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Immunofluorescence antinuclear antibody tests are important for diagnosis and management of auto-
immune conditions; a key step that would benefit from reliable automation is the recognition of sub-
cellular patterns suggestive of different diseases. We present a system to recognize such patterns, at
cellular and specimen levels, in images of HEp-2 cells. Ensembles of SVMs were trained to classify cells
into six classes based on sparse encoding of texture features with cell pyramids, capturing spatial, multi-
scale structure. A similar approach was used to classify specimens into seven classes. Software imple-
mentations were submitted to an international contest hosted by ICPR 2014 (Performance Evaluation of
Indirect Immunofluorescence Image Analysis Systems). Mean class accuracies obtained on heldout test
data sets were 87.1% and 88.5% for cell and specimen classification respectively. These were the highest
achieved in the competition, suggesting that our methods are state-of-the-art. We provide detailed
descriptions and extensive experiments with various features and encoding methods.
& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Antinuclear antibody (ANA) tests are important in the diagnosis
and management of autoimmune diseases. These include systemic
lupus erythematosus, Sjogren's syndrome, rheumatoid arthritis,
polymyositis, scleroderma, Hashimoto's thyroiditis, juvenile dia-
betes mellitus, Addison disease, vitiligo, pernicious anemia, glo-
merulonephritis, and pulmonary fibrosis. Immunofluorescene ANA
tests have been recommended as the gold standard for ANA test-
ing due to their relatively high sensitivity [1]. Specifically, human
epithelial (HEp-2) cell specimens are examined using Indirect
ImmunoFluorescence (IIF) imaging [2]. The flow of the IIF proce-
dure includes the following steps: image acquisition, mitosis
detection, fluorescence intensity classification and staining pattern
recognition. The pattern recognition step is an important one as
different patterns are suggestive of different autoimmune diseases.
A nucleolar pattern is often associated with scleroderma, for
example. Manual analysis of IIF images is laborious and time-
consuming. Furthermore, two or more experts can be required to
examine each ANA sample due to inter-observer variability.
r Ltd. This is an open access article
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Aiming to standardize the procedure compared to current manual
practice and to reduce workloads, computer aided diagnosis (CAD)
systems have been proposed for the analysis IIF images [3,4].

This paper describes a system to classify pre-segmented
immunofluorescence images of individual HEp-2 cells into six
classes (homogeneous, speckled, nucleolar, centromere, golgi, and
nuclear membrane) as well as a system to classify HEp-2 specimen
images into seven classes (homogeneous, speckled, nucleolar,
centromere, golgi, nuclear membrane and mitotic spindle).
Instances from these classes are shown in Figs. 1 and 2. These two
classification tasks correspond to those used in the contest on
Performance Evaluation of Indirect Immunofluorescence Image Ana-
lysis Systems (I3A)1 held in conjunction with the 22nd Interna-
tional Conference on Pattern Recognition (ICPR 2014). Our
approach to classifying cell and specimen images is based on sets
of local features which describe texture and intensity properties of
local image regions. Extracted features are encoded via sparse
coding and classification is performed using support vector
machine (SVM) ensembles.

After reviewing competing methods (Section 2) and describing
our proposed method in detail (Sections 3–7), results on the I3A
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Sample images from the I3A Task 1 dataset (individual cell classification).

Fig. 2. Sample images from the I3A Task 2 dataset (specimen classification).
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contest datasets are presented (Sections 8–10). This paper builds
on our earlier I3A workshop papers [5,6]. It sets the proposed
method in the context of related literature, describes it in more
detail, presents more extensive experiments to investigate the
effect of various components on performance, and summarizes
performance in direct comparison with other methods. We pre-
sent systems tailored to capture cell class-specific properties,
leveraging state-of-the-art computer vision techniques. The
experiments we report should help guide future developments in
this area by providing evidence on the relative contributions of,
e.g., feature combinations, data augmentation, cell pyramids, and
sparse coding. Systems we proposed and describe in this paper
won both tasks at the I3A contest in controlled tests. As such they
can serve as benchmarks for researchers developing pattern
recognition systems for this important application.
2. Related work

This section concisely reviews previous work related to HEp-2
cell image classification in the context of ANA testing. There exists
a wider literature on the recognition of fluorescence image pat-
terns characteristic of subcellular structures more generally [7].
However, its review is beyond the scope of this paper.

