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Abstract

Unsupervised disentangled representation learning aims to
recover semantically meaningful factors from real-world data
without supervision, which is significant for model gener-
alization and interpretability. Current methods mainly rely
on assumptions of independence or informativeness of fac-
tors, regardless of interpretability. Intuitively, visually inter-
pretable concepts better align with human-defined factors.
However, exploiting visual interpretability as inductive bias
is still under-explored. Inspired by the observation that most
explanatory image factors can be represented by ‘“‘content
+ mask”, we propose a content-mask factorization network
(CMFNet) to decompose an image into different groups of
content codes and masks, which are further combined as con-
tent masks to represent different visual concepts. To ensure
informativeness of the representations, the CMFNet is jointly
learned with a generator conditioned on the content masks
for reconstructing the input image. The conditional generator
employs a diffusion model to leverage its robust distribution
modeling capability. Our model is called the Factorized Dif-
fusion Autoencoder (FDAE). To enhance disentanglement of
visual concepts, we propose a content decorrelation loss and a
mask entropy loss to decorrelate content masks in latent space
and spatial space, respectively. Experiments on Shapes3d,
MPI3D and Cars3d show that our method achieves advanced
performance and can generate visually interpretable concept-
specific masks. Source code and supplementary materials are
available at https://github.com/wuancong/FDAE.

Introduction

Learning interpretable disentangled representation (Ben-
gio, Courville, and Vincent 2012; Locatello et al. 2019)
is fundamental for improving model generalization and in-
terpretability in downstream tasks that require recognition
of manually defined factors. Since annotations of the fac-
tors are generally unavailable for real-world data, unsuper-
vised disentangled representation learning (Zhu, Xu, and
Tao 2021; Voynov and Babenko 2020; Ren et al. 2021; Yang
et al. 2022) is a significant field of computer vision.

Most existing methods operate under the assumption that
different factors are independent (Higgins et al. 2016) or
under the assumption that representations are informative
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Figure 1: Examples of visual concept factorization on
Market-1501 (Zheng et al. 2015) and MPI3D (Gondal et al.
2019). Inspired by visual interpretability, we learn disentan-
gled representations by decomposing an image into multiple
groups of “content + mask” to uncover visual concepts.

(Chen et al. 2016). However, they rarely take into account
the visually interpretable concepts, which intuitively better
align with human-defined factors. To uncover interpretable
visual concepts, we leverage visually interpretability to in-
troduce inductive bias for representation disentanglement,
since Locatello et al. (Locatello et al. 2019) have proven that
unsupervised disentanglement is fundamentally impossible
without inductive biases on both model and data. Generally,
an image is composed of different visual concepts, and most
explanatory factors are related to the content and position
of these concepts. Figure 1 shows some examples of visual
concept factorization, where the concepts are represented by
multiple groups of “content + mask”.

Inspired by this observation, we propose a Content-Mask
Factorization Network (CMFNet) that consists of an image
encoder and a mask decoder to factorize an image. Given
an input image, the image encoder extracts a latent code
and splits it into multiple groups of content codes and mask
codes to represent different underlying visual concepts. In
each group, we aim to learn semantic information in the con-
tent code and position information in the mask code. The
mask decoder then takes the mask codes as input to gen-
erate masks. The content code and mask of each group are
aggregated to form a content mask representing a specific



visual concept. Finally, the content masks of different fac-
tors are summed up as a condition map for a conditional
image generator, implemented using a diffusion probabilis-
tic model (Karras et al. 2022) to take advantage of its ro-
bust distribution modeling ability. To achieve informative
and disentangled representation learning, we jointly train the
CMEFNet and the conditional image generator for image re-
construction, so that the information of the input image is ex-
tracted in the condition map and decomposed into different
content masks. We call this model the Factorized Diffusion
Autoencoder (FDAE). To further enhance disentanglement
of different visual concepts, we impose constraints on both
the content codes and masks to achieve inter-group content
mask disentanglement. A content decorrelation loss and a
mask entropy loss are proposed to decorrelate the content
masks in latent space and spatial space, respectively.

Our model achieves state-of-the-art results on benchmark
datasets Shapes3d (Kim and Mnih 2018), MPI3D (Gondal
etal. 2019). Furthermore, our model is capable of generating
interpretable masks for understanding the learned concepts.

The main technical contributions of our method are

* We propose the Factorized Diffusion Autoencoder
(FDAE), which incorporates the inductive bias of visual
interpretability to uncover explanatory visual concepts
through content-mask factorization.

» To enhance disentanglement of visual concepts, we intro-
duce constraints of content decorrelation loss and mask
entropy loss for multiple groups of content masks in la-
tent space and spatial space, respectively.

