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Visualizing Image Collections Using High-Entropy
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Abstract—Mechanisms for visualizing image collections are
essential for browsing and exploring their content. This is espe-
cially true when metadata are ineffective in retrieving items due
to the sparsity or esoteric nature of text. An obvious approach is
to automatically lay out sets of images in ways that reflect rela-
tionships between the items. However, dimensionality reduction
methods that map from high-dimensional content-based feature
distributions to low-dimensional layout spaces for visualization
often result in displays in which many items are occluded whilst
large regions are empty or only sparsely populated. Further-
more, such methods do not consider the shape of the region of
layout space to be populated. This paper proposes a method,
high-entropy layout distributions. that addresses these limitations.
Layout distributions with low differential entropy are penalized.
An optimization strategy is presented that finds layouts that have
high differential entropy and that reflect inter-image similarities.
Efficient optimization is obtained using a step-size constraint
and an approximation to quadratic (Renyi) entropy. Two image
archives of cultural and commercial importance are used to
illustrate and evaluate the method. A comparison with related
methods demonstrates its effectiveness.

Index Terms—Content-based browsing, high-entropy layout
distribution (HELD), image layouts, manifold learning, Renyi
entropy.

1. INTRODUCTION

ROWSING and exploring image collections require
mechanisms for arranging items for visualization to make
clear both the content of individual items and any relationships
between these items. One approach is to automatically arrange
images in low-dimensional (2-D or 3-D) spaces so that they can
then be rendered on displays under user control.
Content-based retrieval systems often lay out images as
thumbnails ordered by similarity to a query [1]; such dis-
plays do not portray the mutual relationships between items.
Browsing systems often categorize images and lay them out
according to class [2] or based on metadata; a time quilt, for
example, orders representative thumbnail images by time and
then wraps them into vertical columns of some maximum
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height [3]. Rectangle packing has been used to arrange images
from each of a number of precomputed clusters, but the packing
algorithm does not take into account mutual relationships be-
tween the images within each cluster of images [4]. Similarly,
Bederson describes methods for arranging images within an
area or on a grid but without accounting for image relationships
within precomputed clusters of images [5]. Alternatively, 2-D
map-based visualizations [6]-[9] lay out items so similar items
appear close to one another while very different items will
be further apart. These differ in how they extract high-dimen-
sional feature vectors, measure pairwise item similarity, and
perform dimensionality reduction to map the distribution of
items from the high-dimensional space to a 2-D space [10]. For
example, Rubner et al. [9] used color and texture features, earth
mover’s distance, and multidimensional scaling (MDS) [11].
The layouts that result can in certain cases reflect aspects of
perceptual organization such as lightness and chroma for color
images, directionality and coarseness for textured images [9],
or lightness and pose for face images [12].

The literature on dimensionality reduction is extensive, and
several survey papers are available [13]-[16]. Linear methods
include principle component analysis (PCA) [17] and MDS
[11]. More generally, manifold learning methods estimate
the dimensionality and geometry of nonlinear data manifolds
and can be broadly categorized into global methods and local
methods according to whether they emphasize preservation
of global or local properties of the data distribution. Global
methods include Isomap [12], stochastic neighbor embedding
[18], maximum variance unfolding [19], and diffusion maps
[20]. Local methods include locally linear embedding (LLE)
[21], Laplacian eigenmaps [22], Hessian LLE [23], and local
tangent space alignment (LTSA) [24]. All of these dimen-
sionality reduction methods were formulated with the goal
of approximating high-dimensional data in spaces of lower
dimensionality. In particular, they can be used to provide visu-
alizations of high-dimensional data sets as points in 2-D or 3-D
displays. The data content is often visualized by rendering im-
ages centered at each of these points. Fig. 1 shows an example
in which a set of 1000 images represented using 64-D color
histograms is visualized in two dimensions. While this does
provide a useful insight into the data set, there are limitations.
Such methods often result in displays in which many images
occlude other images whilst large areas of the layout space are
empty or only sparsely populated with images. Additionally,
such methods do not account for the shape of the region in
the layout space that will be populated, the proportions of
a computer screen or the desired shape of the display. An
application for a multi-user, tabletop touch display could be
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Fig. 1. Two-dimensional Isomap visualizations of a set of 1000 images from a
textile design archive. (a) Isomap distribution. (b) Images rendered according to
the Isomap result. Images were represented using histograms in the a*b*-sub-
space of the CIE L*a*b* color space. Images courtesy of Liberty Art Fabrics.

designed with an annular layout region, leaving the center of
the display available for functional menus, for example.