Perner et al. [8] presented an early attempt at developing an
automated HEp-2 cell classification system. Cell regions were
represented by a set of basic features extracted from binary images
obtained at multiple grey level thresholds. Those features were
then classified into six categories by a decision tree algorithm. This
approach was further employed and integrated by Sack et al. [9]
for identification of positive fluorescence and a set of immuno-
fluorescence patterns. Hsieh et al. [10] performed classification of
immunofluorescence patterns using learning vector quantization
(LVQ) and various texture features that included grey-level histo-
gram statistics, co-occurrence matrix features, and an estimate of
fractal dimension.

The problem of HEp-2 cell classification attracted increased
attention among researchers with the benchmarking contests held
in conjunction with the International Conference on Pattern
Recognition (ICPR) in 2012 [11] (HEp-2 Cell Classification2) and the
2 http://mivia.unisa.it/hep2contest
International Conference on Image Processing (ICIP) in 2013 [12]
(Competition on Cells Classification by Fluorescent Image Analysis3).
A special issue following the ICPR 2012 contest was also organized
in the journal Pattern Recognition [4]. Various image descriptors
were adopted in those contests, including popular local texture
features such as local binary patterns (LBP) and its variants (e.g.,
multi-resolution LBP), SIFT, summative intensity statistics (e.g.,
mean and standard deviation) of local or whole image regions, and
morphological properties (e.g., eccentricity) [12]. Standard feature
encoding methods, in particular bag of words (BoW), were often
applied to represent the statistics of local features in the feature
space. The majority of the classifiers used were support vector
machines although k-nearest neighbour classifiers, boosting clas-
sifiers, random forest classifiers, and neural networks were also
used by some groups [4,12]. For more detailed descriptions of the
methods submitted to those contests, the reader is referred to the
associated reports [4,11,12].

The I3A contest held in conjunction with ICPR 2014 was the
most recent in this series of contests. It received 11 submissions to
Task 1 (cell classification) and 7 submissions to Task 2 (specimen
classification) [3]. Methods submitted for Task 1 can be classified
broadly into two categories: those with feature coding and those
without feature coding. The feature coding-based methods basi-
cally adopted the popular bag of words framework using either
hard coding or sparse coding [13,14] and either SVM or boosting
classifiers. They differed in their choice of local features. For
instance, Ensafi et al. [15] used SIFT and SURF features with sparse
coding and max pooling. Theodorakopoulos et al. [16] combined a
set of local features, including LBP and rotation-invariant SIFT,
with vectors of locally aggregated descriptors (VLAD) [17]. Pai-
sitkriangkrai et al.'s method (as described in [3]) combined fea-
tures including region covariance and co-occurrence of adjacent
LBPs. Gragnaniello et al. [18] used a recently developed local fea-
ture called dense scale-invariant descriptors [19] to characterize
cell images. The feature coding methods were among the top
performing in the contest [3]. The methods without feature coding
basically followed a paradigm of global feature representation
with a popular machine learning classifier. For example, Roberts'
method (as described in [3]) used a set of wavelet-based features
with a SVM classifier. Codrescu [20] learned a neural network with
3 http://http://nerone.diiie.unisa.it/contest-icip-2013
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Fig. 3. An overview of the system for generating the image-level feature representation using only one feature type: dictionary learning from training images (first row) and
feature encoding to obtain the image-level feature representation (second row). The final image representation is a concatenation of the image level representations
obtained by different types of features.
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finite impulse response filters applied to cell images. Ponomare
et al.'s method (as described in [3]) utilized a set of morphological
features (such as number of isolated regions in each cell) with a
SVM classifier. Taormina et al.'s method (as described in [3]) used
an ensemble of nearest neighbour classifiers on 108 features.
Those methods generally performed less well in the contest. It is
worth noting that Gao et al. [21] used a deep convolutional neural
network (CNN) with 8 layers. The last layer was in principle a
logistic regression classifier with a soft-max activation function.
This method performed reasonably well in the contest. Although
deep CNNs have proven very successful on various large-scale
image classification benchmarks, they have very large numbers of
parameters and it can be difficult to tune their structure to a
specific task such as I3A.