Related Work
Disentangled Representation Learning

Disentangled representations (Locatello et al. 2019) should
separate the interpretable, independent and informative fac-
tors of variations in the data. Most existing approaches con-
centrate on imposing regularization based on independence
(e.g., B-VAE (Higgins et al. 2016)) or informativeness (e.g.,
InfoGAN (Chen et al. 2016)), while interpretability is still
largely ignored. Based on the interpretability assumption,
PS-CS model (Zhu, Xu, and Tao 2021) enforces spatial con-
striction constraint for local feature maps by rectangular
masks. Compared with PS-CS model that ignores encoding
of the masks, our method separately encodes contents and
masks to better facilitate disentanglement and informative-
ness of content-related factors and position-related factors.
Generally, current approaches explore the latent space of
generative models to uncover underlying factors (Voynov
and Babenko 2020; Ren et al. 2021). Most methods rely
on variational autoencoder (e.g., FactorVAE (Kim and
Mnih 2018), 5-TCVAE (Chen et al. 2018), DAVA (Ester-
mann and Wattenhofer 2023)) and generative adversarial
network (e.g., closed-form latent factorization (Shen and
Zhou 2021), GANSpace (Hirkonen et al. 2020), DeepSpec-
tral (Khrulkov et al. 2021)). Unsupervised disentanglement
method for transformers (e.g., Visual Concepts Tokenization
(Yang et al. 2022)) and diffusion models (e.g., DisDiff-VQ
(Yang et al. 2023)) are still under-explored. Compared with
DisDiff-VQ that relies on independence constraints, our

diffusion-based method is inspired by visual interpretability
and tends to uncover human-defined factors better.

Diffusion Models for Representation Learning

Diffusion probabilistic model (Ho, Jain, and Abbeel 2020;
Rombach et al. 2022) has shown promising image genera-
tion ability. Recently, diffusion-based representation learn-
ing has attracted increasing attention. PDAE (Zhang, Zhao,
and Lin 2022) and Asyrp (Kwon, Jeong, and Uh 2022)
discover semantic information in the latent space of pre-
trained diffusion models. Diffusion Autoencoders (DiffAE)
(Preechakul et al. 2022; Xiang et al. 2023) perform image
reconstruction by diffusion model to learn representations.
Based on Diffusion Autoencoders (DiffAE), our method
further introduce a content-mask factorization network to
uncover disentangled concepts inspired by visual inter-
pretability in an unsupervised manner. This approach is
under-explored for diffusion-based representation learning.

Factorized Diffusion Autoencoder
Problem Formulation

For representation disentanglement (Locatello et al. 2019), a
real-world image can be assumed to be generated by a two-
step process: (1) sampling random variable z € R"= from a
factor distribution Pfqct0r(z) and (2) sampling image data x
from conditional data distribution P, (x|z). Each dimen-
sion of z controls variation of an explanatory factor (e.g.,
color or position) and is independent of another dimension.

To uncover the underlying factors in unlabeled image x,
we expect to learn a concept distribution Qop, (C|x), where
C = {C!',C?,...,C"} is a set of independent visual con-
cepts. On the one hand, C™ is informative to predict z,,, and
and C™* does not contain information of z,, for n; # ns.
On the other hand, concept set C should be able to recon-
struct x as factor z, so that we learn Q444 (x|C) to approxi-
mate the conditional data distribution Py, (x|2).

To model distributions Q.o (C|x) and Qgatq(x|C), we
introduce a content-mask factorization network (image en-
coder E and mask decoder Dj;) and a conditional image
generator (7, respectively. Since joint learning of Q... (C|x)
and Q4qtq(x|C) can be regarded as image encoding and de-
coding, our model is called Factorized Diffusion Autoen-
coder (FDAE), of which the overview is shown in Figure 2.

Content-Mask Factorization Network

To achieve unsupervised disentanglement of interpretable
representations, Locatello et al. (Locatello et al. 2019) have
theoretically proven that inductive biases are required for
both model and data. In this work, we concentrate on
learning visual representations and introduce inductive bias
for disentanglement inspired by visual interpretability. As
shown in Figure 1, when interpreting an image, humans of-
ten decompose it into multiple visual concepts, which can
typically be represented by their content and position.
Based on such assumption on image data, we take into ac-
count the “content + mask” factorization when modeling the
concept distribution Q.. (C|x). Each concept C™ in C is ex-
pected to contain visually interpretable information related



Content-Mask Factorization Network (CMFNet)
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Figure 2: The overview of Factorized Diffusion Autoencoder (FDAE). The Content-Mask Factorization Network (CMFNet)
encodes the input image x and factorizes it into [V groups of content codes and masks, which correspond to /V uncovered visual
concepts. Conditioned on the combination of the content masks, the conditional image generator G reconstructs the input image
x. Content decorrelation loss Lo p and mask entropy loss £, g enhance disentanglement of different visual concepts.

to an explanatory factor. To achieve this, we represent a con-
cept C™ as a combination of a content code and a mask. The
content code contains the semantic information of a concept,
while the mask contains information about the concept’s po-
sition and region. To extract content codes and masks, we
introduce image encoder £ and mask decoder D ;.

