3.94 2.05 8.51 16.12 9.94 3.54 15.42 27.88
LOMO [40] + XQDA [40] 6.54 3.75 15.57 26.63 12.89 4.93 20.81 37.11
LOMO [40] + LFDA [52] 6.52 4.40 16.05 26.54 13.50 5.82 22.54 36.85
LOMO [40] + CCA [54] 5.49 4.45 15.37 25.27 15.13 7.71 26.12 41.82
LOMO [40] + CDFE [42] 6.74 3.96 16.66 29.05 13.21 5.00 22.56 38.50
LOMO [40] + GMA [57] 2.81 1.07 5.23 10.29 6.96 1.94 8.89 17.69
LOMO [40] + SCM [86] 4.26 2.40 10.13 18.06 10.95 4.30 17.39 30.46

Table 4 Performance on RegDB [50]. Here, r1, r5, and r10 de-
note the rank-1, rank-5, and rank-10 accuracies (%). “*” denotes re-
implementation using the same backbone model as our method. “-”
denotes a result not reported in the published paper.

Method mAP r1 r5 r10
Ours 64.50 65.07 76.70 83.71
DeepMMD [18]* 52.51 51.82 67.79 76.77
DeepCORAL [62]* 51.51 52.06 66.43 74.78
Softmax + triplet [56]* 50.00 50.12 63.50 71.33
One-stream (PCB [63]) 48.29 47.60 61.70 69.81
Two-stream 49.11 48.18 62.72 71.38
Asymmetric FC 48.56 47.18 62.57 71.41
Deep zero padding 50.32 50.05 63.88 72.65

BDTR [81] 31.83 33.47 - 58.42
TONE + HCML [80] 20.80 24.44 - 47.53
Lin’s [43] 15.06 17.28 - 34.47

Comparison with Deep Cross-Modality Frameworks. Our
method outperformed all related deep models considered for
comparison. Compared to frameworks using related losses
with the same backbone model as our method, DeepMMD
[18], DeepCORAL [62] and Softmax + triplet [56] show mi-
nor improvements. However, they are not as effective as our
method because they focus only on the alignment of the fea-
ture distributions between the two modalities; in compari-
son, we do not operate under the assumption of identical
distributions between training and testing data, and we guide
the learning of shared knowledge for cross-modality match-
ing by imposing same-modality matching as a constraint for
cross-modality similarity preservation.

The TONE + HCML [80], BDTR [81] and cmGAN [11]
methods for cross-modality RGB-thermal Re-ID and the IDR
[22] method for VIS-NIR face recognition did not perform
sufficiently well for RGB-IR Re-ID. The reason is because
they use either a two-stream (TONE + HCML and BDTR),
one-stream (cmGAN) or asymmetric FC layer (IDR) net-
work structure, all of which are fixed structures and cannot
learn modality-specific and shared network structures flex-
ibly as using modality-gated nodes in our method. More-
over, ours is also different from these methods by specially
considering the preservation of cross-modality similarity for
learning effective shared knowledge.

Deep Models vs. Metric/Subspace Models. From Table 3,
it can be observed that deep models can outperform met-
ric/subspace models by large margins. All cases of hand-
crafted features combined with metric/subspace learning mod-
els performed poorly. Even the rank-1 accuracy in the best
case did not reach 10%. LOMO features contain rich colour
and texture information and perform well for the RGB-based
Re-ID problem. However, these features nevertheless failed
here because of the heterogeneity of RGB and IR image da-
ta due to the different imaging processes; consequently, the
colour information becomes non-discriminative. Although
HOG features also capture both texture and shape informa-
tion, they failed as well. Our empirical results suggest that
these hand-crafted low-level features are not suitable for the
RGB-IR cross-modality Re-ID task even when combined
with metric learning. In comparison, deep models are more
feasible.