Most of the methods used for Task 2 (specimen classification)
first performed classification at the individual cell (or sub-region)
level using approaches similar to Task 1 and then aggregated the
results by majority voting. For instance, Ensafi et al. [15] per-
formed specimen classification by applying voting to the cell
classification results for a small number of extracted cells. Simi-
larly, Liu et al. and Paisitkriangkrai et al. (as described in [3])
classified specimen images based on a majority voting over
regions where only features within a cell were considered when
describing a region. Ponomare et al. [3] applied an unweighted
voting scheme for a final classification of the specimen image
based on morphological features.

Notable trends when comparing the I3A contest entries to
previous work are the use of more advanced hand-crafted local
features (e.g. multi-resolution local patterns with cell pyramids as
in our entries [5,6], and dense scale-invariant descriptors [19]),
dataset augmentation, and the deployment of deep learning for
automatic feature learning. Our proposed method benefits from a
combination of the following factors which we believe contribute
to its state-of-the-art performance: complementary multi-
resolution features, the use of a specifically designed spatial
structure for cell images, sparse coding, and data augmentation.
3. System overview

Fig. 3 gives an overview of the system used for generating a
feature representation from an image of a cell for input to a clas-
sifier. Firstly, each cell image was intensity-normalized. Sets of
local features were then extracted and a feature encoding method
(e.g. sparse coding) was employed to aggregate the local features
into a cell image representation. A two-level cell pyramid was
used to capture spatial structure of cell images. Support vector
machines were then used to classify images of cells or to classify
specimen images containing multiple cells. The following sections
describe these system components in detail. Experiments inves-
tigating the effect of different system components, feature repre-
sentations and encodings are then reported.
4. Local feature extraction

Prior to feature extraction, each cell's image was intensity
normalized; specifically, the segmentation mask was dilated
(using a 5�5 structuring element) and the intensity values within
each cell's dilated mask region were then linearly rescaled so that
2% of pixels in each cell became saturated at low and high inten-
sities (Fig. 4).

Local features were extracted densely from each pre-processed
cell image. Four types of local feature were considered, namely,
Multi-resolution Local Patterns (mLP), Root-SIFT (rSIFT), Random
Projections (RP) and Intensity Histograms (IH).
4.1. Multi-resolution Local Patterns

Multi-resolution Local Patterns (mLP) are a multi-resolution
adaptation of the local higher-order statistical (LHS) patterns
proposed by Sharma et al. [22] for texture classification. LHS is a
non-binarized version of the well-known Local Binary Patterns
(LBP) descriptor. It operates on a small image neighbourhood of
size 3�3. To capture information from a larger neighbourhood
and reduce noise effects, we extended LHS from a multi-resolution
perspective by employing the sampling patterns described by
Mäenpää [23]. This sampling pattern is inspired by the spatial
structure of receptive fields in the human retina and has been
widely adopted in recently developed visual features in computer
vision, e.g., BRISK [24]. Fig. 5 shows an example sampling pattern
and the generation of the mLP descriptor. In Fig. 5 the local
neighbourhood is quantized radially into three resolutions (radii),
and at each resolution a set of (N¼8) sampling regions (indicated
as circles) are considered. At each sampling point a Gaussian filter
is applied, integrating information from the filter's region of sup-
port. We call the combination of LHS and these sampling patterns
multi-resolution local patterns.