The high-entropy layout distribution (HELD) method de-
scribed in this paper addresses these shortcomings by generating
layouts that conform to the shape of the available layout region,
approximate the high-dimensional data distributions and result
in rendered displays that are populated evenly with images.
This is achieved by optimization of an objective function that
combines manifold learning with a layout entropy measure. The
images are taken to form a distribution in the low-dimensional
layout space, and distributions with low entropy are penalized
since they result in layouts in which some regions are over-
populated (i.e., many images are occluded) and other regions
are sparsely populated or empty. High-entropy layouts, on the
other hand, arrange the images more evenly in the layout space.
The proposed method can be applied to visualize collections of
images on layout regions of various shapes. An example HELD
visualization using a circular layout region is shown in Fig. 2.
This paper demonstrates that the layout entropy can be suitably
approximated as a pairwise summation over images within a
local neighborhood. It also describes how conjugate gradients
descent can be used to perform the optimization provided that
a mechanism for limiting step size is employed. A related
method was published as an earlier conference paper [25]. It is
superceded by the method described in this paper, which yields
superior layouts, has reduced computational expense, and is
easier to use. The most closely related work elsewhere in the
literature addressed the related aim of reducing image overlap
when visualizing collections of images. Basalaj [26] and Liu et
al. [27] used an analog of MDS in a discrete domain to display
each image within a single cell of a grid. Moghaddam et al.
[7] and Nguyen et al. [8] used gradient descent methods to
move overlapped images towards unoccupied areas of a 2-D
layout without constraining image positions to be within a
layout region. Empirical comparisons are made with these two
methods in Section IV. Image sets used for testing are from
Liberty Art Fabrics (LAF) and the Victoria & Albert Museum
(VAM). Both collections are used for design inspiration and
other educational and commercial applications. Thus, it is im-
perative that users be able to effectively and efficiently browse
the images. The LAF set is comprised of images of textiles and
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textile-related pattern repeats. The VAM set includes images of
textiles, wallpaper, mosaics, carpet, and other related objects.

II. FORMULATION

The goal is to arrange a set of images {I;},i=1,..., N, on
a prespecified bounded region R of a layout space. The con-
tent of each image is represented as a high-dimensional fea-
ture vector x;. The layout produced must trade off two require-
ments: distances between images in the layout should depend
on their content similarity, and images should spread out so as
to make good use of R. The first requirement, referred to as
content structure preservation, can be met by dimensionality re-
duction based on the assumption that the data are distributed in
a low-dimensional nonlinear manifold embedded in the feature
space. As noted earlier, many manifold learning techniques have
been proposed and, in principal, any such technique can be used.
In this paper, Isomap is used. Isomap first constructs a sparse
graph based on {x; } with one vertex for each image. Edges are
constructed between similar images’ vertices by the K-nearest
neighbor method. Each edge is assigned a weight w;; that is
the dissimilarity between the two images. An approximation,
D;;, to the geodesic distance between any two images is then
obtained as the shortest path between their corresponding ver-
tices. Without loss of generality, { D;; } are normalized such that
the maximum D);; is limited by the layout region size. Isomap
determines image positions {y;} in the low-dimensional space
by minimizing F; as follows:

L NN
Es = ™ Z Z(dij - D;;)? 1

i=1 j=1

where d;; is the Euclidean distance between y; and y;, and
b1=2322; D?; is the normalization factor. When two images
1I; and I are similar in content, the distance D;; between them
will be small and accordingly the two images in the low-dimen-
sional space will tend to appear close to each other.