Comparison with Other Network Structures. Tables 3 and
4 show that compared to the backbone one-stream mod-
el, the improvement achieved with our method is clear; our
method performed approximately 7% better in terms of the
rank-1 accuracy and mAP on our SYSU-MM01 database,
and the corresponding improvement on RegDB [50] was
greater than 16%. Our method also outperformed the two-
stream and asymmetric FC layer network structures in which
the modality-specific and shared structures were manually
designed. By means of our proposed modality-gated nodes,
our method can learn modality-specific and shared network
structures from data without prior knowledge. The result-
s suggest that our Modality-Gated Extractor can evolve a
more effective network structure for extracting shared knowl-
edge compared to networks with fixed modality-specific and
shared structures.

Matching Examples. We show some matching examples
from the top-1 to top-6 ranking lists obtained with our method
on SYSU-MM01 in Figure 12. First, from a brief look at the
images, it is clear that even a human viewer has difficulty in
identifying which person is the correct match based on only
colour information because there is no exact theoretical re-
lation between the greyscale values in RGB images and IR



14 Ancong Wu1, Wei-Shi Zheng2,3∗, Shaogang Gong5, Jianhuang Lai2,4

Probe ProbeGallery rank list Gallery rank list

Fig. 12 Matching examples of the top-1 (leftmost) to top-6 (rightmost)
gallery ranking lists of our method on SYSU-MM01. In the first row,
the probe images are IR images, and the gallery images are RGB im-
ages. In the second row, the probe images are RGB images, and the
gallery images are IR images. The green bounding boxes indicate cor-
rect matches. It can be observed that even human viewers have diffi-
culty distinguishing different people without colour information (best
viewed in colour).

Table 5 Evaluation of various components of our method on SYSU-
MM01 (“All-search” and “Indoor-search”) and RegDB [50]. Here, r1,
r5, and r10 denote the rank-1, rank-5, and rank-10 accuracies (%), re-
spectively. See the text in the first paragraph of Section 6.5 for detailed
definitions of the other notations.

Method
All-search Indoor-search RegDB

mAP r1 mAP r1 mAP r1
One-stream 38.39 36.91 50.46 40.38 48.29 47.60
One-stream + LFMSP 43.18 41.34 56.27 46.49 54.10 53.54
Modality-Gated Extractor 43.03 41.37 55.34 45.53 52.65 53.88
Modality-Gated Extractor + LMSP 43.23 41.55 55.13 45.06 59.91 61.29
Modality-Gated Extractor + LFMSP

(our full model) 44.98 43.56 57.50 48.62 64.50 65.07

images. However, there are still some useful cues for match-
ing. From the top-ranked images, we can analyse what cues
may be useful for distinguishing individuals. For example,
the images in the top left group depict thin men with short
hair in short-sleeved shirts, whereas the images in the top
right group show women of medium stature with long hair
carrying small bags.

6.5 Further Analysis

Component Evaluation. To validate the effectiveness of
each component in our proposed framework, we evaluat-
ed two key components: the modality-gated nodes and the
Focal Modality-Aware Similarity-Preserving Loss LFMSP .
We applied both these components with the backbone one-
stream model as the baseline. The comparison results are re-
ported in Table 5, in which the following notations are used.
“One-stream” refers to the backbone one-stream model with
the Softmax cross-entropy loss Lcls in Eq. (7). “LFMSP ”
denotes the Focal Modality-Aware Similarity-Preserving Loss
in Eq. (6). “Modality-Gated Extractor” refers to the back-
bone one-stream model with modality-gated nodes. “LMSP ”
denotes the Modality-Aware Similarity-Preserving Loss in
Eq. (3) (without the confidence factors used inLFMSP ). “+”
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Fig. 13 Effect of λ on the rank-1 accuracy achieved in the indoor-
search mode on SYSU-MM01. λ is the weight controlling the effect of
the Focal Modality-Aware Similarity-Preserving Loss LFMSP in our
loss function L (Eq. (7)).

denotes the combination of two components in the frame-
work. “Modality-Gated Extractor +LFMSP ” is the full mod-
el of our proposed method.