Fig. 4. Image preprocessing: (a) an example cell image and its mask, (b) histogram of intensity values inside cell region in (a), (c) normalized histogram, and
(d) preprocessed image.

Fig. 5. Generation of multi-resolution local patterns (mLP).
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4.2. Root-SIFT

Root-SIFT (rSIFT) is a variant of the widely used SIFT descriptor
that produces better performance than SIFT on some image
matching and retrieval tasks [25]. The standard SIFT descriptor is a
histogram representation of local image derivatives and was ori-
ginally designed to be used with Euclidean distance. Using Eucli-
dean distance to compare histograms often yields inferior perfor-
mance compared to other measures such as χ2 or Hellinger for
texture classification and image categorization [25]. Therefore,
standard SIFT was modified in [25] to create rSIFT such that
comparing rSIFT descriptors using Euclidean distance is equivalent
to using the Hellinger kernel to compare SIFT vectors.
4.3. Random projection

Random projection (RP) is a simple yet powerful method for
dimensionality reduction [26]. It projects patch intensity vectors
from the original patch-vector space RD0

to a compressed space RD

using randomly chosen projection vectors. Such a scheme has
been successfully applied to texture image classification [27]. Let x
be a D0-dimensional patch vector and x̂ be its D-dimensional
representation in the compressed space. The RP method simply
maps these vectors using a D� D0 random projection matrix R,
such that

x̂ ¼ Rx ð1Þ
Each element in matrix R is sampled from a Gaussian distribution
with zero mean and unit variance. The key point of RP is that
when projecting the patch-vectors from the original space to the
compressed space their relative distances are approximately
preserved.

4.4. Intensity histograms

Intensity histograms (IH) were computed from small image
patches to represent the local intensity distribution.
5. Feature encoding

Feature encoding methods aggregate the local features from an
image or image region and play an important role in classification.
Four methods for feature encoding were compared, namely bag-
of-words (BoW), a sparse coding method (SC), Fisher vectors (FV),
and vectors of locally aggregated descriptors (VLAD). A pyramid
was used to encode spatial structure. Each of these methods is
now described briefly.

5.1. Bag-of-Words

Bag-of-Words (BoW) is widely applied as a feature encoding
method for medical [2] as well as natural [13,28] image



Fig. 6. An overview of the system for data augmentation and SVM ensemble
training. Each image can be encoded as shown in Fig. 3.
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classification. In BoW local features sampled from training images
are clustered to build a dictionary (codebook). This dictionary
represents a set of visual words (or clusters) which are then used
to compute a BoW frequency histogram as a feature vector
representation of any given image. BoW uses hard quantization
where each local image descriptor is assigned to only one
visual word.

5.2. Sparse coding

Sparse coding (SC) has shown improved performance over
BoW for image classification [28]. In SC each local image descriptor
is reconstructed using a sparse weighted combination of visual
words. Locality-constrained linear coding (LLC), an efficient variant
of sparse coding, utilizes the local linear property of manifolds to
project each descriptor into its local coordinate system [14]. Let
XiARD�Ni be a matrix in which each of the Ni columns is a
D-dimensional local descriptor extracted from an image Ii, i.e.
Xi ¼ xi1; xi2;…; xiNi

� �
. Given a codebook with M entries,

B¼ b1;b2;…;bM
� �

ARD�M , LLC uses the following criterion to
compute the codes C ¼ ci1; ci2…ciNi

� �
:

argmin
c

XNi

j ¼ 1

Jxij�Bcij J2þλJdij � cij J2

s:t: 1Tcij ¼ 1; 8 j ð2Þ

where � denotes the element-wise multiplication and

dij ¼ exp
distðxij;BÞ

σ

� �
ð3Þ

where distðxij;BÞ ¼ ‖xij�b1‖22;…; ‖xij�bM‖22
� �T and σ is a decay

parameter. A fast approximation to LLC was described in [14] to
speed up the encoding process. Specifically, instead of solving (2),
the KðoDoMÞ nearest neighbours of xij in B were considered as
the local bases Bij and a much smaller linear system (Eq. (4)) was
solved to get the local linear codes:

argmin
C

XNi

j ¼ 1

Jxij�Bijcij J2

s:t: 1Tcij ¼ 1; 8 j ð4Þ

The image representation zi of an image Ii is then obtained by
pooling the sparse codes associated with the local descriptors. Two
kinds of pooling, max and sum, are applied in the literature for SC.
The max-pooling can be defined as zki ¼max ckij; j¼ 1;…;Ni, and

the sum pooling can be defined as zki ¼
PNi

j ¼ 1 jckij j , where, zik and
ckij are respectively the kth element of zi and cij [29].

5.3. Fisher vectors

Fisher vectors (FV) capture additional information about the
distribution of the image descriptors compared to the count (0th-
order) statistics in BoW. FV has shown improved performance over
BoW and SC for image classification in [30]. In FV, the dictionary is
first modelled as a Gaussian mixture model (GMM) pðxjΘÞ

pðxjΘÞ ¼
XM
m ¼ 1

πmpðxjμm;ΣmÞ

pðxjμm;ΣmÞ ¼
exp�1=2 x�μmð ÞTΣ � 1

m x�μmð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð Þd detðΣmÞ

q ð5Þ

where Θ¼ π1;μ1;Σ1;…;πM ;μM ;ΣM
� �

are the parameters of the
GMM. πmARþ ðPmπm ¼ 1Þ, μmARD and ΣmARD�D are respec-
tively the weight, the mean and the covariance of the mth
Gaussian. GMM uses a soft descriptor-to-cluster assignment:

qm xij
� �¼ πmpðxij jμm;ΣmÞPM

l ¼ 1 πlpðxij jμl;Σ lÞ
ð6Þ

In FV each cluster is then represented based on the derivative of
the GMM with respect to its parameters fμmg and fΣmg (1st and
2nd order statistics), i.e.,

Gi
μm

¼ 1
N

ffiffiffiffiffiffiffi
πm

p
XNi

j ¼ 1

qm xij
� �

Σ �1=2
m xij�μm

� �

Gi
Σm

¼ 1
N

ffiffiffiffiffiffiffiffiffiffi
2πm

p
XNi

j ¼ 1

qm xij
� �

xij�μm

� �TΣ �1
m xij�μm

� ��1
h i

ð7Þ

The final image description zi is the concatenation of Gi
μm

and Gi
Σm

for all m¼ 1; :::;M, leading to a dimensionality of 2MD.

5.4. Vector of locally aggregated descriptors

Vector of locally aggregated descriptors (VLAD) [17], a simple
approximation to FV, uses k-means to learn the dictionary. VLAD
uses the 1st-order statistics to represent each cluster; the mth
cluster (Qm) representation of an image Ii can be given as

vim ¼
X

xij AQm

xij�μm ð8Þ

The VLAD image representation zi is the concatenation of vi
m

for all m¼ 1; :::;M followed by L2 normalization, leading to a
dimensionality of MD.
6. HEp-2 cell classification

From each cell image, each of the four feature types was den-
sely extracted from patches of size 12�12, 16�16, and 20�20
pixels with a step-size of 2 pixels.

6.1. SVM ensemble

Augmenting a classifier's training set with rotated versions of
the images may improve classification performance but it also
increases memory requirements. Instead we used an ensemble of
multi-class one-vs-rest, linear SVMs; the ensemble consisted of
four SVMs, one trained on the original training set images, and
others trained on images after they were rotated through 90°,
180°, and 270°. The overall system which includes data augmen-
tation as well as the ensemble training is shown in Fig. 6.



Fig. 7. Testing an image using the SVM ensemble for single cell classification.