The second requirement is met by layouts that have high en-
tropy when the images are considered to be samples from a dis-
tribution in the layout space. Given an image position y; in the
low-dimensional layout space, a Gaussian G(y;, ;) is used to
approximate the region occupied by this image in the space,
where the covariance matrix X; is determined by the image’s
size and shape and the number of images. The Gaussians for all
of the images can be combined in a Gaussian mixture with equal
weight for each Gaussian component, i.e.,

1 N
p(y) =5 DGy - yi Zo). @
=1

Renyi described a family of entropy measures of which the
Shannon entropy is a special case [28], [29]. In particular, the
differential version of Renyi’s quadratic entropy measure can be
obtained as

H= —log/p(Y)zdy- ©)

This is the measure of entropy that is used here. The main reason
for this choice is that, in the case of a Gaussian mixture, it can
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Fig. 2. Two-dimensional HELD visualization of the 1000 images used in Fig. 1. (This figure is best viewed in color, found in the online version of this paper.)

be efficiently estimated as a sum of pair-wise measures between
Gaussian components [28], [29], i.e.,

H = —log %
N N
></ S > Gy - yi. Z)G(y - v, Z))
i=1 j=1
1 N N
= —log WZ Glyi-yjpZi+%) . @
i=1 j=1

Furthermore, this can be approximated as

N
N 1
H:—log mz Z G(yi_yj,2i+2j) ()
)

i=1jel(4

where the inner summation is only over each image’s nearest
neighbors. The set of nearest neighbors of image I; is denoted
I'(7). This approximation provides a good compromise between
reducing computational expense and maintaining accuracy, as
will be demonstrated empirically in Section I'V-D.

A tradeoff between layout entropy and content structure
preservation is obtained by minimizing E as

Ex=(1-)\E,—\H (6)

subject to the constraint that each image should stay within the
layout region R, where A € [0, 1] is a tradeoff parameter. The
value of A should be determined with an application-dependent
approach. When A\ is close to 0, preservation of the manifold
structure is emphasized. When A is close to 1, spreading the
images to maximize entropy is emphasized.

The constrained optimization problem in (6) can be solved
using a penalty function method to penalize image positions out-
side R. Denote by Fj the total penalty incurred by all image
positions, i.e.,

N
By =Y f(yi) @)
=1

where f(y;) is a monotonically increasing nonnegative function
of the Euclidean distance from y; to the layout region R (i.e.,
minger ||y — yil]). In other words, f(y;) will be zero (i.e.,
no penalty) if y; is inside the layout region R, and f(y;) will
increase when y; becomes further away from R.

The proposed method is not limited by the dimensionality of
the layout space, nor by the shapes of the images. However, it is
often the case that images are aligned with the axes of the layout
space and covariance matrices ¥; are thus diagonal. In the case

of 2-D layouts
01-2 0
z; = ( 0 (Mi)z) ®)
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(b)

Fig. 3. (a) Annular layout region R. (b) Distance transform of this layout region; all points within R have transform value zero.

where a = h; /w; is the aspect ratio, and h; and w; are the height
and width of the ¢th image. The value of ¢; can be chosen based
on image sizes, layout region size, and the number of images.
Specifically, we will set it as

wi | |R]

7 4 V Nwh 2

where |R/| is the area of the layout region, and @ and h are the
average width and height of the images.

III. OPTIMIZATION

The goal is to minimize F/, where

E=Ex+9E (10)
and ~ is a constant to balance F, and E;. Gradient-based
methods can be used to find local minima of E. From (6) and
(10), we have

oF OF, oH oF
= (1= Ay (D)
9y; dyj  Oy; 0y
The gradient of E, with respect to y; is [11]
oF (dij — Dij)
5= _9 ~ Ny —ys). (12)

i#y

From (4), we can derive the gradient of H with respect to y; as
OH 1
=Y Gy~ v, 5 + 8
5y, = 2 {G(yi—y; i)
X(Zi+8) - (vi—yy)} (13)

where ¢2 = 21 Zj G(yz — y]-,Ei + EJ)