To evaluate the effectiveness of the Focal Modality-Aware
Similarity-Preserving Loss LFMSP (Eq. (6)), we compared
“one-stream” with “one-stream + LFMSP ” and compared
“Modality-Gated Extractor” with “Modality-Gated Extrac-
tor + LFMSP ”. Compared with “one-stream”, the improve-
ment in the mAP of “one-stream +LFMSP ” is approximate-
ly 6% on both datasets. The Focal Modality-Aware Similarity-
Preserving Loss LFMSP can guide cross-modality feature
learning by cross-modality similarity preservation to mine
shared knowledge. Moreover, to validate the effectiveness
of the confidence factors in LFMSP in Eq. (6), we com-
pared “Modality-Gated Extractor +LMSP ” with “Modality-
Gated Extractor + LFMSP ”. The results show that with-
out the confidence factors, the performance dropped because
the confidence factors can help to emphasise the contribu-
tion of reliable sample pairs during cross-modality similarity
preservation while avoiding learning incorrect information
from unreliable sample pairs. To evaluate the effectiveness
of modality-gated nodes, we compared “one-stream” with
“Modality-Gated Extractor” and compared “one-stream +
LFMSP ” with “Modality-Gated Extractor +LFMSP ”. Com-
pared with “one-stream”, the improvement in the mAP of
“Modality-Gated Extractor” is approximately 5% on both
datasets. Using modality-gated nodes in a one-stream net-
work can enable the learning of suitable modality-specific
and shared structures in the network and thus enable the
extraction of better features for cross-modality matching,
leading to improved performance. The full model of our
proposed method, “Modality-Gated Extractor + LFMSP ”,
achieved the best performance.

Effect of the Parameter λ in the Loss. In our loss function
L (Eq. (7)), λ is the weight for controlling the effect of the
Focal Modality-Aware Similarity-Preserving Loss LFMSP .
To further analyse the effect of λ, we varied its value from
0 to 100 and evaluated the resulting performance of our
method on SYSU-MM01. The rank-1 accuracies achieved
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in the indoor-search mode with different λ values are plot-
ted in Figure 13. Similar conclusions can be drawn from the
results obtained in other settings. As λ was increased from
0 to 10.0, the performance improved; the best performance
was achieved with λ = 10.0. Empirically, the best value of
the parameter λ in our method is between 1.0 and 10.0.

Comparison with Deep Zero Padding. Our preliminary
method based on deep zero padding was considered in the
comparisons presented in Tables 3 and 4, with all hyperpa-
rameters being the same as in the method proposed in this
study. Our proposed method clearly outperformed deep ze-
ro padding, in which fixed modality-gated nodes are used
in the input layer to generate modality-specific nodes in the
network and training is performed using the Softmax loss.
Our Focal Modality-Aware Similarity-Preserving Loss can
mine the shared knowledge for cross-modality matching,
and our Modality-Gated Extractor is more flexible than deep
zero padding for learning a network structure that is suited
to the data. Note that the results of deep zero padding re-
ported here are better than those reported in our preliminary
work [71] because we used a larger neural network as the
backbone and the amount of data used for training was in-
creased. More specifically, we used data of all 395 identities
in the training set in this work, while image data of only 296
people were used in [71].

Visualisation of the Modality Selection Weights. The modal-
ity selection weights a1 and a2 are important parameters
in modality-gated nodes (Eq. (11)). These parameters de-
termine to what extent a node tends to be shared or specif-
ic to one modality, and in turn, they implicitly determine
the modality-specific and shared structures in the Modality-
Gated Extractor. When a1 = a2 = 0.5, the node is a shared
node, as the sum of a1 and a2 is constrained by a1 + a2 =

1. By contrast, the farther a1 or a2 is from 0.5, the more
the node tends to be specific to one modality. We regard n-
odes with modality selection weights such that a1 ≥ a2 as
soft modality-1-specific nodes and nodes with a1 < a2 as
soft modality-2-specific nodes. We show the means of the
modality selection weights for soft modality-1-specific n-
odes and soft modality-2-specific nodes and the proportions
of these two types of nodes in all nodes of each layer of
our Modality-Gated Extractor in Figure 14. In Figure 14,
(a) shows the weights of soft modality-1-specific nodes, (b)
shows the weights of soft modality-2-specific nodes and (c)
shows the proportions of these two types of nodes in all n-
odes of each layer.