Image Encoder £ Given input image x € RF*W>3 we
employ a convolutional neural network (CNN) as image en-
coder to extract latent code f = E(x). To represent multiple
visual concepts, the latent code f is split into N groups of
content codes and mask codes by

N content codes Nmask codes

£ = [ £2, .. (D

where f € R? is the concatenation of content codes
fel f2 £V ¢ R? and mask codes f™!,fm2 . fmN ¢
R?m . The dimensionality of f is d = N (d. + d,,).

Mask Decoder D); We expect that the position and re-
gion information in the mask codes f*" (n = 1,2,...,N)
can be explicitly represented by an interpretable mask im-
age. We adopt a CNN with upsampling modules as mask

ch,fml’ me7 me]’

decoder Dj;. The mask image M" € R *W is decoded by
Mg, = Du(£™"), @
M" = Softmax(M.,,, M2 ,, ... MY ).,

where the Softmax function is applied to normalize N masks
to ensure that the values of mask images are probabilities
between 0 and 1.

Content Masks To represent the n-th visual concept in
an interpretable manner, we aggregate the content code £<"
and the mask code M" to obtain a content mask C™ €

RIXWxdr where dy is the dimensionality that matches the
condition input of the conditional image generator G.

To this end, we first map the content code f°* € Rde
to £’ € R9F by Multi-Layer Perceptron (MLP) to adjust
the dimensionality. Next, we perform masked expansion for
content code £’ and mask M™ to obtain concept C™ by

ey =mi; - £ 3)
where vector ¢?*; € R and scalar m?; € [0, 1] are the

elements in the i- th row and the j-th column of C" €
RAXWxdr and M™ € RTXW  respectively.

With the cooperation of image encoder £ and mask de-
coder D), the input image x is factorized into a set of
N content masks C = {C"}]__,. We call this module the
Content-Mask Factorization Network (CMFNet).

Reconstruction by Conditional Diffusion Model

To learn informative representations, the content masks C
extracted by CMFNet should be able to reconstruct x as
the ground-truth factor z in “Problem Formulation” section.
To model data distribution @Q 441, (x|C), we exploit diffusion
probabilistic model (DPM) (Ho, Jain, and Abbeel 2020) as
conditional image generator GG to leverage its robust distri-
bution modeling ability.

Preliminaries of Diffusion Probabilistic Model (DPM)
The denoising diffusion probabilistic model (Ho, Jain, and
Abbeel 2020) is a parameterized Markov chain for generat-
ing samples by learning to reverse a diffusion process, which
gradually adds noise to the data until the signal is destroyed.

Given data xo ~ ¢(x¢), the forward (diffusion) process
gradually adds Gaussian noise to the data according to a



variance schedule 31, ..., B as follows

Hq X% 1) “

X1 T\Xo

= N(x¢; \/ﬁxt_l,m). Q)

The backward process is a Markov chain with learned
transitions starting at p(xr) = N (x7; 0, 1) as follows:

Q(Xt|xt—1)

T

(xr) HPO(thﬂXt)’ (6)

t=1
:N(thl;He(Xt,t),O'a(Xt,t)), (7)

where 6 denotes diffusion model parameters.

pG(XO:T) =p

pe(thl\Xt)

Factorized Diffusion Autoencoder (FDAE) Inspired by
diffusion autoencoders (Preechakul et al. 2022), joint train-
ing of image encoder and DPM conditioned on the latent
codes can learn informative representation through image
reconstruction. This is because the latent codes are forced to
learn information lost during the forward diffusion process
(Zhang, Zhao, and Lin 2022).

To represent all uncovered visual concepts by a single
variable, we combine the content masks C*, C2,...,C¥ to
form a condition map C = Zn ; C™. Then, the condition
map C € R7*Wxdr j5 added to intermediate feature map
F, € REXWxdr of conditional image generator G by

Ft/ - Ft + C, (8)

where ¢ is the time step, F;’ is the feature map input to the
backbone U-Net (Ronneberger, Fischer, and Brox 2015) of
the diffusion probabilistic model (DPM).