For the gradient of I}, with respect to y;, a discrete approxi-
mation is adopted because, in general, it is difficult to paramet-
rically represent the function f(y;) due to the freeform shape
of the layout region. The layout space is discretized into a grid

with unit 6 and the Euclidean distance from each cross point on
the grid to the layout region R is efficiently computed using the
distance transform of the layout region [30] (Fig. 3). The func-
tion value f(y;) at any point y; in the layout space can then
be approximated by linear interpolation of the function values
at the corresponding four neighboring cross points on the grid.
Therefore, the kth component of the gradient of F} with respect
to y; can be approximated as

0B, Y flyi + 6w — f(y))

Dyji i=1 6

(14)

where 6 is the discrete unit scale and uy, is the basis vector for
the kth dimension of the layout space.

Optimization is an iterative process that updates image posi-
tions {y’;} to new positions {y;} in discrete steps as follows:

Yi =¥, +ap; (15)
where p; depends on the gradient OF /9y [see (11)] and « is
the step size. Good initial positions {y;} can be obtained by
minimizing F, using the Isomap method.

Conjugate gradients descent can be used provided that a
mechanism to limit the step size is employed. Conjugate gra-
dient methods adapt o automatically. Care must be taken that
these discrete steps are not too large, particularly when A is
close to 1, as then the structure term F, has little effect and
structure can be unnecessarily lost. Therefore, the step size was
limited by setting it to @ = min {&, 7/ max{||p;||}}, where &
was the step size determined by the conjugate gradient method,
max{||p;||} was the maximum over j of all ||p;||, and T was a
free parameter. This helped to limit the quantity of change of
each image’s position in any one iteration.

IV. EMPIRICAL EVALUATION

The HELD method was evaluated using two image databases:
1000 images of textile designs from a commercial archive
(LAF) and 1000 art images from a museum collection (VAM).
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Fig. 4. Position changes of 1000 images with and without an adaptive step-size threshold after the first, tenth, and 50th iterations. The two ends of each arrow
correspond to an image’s positions in two consecutive iterations. (a) No threshold on step size. (b) 7 = 0.05.

Two kinds of features were used to represent images. Color his-
tograms with 512 bins were extracted by regularly quantizing
hue into 32 values and saturation into 16 values in the HSV
color space. Texture features were extracted by performing
multiscale Gabor filtering and then computing the means and
variances of the normalized magnitude responses at each scale
and orientation, giving 108 texture features. For both kinds of
features, Euclidean distance was used to determine the nearest
neighbors for constructing the manifold (see Section II). Each
image was resized such that the maximum of its height and
width was 0.08 \/@ . For each test, the optimization process
was terminated either when the change of cost in consecutive
iterations was less than an experimentally set threshold (10~2)
or when the number of iterations exceeded a preset maximum
number (500). All of the tests were performed using a MATLAB
R2007a implementation running on an Intel Core 2 Quad
2.4-GHz PC with 3.5-GB RAM.

A. Effect of Step Size

In order to investigate the effect of the step size, «, during
optimization, the HELD method was applied to the 1000 art
images with A = 1.0 and v = 1.0. Each image was repre-
sented by a color histogram, and the function f(y;) in (7) was
the square of the Euclidean distance from y; to the layout region
R. Fig. 4 illustrates the change of image positions in several it-
erations with no threshold 7 (first column) and with 7 = 0.05
(second column). When the threshold was not used (i.e., « = &),
a large number of image positions changed abruptly in the first
iteration, resulting in images “jumping over” each other and sig-
nificant loss of structure. In comparison, when 7 = 0.05, the
changes in image positions were limited initially; the largest
movements being those of the outlying images that can be ob-
served on the right hand side. Subsequently, the dense central
part of the layout underwent divergence. In both cases, the re-
sulting point distribution was similar (Fig. 4).