For cross-modality matching, intuitively, it can be as-
sumed that more modality-specific structures will be need-
ed in the shallower layers for reducing the modality gap,
whereas more shared structures will be needed in the deeper
layers for learning the shared representation for matching.
The means of the modality selection weights in Figure 14
are generally consistent with this assumption. The modal-
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(b) Soft modality-2-specific nodes

Layer number
0 5 10 15 20 25 30 35 40 45 50

P
ro

po
rt

io
n

0

0.2

0.4

0.6

0.8
Soft modality-1-specific nodes
Soft modality-2-specific nodes

(c) Proportions of soft modality-1-specific/modality-2-specific nodes

Fig. 14 Means of the modality selection weights a1 and a2 for the
modality-gated nodes (Eq. (11)) and the proportions of two types of
modality-gated nodes in all nodes of each layer in our Modality-Gated
Extractor. (a) shows the weights of soft modality-1-specific nodes, (b)
shows the weights of soft modality-2-specific nodes and (c) shows the
proportions of these two types of nodes in all nodes of each layer. The
x-axis shows the layer number. In (a) or (b), the y-axis shows the mean
of the corresponding modality selection weights a1 or a2. In (c), the
y-axis shows the proportions of soft modality-1-specific nodes and soft
modality-2-specific nodes in all nodes of each layer. Please see the last
paragraph of Section 6.5 for detailed analysis.

ity selection weights are closer to 0.5 in the deeper layers
(after the 40th layer) and farther from 0.5 in the shallow-
er layers, indicating that the nodes in deeper layers tend to
be shared, while the nodes in shallower layers tend to be
more specific to a particular modality. The proportion of soft
modality-1-specific nodes or soft modality-2-specific nodes
is close to 0.5 for most layers except for the first several lay-
ers. In the first several layers, there are more soft modality-1-
specific (RGB-specific) nodes than soft modality-2-specific
(IR-specific) nodes, and this is probably because the ImageNet-
pretrained convolution filters for extracting low-level fea-
tures such as edges and textures can be shared by both RGB
images and IR images. As the filters are pretrained on RG-
B images, most of them tend to be more specific to RG-
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B modality, although they are also partially shared for IR
modality.

7 Conclusion

In this work, we study the problem of matching images of
persons captured under normal lighting with those acquired
in very dark environments, where IR images are used in-
stead of RGB images, e.g., person Re-ID across day and
night conditions in 24-hour surveillance systems. We make
an early attempt to address the RGB-IR cross-modality Re-
ID (RGB-IR Re-ID) problem and introduce a new multi-
modality Re-ID dataset, SYSU-MM01. The significant dis-
parities between RGB and IR image data make RGB-IR Re-
ID a very challenging problem compared with conventional
single-modality RGB-based Re-ID problem.

In contrast to previous cross-modality modelling meth-
ods, we do not operate under the assumption of identical
distributions between training and testing data for Re-ID and
cast mining shared knowledge for cross-modality matching
as the problem of cross-modality similarity preservation. For
this purpose, we propose a Focal Modality-Aware Similarity-
Preserving Loss. Furthermore, to facilitate the extraction of
the shared knowledge, we overcome the limitations of the
manually designed modality-specific and shared model struc-
tures used in existing cross-modality matching methods by
proposing the modality-gated node as a generalisation of
both modality-specific and shared nodes; we use our pro-
posed modality-gated nodes to construct a structure-learnable
feature extraction model Modality-Gated Extractor. Exten-
sive experiments on a new SYSU-MM01 benchmark dataset
show the effectiveness of our method compared to a wide
range of methods for person Re-ID, cross-modality match-
ing and domain adaptation.
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Appendix

Properties of Modality-Specific and Shared Nodes. In Section 4.1,
we analyse the properties of modality-specific and shared nodes, which
can be derived as follows.