For joint learning of CMFNet (E and Dj;) and condi-
tional image generator GG, we follow the EDM (Karras et al.
2022) approach and adopt the reconstruction loss as follows:

_ 2
EIB}?,G ﬁrec - IEx t [ (Ut)||G(Xta C;t) X||2]7 (9)

where x ~ P41, (x) represents image data. At time step ¢ of
the forward process, x; = x + n, is the noisy image, where
n; ~ N(0,071). o, is the noise schedule. G(x;, C,t) is
the reconstructed image X. A(o;) is loss weighting function.
More details are presented in the supplementary material.

The framework of encoding by content-mask factoriza-
tion network and decoding by conditional diffusion model
is called the Factorized Diffusion Autoencoder (FDAE).

Inter-Group Content Mask Disentanglement

To further enhance disentanglement of the latent code f, we
decorrelate content codes f°* and mask codes ™" of differ-
ent groups, since different uncovered visual concepts should
be independent to each other as the ground-truth factors z
in “Problem Formulation” section. To accomplish this, we
decorrelate the content masks in both the latent space and
the spatial space by imposing constraints on content codes
fe™ and masks M".

Content Decorrelation Loss Lop In the latent space of
content code ", we expect that f°"* and f°*2 of dif-
ferent groups are decorrelated for ny # ns (ni,ne €
{1,...,N}). We compute the inter-group content code co-
variance cov(f™ f°"2) and make it close to 0. The content
decorrelation loss is formulated as

mbinﬁcp = Z [cov(fmt, £2) — 0

n1#ng
Ny (10)
1 L T o
— fé}nl fé,'ng _ 0 ,
Oy
nlgéng s=1

where 5™, fs™2 are centered content codes normalized by
£2-norm and Ny, is the number of training samples.

Mask Entropy Loss £, In the mask M", the element
m;'; in the ¢-th row and the j-th column is the probability
that the content of the n-th visual concept appear in pixel
(,4). Due to the Softmax normalization operation in Eq.

(2), the elements in mask M™ satisfy 22[:1 mg; = 1.

We assume that different concepts occupy different re-
gions of the image and should be decorrelated in the spatial
space. In the region related to the n-th concept, we expect
that m7’; is close to 1 and m?; (n’ # n) is close to 0, which

indicates that the uncertainty of mn; ;, ...,mn;"; is low. Hence,
we introduce the mask entropy loss as follows:

éflli)r]lwﬁME_HWNt Z Z mws Js)

4,5,8
Y
where m7’ ; _ is the value of pixel (4, j) in mask M of the s-
th sample; H,W are the height and the width of mask Mz
Ny, is the number of training samples.

Model Training
Loss Function To learn informative and disentangled rep-
resentations, the total loss function is formulated by

L= ‘Crec L L ’ 12
E%}V?G +wepLep +wyueLMmE (12)

where wop and wys g are trade-off parameters.

Unsupervised Metric for Selecting Concept Number
We define an unsupervised metric self-MIG to select the
concept number N by mutual information difference be-
tween the codes of different concepts in feature f =
[fel, ... £ fmi ] (content code f¢ and mask code
f™). Each code f¢, f™ was quantized by K-means (Mac-
Queen 1967) to form a discrete feature q = [q1, ..., @an] €
Z*N | We adapt mutual information gap (MIG) (Chen et al.
2018) to self-MIG and apply it on q as follows:

self-MIG = max (H(g;) —max1(g;;q;))/H(q:),
2N i

i=1
(13)

where H, I denote discrete entropy and mutual information.
Self-MIG measures disentanglement by the most inde-
pendent content code or mask code. A larger self-MIG value
indicates a greater degree of independence. For implementa-
tion details, please see the “Implementation Details” section.



Experiments

We evaluated unsupervised disentanglement representa-
tion learning on Shapes3d (Kim and Mnih 2018), MPI3D
(Gondal et al. 2019), Cars3d (Reed et al. 2015) and at-
tribute prediction on complex real-world dataset Market-
1501 (Zheng et al. 2015). Visualization was performed to
understand the learned concepts on the above datasets as
well as face dataset FFHQ (Karras, Laine, and Aila 2019).

Experimental Setup

Datasets Evaluations were carried out on three datasets.
(1) Shapes3d (Kim and Mnih 2018) is a synthetic dataset
of 3D shapes generated from 6 factors (floor color, wall
color, object color, object scale, object shape and orienta-
tion). There are totally 480,000 samples.