In addition, we have found that the use of the threshold 7 can
make the optimization insensitive to a large range of v (e.g., 0.1
to 100) and to different types of function f(y;) (i.e., linear and
square of the Euclidean distance from y; to R). In the subse-
quent experiments reported in this paper, 7 = 0.01, v = 1.0,
and f(y;) was the square of the Euclidean distance from y; to
the layout region R, unless stated otherwise.

B. Methods for Comparison

The HELD method was compared with methods used by
Moghaddam et al. [7] and Nguyen et al. [8]. Although not
actually included in the original methods of Nguyen et al. and
Moghaddam et al., E, in (10) was used in our implementations
of their algorithms in order to facilitate fair comparison. For
similar reasons, the structure preservation term Fs was used in
our implementation of Nguyen et al.”s method such that their
cost function [8, eq. (9)]) can be written

E=(1=AE,+\-Ey++E, (16)

where Ey is the cost of the overall overlap. In [8], every image
was modeled as circular with the same radius 7, and the overlap
between two images I; and I; was measured as the area of in-
tersection of two circles:

r? (2 arccos (C;j ) — sin (2 arccos (d%] >))
ifd;; <2r
0, otherwise

0y = a7

where d;; is the Euclidean distance between the image centers.
Similarly, the cost function of Moghaddam et al.’s method [7,

eq. (1)] was reformulated as
E=(1-)\)-S G+\ F+E, (18)

where F is the cost of the overall overlap and G is the cost of the
overall deviation of estimated image positions from the initial
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image positions. S is a scaling factor. In [7], each image I; was
modeled as circular with radius r;, and the overlap between two
images I; and I; was measured by
OLJ _ {1_6—u‘72_7/17f_/ 1fu” > 0’ (19)
0 otherwise

where u;; = r;+7;—d;;, and oy was predetermined [7, eq. (4)].

C. Overlap Versus Structure Preservation

Since the explicit aim of the methods of Moghaddam ez al.
[7] and Nguyen et al. [8] was image overlap reduction, HELD
was compared with those methods using a similar measure of
overlap. Specifically, total image overlaRf was measured as the
sum of all pairwise image overlaps, > ;_, ?]:1 /Zij, where
the area z;; of the overlap region can be directly computed from
the image positions y; and y; and the image sizes (w;, h;) and
(wj ) hj )

Structure preservation error was measured as

LN 1/2
i D)2
min § Z; z;(ﬂ -dij — Djj) (20)
1=1 5=

where the value of the normalization factor S at this minimum
can be analytically computed as

N N
g = —— @1)
> d
i=17=1

It is necessary to use [ because the structure of the image distri-
bution remains the same if all d;; are scaled by the same amount.
A set of 500 images was randomly sampled from the LAF
data set. Each image was represented using the Gabor features.
The tradeoff parameter A was varied between 0.0 to 1.0. For
each A value, the structure error and the overlap error were
measured based on the convergent result of each method. Fur-
thermore, a relative structure error was computed as the ratio
of the structure error at the chosen value of A to the structure
error when A = 0.0. Conjugate gradients optimization was
used for all three methods with 7 = 0.01. Each method took
between 20-100 iterations to converge. An iteration took ap-
proximately 2.8, 3.9, and 4.6 s for the HELD method, Nguyen’s
method, and Moghaddam’s method, respectively. Experiments
indicate that computation time in all three methods increases
roughly quadratically with respect to the number of images.
Fig. 5 plots relative structure error against overlap error. When
relative structure error was low (i.e., the solution was close to the
Isomap initialization), the methods were comparable. However,
the lowest overlap error was considerably lower for the HELD
method. The overlap error was 140 compared with 380 and 180
for the other methods. This behavior can be perceptually verified
by observing the visualizations of 100 images shown in Fig. 6.
The visualization obtained by HELD [Fig. 6(a)] shows almost
no image overlap, as compared to results from the methods of
Moghaddam et al. [Fig. 6(b)] and Nguyen et al. [Fig. 6(c)].
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1 15 2 2.5 3
Relative Structure Error

Fig. 5. Relationships between structure error and image overlap obtained by
Moghaddam et al.’s method (red solid line), Nguyen et al.’s method (blue
dashed line), and the proposed HELD (green dotted line) method for 500 textile
images.