Let x(l) denote the input to layer l + 1, let o(l+1),i denote the
output of the i-th node before the activation function in layer l + 1,
and let w(l+1),i and b(l+1),i denote the weight and bias parameter-
s, respectively, i.e., o(l+1),i = (w(l+1),i)

>x(l) + b(l+1),i. Us-
ing the previously defined types of nodes, without loss of generality,
xm1
(l) and xm2

(l) can be factorised into three parts as follows: xm1
(l) =

[xm1,1spe
(l) ;xm1,2spe

(l) ;xm1,sh
(l) ] and xm2

(l) = [xm2,1spe
(l) ;xm2,2spe

(l) ;

xm2,sh
(l) ], where “;” denotes vector concatenation and the three compo-

nents correspond to modality-1-specific, modality-2-specific and shared
nodes, respectively. We denote w(l+1),i as w(l+1),i = [w1spe

(l+1),i;

w2spe
(l+1),i;w

sh
(l+1),i].

Let L denote the loss function of the network. For modality-2-
specific nodes, given a network input xm1

(0) of modality 1, the output is

xm1,2spe
(l) = 0; this can be derived in accordance with the definition

of types of nodes in Eq. (10). Therefore, in the forward propagation
process, the output of layer l + 1 is

o(l+1),i = (w1spe
(l+1),i)

>xm1,1spe
(l) +(wsh(l+1),i)

>xm1,sh
(l) +b(l+1),i.

(15)

In the backward propagation process, the derivatives of the loss func-
tion L with respect to the weights are

∂L

∂w1spe
(l+1),i

=
∂L

∂o(l+1),i

∂o(l+1),i

∂w1spe
(l+1),i

=
∂L

∂o(l+1),i

xm1,1spe
(l) ,

(16)

∂L

∂w2spe
(l+1),i

=
∂L

∂o(l+1),i

∂o(l+1),i

∂w2spe
(l+1),i

=
∂L

∂o(l+1),i

xm1,2spe
(l) = 0,

(17)

∂L

∂wsh(l+1),i

=
∂L

∂o(l+1),i

∂o(l+1),i

∂wsh(l+1),i

=
∂L

∂o(l+1),i

xm1,sh
(l) . (18)

For a network input xm2
(0) of modality 2, formulations similar to

those above can be derived. Since the bias parameter b(l+1),i can be
included in the weight parameter w(l+1),i by simply padding 1 into
the layer input x(l), the bias parameter is not analysed individually.

Based on the derivations above, the properties of modality-specific
and shared nodes are analysed in Section 4.1.

Structure Representation Ability. In the last paragraph of Section
4.2, we analyse the connection between one-stream networks consist-
ing of modality-gated nodes and the existing network structures. To
show the structure representation ability of modality-gated nodes, we
take a simple two-stream network as an example. In Figure 9, a one-
stream network equivalent to the two-stream network in Figure 7 with
respect to forward propagation is shown. Inputs xm1 and xm2 are
fed into the same nodes in layer 0. In layer 1, there are four modality-
gated nodes, of which two are modality-1-specific nodes and the oth-
ers are modality-2-specific nodes. In layer 1a, there are two shared
modality-gated nodes. The black solid lines denote weights of 1, and
the black dotted lines denote weights of 0. The modality label ymod

controls the modality gate. In this way, the weights represented in blue
and red correspond to modality-specific nodes, and the weights rep-
resented in green correspond to shared nodes; thus, this one-stream
structure consisting of modality-gated nodes is identical to the two-
stream structure in Figure 7. Therefore, it is possible to learn a two-
stream structure. More generally, modality-gated nodes can represent
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soft modality-specific nodes and provide a network with sufficient flex-
ibility to evolve into any modality-specific and shared structures.

Modality-Gated Nodes vs. Channel Attention. For our modality-
gated nodes, each node (or channel in a convolutional network) is
weighted by two modality selection weights, one for each modali-
ty. Some neural networks apply a channel attention mechanism (e.g.,
SENet [25]) and also use different weights for different channels. Ac-
cording to our analysis, the modality selection weights of modality-
gated nodes can be adjusted to form either modality-specific or shared
structures in a network for processing data from two modalities. By
contrast, simply applying the channel attention mechanism does not al-
low modality-specific and shared structures to be learned because there
is no specific modelling for different modalities.
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