(2) MPI3D (Gondal et al. 2019) dataset contains real-world
images that capture 3D printed objects with variations of 6
factors (object color, object shape, object size, background
color, camera height, horizontal axis and vertical axis). We
evaluated on the MPI3D-real-complex version!, which con-
tains 460,800 samples.

(3) Cars3d (Reed et al. 2015) is a synthetic dataset gener-
ated by 183 3D car models with variations of 24 rotation
angles and 4 camera elevations.

Evaluation Metrics Disentanglement metric (DCI) (East-
wood and Williams 2018), FactorVAE score (FVAE) (Kim
and Mnih 2018) and mutual information gap (MIG) (Chen
et al. 2018) were applied for evaluation. Disentanglement
(D) value of DCI is reported by default. In each experiment,
we reported the average performances of 10 models, each
trained with a different random seed.

Since our disentangled representations are vector-wise,
we followed the approach in COMET (Du et al. 2021) to
separately post-process the content code and mask code of
each concept using Principal Component Analysis (PCA)
(Jolliffe 2002) to preserve d, main components. This re-
sults in a latent code of dimensionality di.s; = 2Nd,.. We
fixed dies; = 36 to determine d,.. As the MIG metric re-
quires the computation of discrete mutual information, we
quantized each content code and mask code using K-means
(MacQueen 1967), where the number of clusters K was set
to 20, following the commonly used evaluation code of Lo-
catello et al. (Locatello et al. 2019).

Implementation Details

To select the concept number N, we varied it from 2 to
10 and trained our FDAE. Then, as illustrated in “Model
Training” of the methodology section, self-MIG was ap-
plied on discrete features quantized by K-means (KX = 20)
for each trained model. Finally, the N corresponding to the
largest self-MIG was selected as default parameter, as shown

"The MPI3D dataset contains two different versions of real-
world data: MPI3D-real and MPI3D-real-complex. While most
previous works have been evaluated on the MPI3D-real version,
only the MPI3D-real-complex version is currently available on the
dataset project page. This version captures more complex objects
with variations of the same factors.

Concept number N 2 4 6 8 10

Shapes3d (default 6) | 0.86 0.88 0.92 0.89 0.78
MPI3D (default 6) 0.85 0.86 0.8 087 0.56
Cars3d (default 2) 076 062 074 067 0.71

Table 1: Unsupervised metric self-MIG (1) for selecting con-
cept number V.

in Table 1. By default, we used concept number N = 6
for Shapes3d (Kim and Mnih 2018), MPI3D (Gondal et al.
2019) and used N = 2 for Cars3d (Reed et al. 2015).

For our FDAE model, we employed ResNet-18 (He et al.
2016) as the backbone model of image encoder E. Input im-
age x was resized to 64 x 64. Dimensionalities of the content
codes (d.), mask codes (d,,) and content masks (dg) were
all set to 80. After the final average pooling layer of ResNet,
a fully connected layer was applied to obtain a latent code
of dimensionality d = N(d. + d,,). Next, a fully connected
layer was applied for dimensionality adjustment of content
codes. We constructed the mask decoder D, by following
the architecture of the generator in DCGAN (Radford, Metz,
and Chintala 2016). In the image generator GG, the noisy im-
age x; first passed through a 3 x 3 2D convolution layer and
then through U-Net (Ronneberger, Fischer, and Brox 2015),
which was the same as that in EDM (Karras et al. 2022). All
modules of FDAE were trained from scratch.

In our loss function, we set wep = 2.5 x 10~ for con-
tent decorrelation loss Lop in Eq. (10) and set wy g =
1.0 x 10~* for mask entropy loss £z in Eq. (11). For op-
timization, we used RAdam (Liu et al. 2020) with learning
rate 1.0 x 10~* for 100, 000 iterations and the batch size was
set to 32. Training and inference of the diffusion model were
the same as those used by EDM (Karras et al. 2022).

The training process takes 21 hours on 1 NVIDIA RTX
3090. More details are presented in supplementary material.

Compared Methods

(1) VAE-based methods: FactorVAE (Kim and Mnih 2018),
B-TCVAE (Chen et al. 2018), DisCo-VAE (Ren et al. 2021)
and DAVA (Estermann and Wattenhofer 2023);

(2) GAN-based methods: InfoGAN-CR (Chen et al. 2016),
LatentDiscovery (LatentDisco) (Voynov and Babenko
2020), ClosedForm (Shen and Zhou 2021), GANSpace
(Hérkonen et al. 2020), DeepSpectral (Khrulkov et al. 2021)
and DisCo-GAN (Ren et al. 2021);

(3) Transformer-based method: Visual Concepts Tok-
enization (VCT) (Yang et al. 2022);

(4) Diffusion-based methods: Diffusion Autoencoders
(DiffAE) (Preechakul et al. 2022) and DisDiff-VQ (Yang
et al. 2023).