D. Entropy Approximation

The Renyi entropy can be efficiently approximated by sum-
ming only over images within each image’s neighborhood as
indicated in (5). Fig. 7 explores the effect of making such an
approximation on computation time and accuracy. The sets of
nearest neighbors included in the entropy approximation were
those within 30, of each image’s center. A set of 500 textile
images was arranged with and without the approximation and
the results compared. (Note that results reported elsewhere
in this paper were computed without the approximation).
Fig. 7(a) and (b) shows plots of the time per iteration and the
accuracy of the approximation obtained, respectively. Fig. 7(c)
shows a plot of the time taken against the number of images in
the layout and indicates the improved scaling. Fig. 7(d) shows
a layout of 100 images obtained using the approximation and
should be compared with Fig. 6(a), which shows the same
image set arranged without the use of the approximation.
Although the approximation produces a slightly inferior layout,
this is superior to those obtained using the competing methods
(Fig. 6).

E. Ability to Spread Out Images

A further experiment was performed to compare the ability
of HELD to spread out images when the number of images was
large relative to the available layout region. A set of 1000 VAM
images was automatically arranged based on color histograms.
Fig. 8 shows the resulting locations of the 1000 images. Results
based on Moghaddam et al. [Fig. 8(a)] showed approximately
100 very tight clusters with most images seriously overlapped
when rendered; whereas Nguyen er al. [Fig. 8(b)] showed a
more even spread, although image density still varied. HELD
(see rightmost column of Fig. 4] yielded the most evenly dis-
tributed result in which the image density was approximately
constant.

The following synthetic experiment helps to explain why the
methods performed as they did. Consider a situation in which
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Fig. 6. Visualizations of 100 textile images. Visualizations based on the image positions obtained by (a) HELD, (b) Moghaddam et al., and (c) Nguyen et al..
Images courtesy of LAF.
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Fig. 7. Approximation of Renyi entropy [(4)]. (a) Time per iteration when optimizing a layout of 500 images using nearest neighbors within 3. (b) Accuracy of
the approximation thus obtained. (The cost plotted is —H++ Ej.) (c) Average computation time as a function of the number of images. (d) Visualization of 100
textile images based on the approximate Renyi entropy using nearest neighbors within 3. (All of these results were obtained with A = 1.0.)

() (b) ()

Fig. 8. Image positions of 1000 art images obtained by methods of (a) Moghaddam et al., (b) Nguyen et al., and (c) HELD.
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Fig.9. (a)Layoutregion (gray) with two fixed images (black squares) and two movable images (red dotted and green dashed (online version) squares). Left to right:
three of the many possible layouts. (b-d) Values of overlap cost terms obtained by antisymmetrically moving the two movable images: (b) HELD, (c) Moghaddam

et al.’s method, and (d) Nguyen et al.’s method.

Fig. 10. Visualization of 200 textile images on two different layout regions.
Positions of image centers in layouts obtained for: (a) an annular region and (b) a
rectangular region with a triangular hole. (c,d) Corresponding visualizations of
the images based on the layouts.

four square images with width w = 1.0 are arranged in a rect-
angular region of width 2.0 and height 1.0. Two of the images’
positions are fixed so that together they fill the region. Let the
origin be at the bottom-left corner of the layout region so that
these two images have horizontal coordinates 0.5 and 1.5. The
other two images are moved antisymmetrically between the two

()

Fig. 11. Visualization of 1000 art images using color features. (a) Isomap.
(b) HELD (emphasizing entropy maximization). (c) Isomap visualization after
rescaling the image positions around an image at the layout center. (d) HELD
visualization after similarly rescaling the image positions around an image at
the layout center. Fig. 4 illustrates image positions obtained during optimiza-
tion of this data set. Images courtesy of VAM.