We used the results reported in the papers of these meth-
ods for comparison by default. On MPI3D, we evaluated the
best competitor VCT (Yang et al. 2022) using its released
code on MPI3D-real-complex for fair comparison and also
reported other published results on MPI3D-real. For fair
comparison with DiffAE (Preechakul et al. 2022) as our
baseline (concept number N = 1), we adopted the same
network architecture and training strategy as our method.



Shapes3d

MPI3D (real/real-complex*) Cars3d

Method

DCI FVAE MIG DCI

FVAE MIG DCI FVAE MIG

FactorVAE [0.611709%2 0.84070:95 0.434%0-1131 0 240 =071
B-TCVAE (0.613%0114 0.873%0074 0.406*0-17%| 0.237+0:956
VAE| DisCo-VAE |0.844%0-033 0.956+0-041 0,331+0-161| 0,288*0-021
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InfoGAN-CR |0.478F0:055 () 587%0-058 () 297+£0-1241() 941 +0.075
LatentDisco [0.380%0:062 0.805%0:064 (),168%0-056| (,196+0-038
ClosedForm |0.525%0:078 (0,951 %0:021 () 3(7+0-124| () 31g+0-014
GAN| GANSpace [0.284+0-034 0 788%0-091 () 121%0-048| () 99g+0.042
DeepSpectral |0.513%0-075 0,929F0-065 () 356+0-090) () 94g+0-038
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0.371£0:030 (3 99p£0.027 | 7 0.037 (3 g55%0.074 () 179+0.037
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04750095
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DisDiff-VQ [0.723F0-01% 0.902F0-0%3
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Diff |DiffAE (base)|0.114%009% 0.4320:019 0,007%-902 0,506 0016 0.861°£0-920 0,059%0-°93*|0,307%0-01> 0.959+0-030 0 23+0-027

FDAE (Ours) 0.917:§:0.038 0.987:§:0.023 0.473:|:0.075 0.644:‘:0'031* 0.903:§:0.030* 0.197i04021* 0.418:|:0.036 0.918:‘:0‘027 0.137:!:04020

Table 2: Comparison with the state-of-the-art methods. The results are presented as “mean

+std” of which the best is in bold type

and the second best is marked by underline. “Trans” denotes transformers and “Diff”” denotes diffusion models. On MPI3D,
results with/without “*”” denote evaluations on MPI3D-real/MPI3D-real-complex dataset.

Method |[DINO VCT DiffAE FDAE (ours) | APR (sup)
Topcolor | 29.6 569 66.8 70.8 74.0
Bottom color| 40.8 50.8 51.6 56.2 73.8
Gender 579 734 68.0 76.6 88.9
Hair 66.5 732 71.0 77.6 84.4
Backpack | 73.6 74.1 73.6 76.6 84.9
Average 537 657 66.2 71.6 81.2

Table 3: Attribute prediction accuracy (%) on Market-1501.
Linear SVM classifier is applied to the representations. APR
(Lin et al. 2019) is supervised deep model as upper bound.

Model Comparison and Analysis

Comparison with the state-of-the-art Methods The per-
formances of comparative evaluations are reported in Table
2. Our method outperforms all other methods in terms of
the DCI score. On MPI3D-real-complex, our method also
outperforms the best competitor VCT (Yang et al. 2022)
on MPI3D-real, which achieves comparable performances
on two different versions of MPI3D. On Shapes3d and
Cars3d, the MIG score of the vector-wise concept repre-
sentations (ours, VCT and DisDiff) are not as good as the
best results achieved by the scalar-wise representations of
the VAE-based or GAN-based methods, because MIG mea-
sures representation-factor mutual information difference
between the top-2 dimensions.

Pedestrian Attribute Prediction on Market-1501 To
evaluate more complex real-world vision task beyond un-
covering factors in controlled environments, we applied the
commonly used attribute annotations (Lin et al. 2019) of
pedestrian appearance on Market-1501 (Zheng et al. 2015)
to evaluate attribute prediction. The attributes include top
color (8 types), bottom color (9 types), gender, hair (short
or long) and backpack (yes or no). Predicting attributes for
pedestrians is challenging due to their non-rigid nature and

the complex environment they are in, which includes light-
ing variations and background clutters.

The attribute prediction evaluation involved several steps.
First, unsupervised representation learning was performed
on the training set. Next, representations were extracted
from both the training set and the testing set using the
learned model. Finally, for each attribute, linear SVM clas-
sifiers (Cristianini and Ricci 2008) were trained on the train-
ing representations and tested on the testing representations.
The content codes processed by PCA (Jolliffe 2002) as il-
lustrated in “Evaluation metrics” were used as input for the
linear SVM classifiers.

We compared with a representative self-supervised learn-
ing method DINO (ResNet-18) (Caron et al. 2021), a com-
petitive unsupervised disentanglement method VCT (Yang
et al. 2022) and our baseline method DiffAE (Preechakul
et al. 2022). For our method, content codes were extracted
for testing. The results of supervised deep attribute recog-
nition method APR (Lin et al. 2019) are reported as upper
bound. The prediction accuracies are shown in Table 3.

Our method FDAE achieves the best accuracy among un-
supervised representation learning methods, with top color
accuracy approaching that of the supervised APR model.
This shows that our method is more effective for learning
generalizable representations from non-rigid human bodies.

Visualization Results

To further understand our model FDAE, we provide visu-
alization results of the uncovered visual concepts and im-
age manipulation by swapping specific concepts and latent
traversal. More visualization results are shown in the sup-
plementary material.

Visualization of Uncovered Concepts Our method is ca-
pable of generating interpretable masks for understanding
the learned visual concepts. Besides the masks, we also
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Figure 3: Visualization of visual concepts learned by our Factorized Diffusion Autoencoder (FDAE). For each concept, the
masks and feature importance histograms of each ground-truth (GT) factors are shown. “C1-C6” denotes content codes and

“M1-M6” denotes mask codes.
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Figure 4: Images generated by swapping content codes and
mask codes on Cars3d and Market-1501. The image in the
i-th row and the j-th column of the box is generated using the
content codes from the i-th image on the left and the mask
codes from the j-th image on the top.

show the feature importances of the latent codes. Follow-
ing computation of the DCI metric (Eastwood and Williams
2018), we trained the Gradient Boosted Decision Trees
(GBDT) (Friedman 2001) to predict each ground-truth fac-
tor by latent code f. The feature importances of each content
code f¢ or each mask code f™ were summed up and dis-
played by histograms. The masks learned by our FDAE on
MPI3D, Shapes3d and Market-1501 are shown in Figure 3.

The learned masks demonstrate that the main instances in
the images, such as objects and backgrounds, can be learned
as different visual concepts. Although some visual concepts
do not learn meaningful representations, such as concepts 5
and 6 on MPI3D and concept 5 on Shapes3d, these concepts
have little impact on image reconstruction due to their low
probabilities on the masks.

For most factors on Shapes3d, feature importances of a
specific latent code are generally over 0.9, which indicate
that different content codes (C1-C6) and mask codes (M1-
M6) are effectively disentangled. On MPI3D that exhibits
more complex variations, factors such as object color, back-
ground color, and camera height are successfully disentan-
gled. On Market-1501, attribute prediction of top color and
bottom color mainly depends on concept 4 and concept 1.

The interpretable masks make it easy to determine which
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Figure 5: Examples of images generated by swapping spe-
cific latent code indicated on the left. The images are gen-
erated by using the latent codes extracted from the source
image with the indicated latent code swapped to the one ex-
tracted from the target image. The notations “C1-C6” and
“M1-M6” are corresponding to those in Figure 3.

group of content code and mask code may be useful for
downstream tasks without navigating the latent space.

Swapping Content Codes and Mask Codes To show that
content codes and mask codes are disentangled, we ran-
domly selected 6 images from Cars3d (Reed et al. 2015) and
Market-1501 (Zheng et al. 2015). Then, we performed pair-
wise latent code swapping for image generation. For a pair
of images x; and x2, we used the content codes f{?, ..., ffV
extracted from x; and the mask codes f3!, ... f"V ex-
tracted from x5 to generate new images. As shown in Figure
4, content codes mainly represent appearances and the mask
codes mainly represent the shapes and viewpoints.

Swapping Specific Latent Codes From the masks in Fig-
ure 3, we can gain insight into the information extracted by
each content code and mask code. To demonstrate that these
latent codes are disentangled, we randomly selected some
samples from Shapes3d and MPI3D. We extracted the latent
codes from the source images and swapped one of the latent
codes with that extracted from a target image to generate
new images. Some examples are shown in Figure 5.

On Shapes3d, the factors of object color, object shape,
floor color, wall color and orientation can be independently
controlled by swapping latent codes C3, M3, C1, C6 and
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Figure 6: Visualization of latent traversal on content codes.