fixed ones such that when one of them is at u (0.5 < u < 1.5),
the other is at 2.0—wu. Fig. 9(a) shows a schematic of this exper-
iment for three values of u. Fig. 9(b-d) shows the values of the
overlap cost terms [based on (4), (17) and (19)] as u varies from
0.5 to 1.5. The overlap cost using HELD is minimized when
the four images are positioned such that the distance between
any image and its nearest neighbor is approximately the same
[Fig. 9(b)]. Fig. 9(c) shows that the overlap cost for Moghaddam
et al.’s method is minimized when the two movable images are
positioned directly over the two fixed images. Fig. 9(d) shows
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(2

Fig. 12. Visualization of 1000 textile images by HELD using Gabor texture features. Image positions obtained using: (a) Isomap, (b) a tradeoff between struc-
ture preservation and image overlap (A = (.1), and (c) an emphasis on maximizing entropy. (d)—(f) The corresponding visualizations of the image collection.
(g)—(i) Corresponding visualizations after rescaling the image positions around an image at the layout center. Images courtesy of LAF.

that the overlap cost for Nguyen ef al.’s method is minimized
when the movable images overlap each other only slightly. This
is consistent with the result observed in Fig. 8.

F. Layout Region Shape

The proposed method can be applied to visualize collections
of images on layout regions of various shapes. Here, an an-
nular layout region [Fig. 10(a)] and a rectangular layout region
with a triangular hole [Fig. 10(b)] were used to visualize 200
images of textile designs. Each image was represented by its
color histogram. The algorithm was initialized using Isomap
and then run with A = 0.9 followed by further iterations with
A = 1.0 in order to spread out images in each layout region.
Fig. 10(a) and (b) shows that all images are spread out in the
layout region, while Fig. 10(c) and (d) qualitatively confirms
that images similar in color are still positioned close to one an-
other.

G. Visualizations for Browsing

Fig. 11 shows visualizations of 1000 VAM images based on
color histograms. The -y parameter was set to 10 and the method

took approximately 10 seconds per iteration (without the neigh-
bourhood approximation). In the initial distribution obtained by
Isomap [Fig. 11(a)], most images were clustered around the
center of the layout with fewer images irregularly distributed
near the boundaries. When entropy was emphasized (A = 1),
the image density became approximately constant [Fig. 11(b)].
Obviously, total image overlap is always large when visualizing
1000 images on a small 2-D display. In order to better show the
effect of the method, the visualizations were zoomed in around
one image near the layout center. The resulting visualizations
are shown in Fig. 11(c) and (d). Note that the image positions
were rescaled by this zoom operation but the images themselves
were not rescaled. Image overlap was effectively reduced by the
proposed method. This zoom operation can provide an effec-
tive way for users to focus on parts of a large collection during
browsing.

Fig. 12 shows results using 1000 LAF images and Gabor
texture features. Again, similar images remain close to one
another as the requirement of structure preservation is relaxed.
In Fig. 12(d-f), the roughness of the image texture changes
smoothly from the upper left to the lower right in the display,
for example. This gradual change of texture should help users
to browse collections of images.
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V. CONCLUSION

The HELD method described in this paper arranges collec-
tions of images for display with dependencies both on the con-
tent of the images and on the relative size and shape of the layout
region to be populated. The images were taken to form a spatial
Gaussian-mixture distribution in the layout space. An objective
function was specified that rewards spatial distributions with
high quadratic Renyi entropy that also preserves content-based
image relationships. An efficient approximation to the entropy
was described. The method was demonstrated using two image
collections. It was effective provided that the step sizes used in
optimization were controlled. While the optimization method is
not guaranteed to find the global minimum of the cost function,
the method never terminated in obviously poor local minima
given layout regions such as those reported. It compared favor-
ably with two methods previously proposed for reducing image
overlap.

The HELD method is integrated into a content-based
browsing and retrieval system. In order to preserve content-
based structure, the Isomap cost function based on a graph-
based geodesic distance approximation was used. Future work
will investigate incorporating other dimensionality-reduction
methods. Importantly, HELD is not limited to 2-D displays,
and we are exploring its use for 3-D vizualization of image
collections. Finally, the approach could also be used for multi-
media collections in which visual icons or thumbnails are used
to denote diverse items.
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