MI1+M4+M6, respectively. On more complex MPI3D, the
factors of ring color, camera height, object color and orien-
tation can be controlled by latent codes C1, M1+M2+M4,
C3 and M3, respectively. Note that, the orientation factor on
Shapes3d and camera height factor on MPI3D affect multi-
ple instances, so that controlling this factor requires swap-
ping multiple mask codes simultaneously, which can be eas-
ily selected by observing the masks in Figure 3. Failure cases
are rare. The first image in the last row of MPI3D mistakenly
changes the coffee cup to a beer cup. This may be caused by
similar holders for the two types of cups.

Latent Traversal on Principal Component of Concepts
To explore the effect of the latent space, we show some
qualitative latent traversal results on Shapes3d (Kim and
Mnih 2018) as well as a commonly used real-world face
dataset FFHQ (Karras, Laine, and Aila 2019). As illustrated
in “Evaluation Metrics” in the experiment section, PCA (Jol-
liffe 2002) was applied to post-process each content code
and mask code. Latent traversal on the direction of the most
principal component was conducted for some content codes.
The latent traversal results are shown in Figure 6, which
demonstrate that our method is effective for learning mean-
ingful factors of faces and objects.

Further Evaluations

Ablation Study We evaluated the main components of our
FDAE model. The results on MPI3D are reported in Table
4. “FE 4+ G” denotes using encoder E and generator G with-
out masks, which is degraded to DiffAE (Preechakul et al.
2022) (concept number N = 1) as our baseline method.
“CMFNet” denotes the content-mask factorization network.
“Lop” and “L g~ denote content decorrelation loss in Eq.
(10) and mask entropy loss in Eq. (11), respectively.

Compared to the baseline method (experiment 1),
CMEFNet (experiment 2) significantly improves the DCI and
MIG scores, indicating the effectiveness of factorizing con-
cepts into multiple groups of “content + mask”. Loss func-
tions Lo p (experiment 3) and £, (experiment 4) can fur-
ther improve disentanglement of the representations and are
complementary to each other (experiment 5). This demon-
strates the effectiveness of decorrelating visual concepts in
both the latent space and the spatial space. Similar conclu-
sions are drawn from the ablation study results on Cars3d
and Shapes3d reported in the supplementary material.

Impact of Concept Number N We varied concept num-
ber N from 2 to 10 on MPI3D. The case of N = 1 is

Components | + G CMFNet Lcp Ly e| DCI FVAE MIG
1 (baseline) v 0.506 0.861 0.059
2 v v 0.631 0.879 0.152
3 v v v 0.642 0.893 0.161
4 v v v' 10.637 0.888 0.180
5 (full) v v v v’ 10.644 0.903 0.197
Table 4: Ablation study on MPI3D.

N Dimension DCI FVAE MIG

1 (baseline) 80 0.506 0.861 0.059

2 12 0.437 0.770 0.221

4 24 0.629 0.878 0.182

6 (default) 36 0.644 0.903 0.197

8 48 0.646 0.916 0.151

10 60 0.669 0.905 0.074

Table 5: Effect of concept number N on MPI3D.

the baseline method without factorization. For each content
code and mask code, we fixed the number of principle com-
ponent d,- as 3 for PCA. The results are shown in Table 5.

The performance remains relatively stable when N varies
from 4 to 8. When N = 2, there are not sufficient content
masks to capture the variations of concepts, resulting in a
lower DCI score indicating inferior disentanglement. When
N = 10, the dimensionality of the latent code is larger and
the representation is less compact than that in other cases,
leading to a decrease in the MIG score. For unsupervised
learning, concept number N can be selected by unsuper-
vised metric self-MIG as illustrated in “Model Training” in
the methodology part.

Conclusion

We introduce visual interpretability as inductive bias for
unsupervised disentangled representation learning, which is
still under-explored in existing approaches that focus on im-
posing independence-based or informativeness-based con-
straints. To learn visually interpretable representations that
align with human-defined factors, we factorize an image into
multiple visual concepts represented by “content + mask”
and reconstruct the image from the concepts to ensure infor-
mativeness of the representations. To achieve this, we pro-
pose the Factorized Diffusion Autoencoder (FDAE), which
consists of a content-mask factorization network (CMFNet)
and a conditional diffusion-based image generator. Exten-
sive experiments on benchmark datasets in controlled envi-
ronment and real-world pedestrian dataset in uncontrolled
environment show the effectiveness of our method. Further-
more, the visually interpretable masks of our method fa-
cilitate understanding the uncovered concepts. This work
demonstrates the potential of visual interpretability as induc-
tive bias for unsupervised representation disentanglement.
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