Fig. 8. Sub-images extracted from specimen images for (a) the homogeneous, speckled, nucleolar, centromere, Golgi, and nuclear membrane classes, and (b) the mitotic
spindle class. White blobs in the images indicate (a) the segmented regions of individual cells and (b) the manually identified metaphase cells.
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At test time, each test image was rotated by 0°, 90°, 180°, and
270°, and each rotated image was then given to the ensemble. This
resulted in a set of 16 classification scores for each class (4
rotations�4 SVMs in the ensemble). Scores were treated as
probabilities using Platt rescaling [31]. The final classification
decision was made by averaging these probabilistic scores and
selecting the highest scoring class. Fig. 7 illustrates the process of
classifying a cell image in detail.

Ensemble classification has previously been used for HEp-2 cell
classification by Schaefer et al. [32] in the form of a trained linear
fusion of classifier outputs. Here the approach we have adopted is
based on simply averaging classifier outputs, avoiding the need for
training of a fuser. This approach has been used for example to
combine the outputs of neural network columns [33] and was
shown to perform better than a trained linear combination on
handwritten digit recognition [34]. For earlier work on this issue,
see e.g., Duin [35].

6.2. Cell pyramids

To capture spatial structure within a cell, a 2-level cell pyramid
was used in a similar fashion to the dual-region used by Wiliem et.
al. [2,36]. Separate dictionaries of size M were learned for each
feature type described above. The encoded local features using
these dictionaries were pooled to get an image representation. At
the first level of the cell pyramid, the encoded features from the
whole cell were pooled to get a feature vector of size P (e.g., for
BoW, P¼M). At the second level, feature vectors were computed
from the inner region and from the border region of each cell (see
Fig. 3). These three feature vectors were concatenated to give a
3P-dimensional vector. Finally, encoded features from each of the
four feature types were concatenated to give a 12P-dimensional
vector on which classification was based.
7. HEp-2 specimen classification

Our approach for classifying specimens is similar to the
approach we proposed for cell image classification, the main dif-
ference being that we extracted features at two sets of scales.
Specifically, after preprocessing, two types of local feature, mLP
and rSIFT, were extracted. These features were densely extracted
from image patches using a patch step-size of 4 pixels. Both small
patches (12�12 pixels and 16�16 pixels) and large patches
(48�48 pixels and 64�64 pixels) were used. Intuitively, small
patches can capture local properties at cellular level while large
patches can capture information about groups of cells. Features
from outside the dilated cell masks were discarded.

A separate dictionary of size M was learned for each feature
type with each group of patches (i.e., one for small and one for
large patches). The image representations using the small-patch
dictionary and the large-patch dictionary for each feature type
were concatenated. Sparse coding with max-pooling was used.

The dataset provided for Task 2, described in Section 8.2, was
augmented by including a 90°-rotated version of each original
image. This resulted in a set of 2016 images. Five sub-images
were extracted from each image based on the layout shown in
Fig. 8(a) with the exception of images in the mitotic spindle class.
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In mitotic spindle images, metaphase cells in which stained
mitotic spindle was apparent were manually identified. Five sub-
images were then extracted around those cells, with some random
variation, as shown in Fig. 8(b). Finally, the 10,080 extracted sub-
images were added to the 2016 images, resulting in an augmented
dataset of 12,096 images.

A one-vs-rest, multi-class SVM classifier was then trained on
the augmented dataset. Since each specimen was imaged at four
different locations in the test SVM classifier was applied to each of
these four images, resulting in four sets of classification scores per
specimen. Scores were treated as probabilities using Platt rescaling
[31]. The final classification decision was made by averaging these
probabilistic scores and selecting the class with the highest
average score.
Table 1
Distribution of classes in Task 1 and Task 2 training datasets.

Class Task 1 Task 2

Homogeneous 2494 212
Speckled 2831 208
Nucleolar 2598 200
Centromere 2741 204
Nuclear membrane 2208 84
8. Experiment setup

8.1. Implementation details

The following parameter settings were used for different fea-
ture types:

� mLP: a 3-resolution version with 8 sampling points at each
resolution was used as shown in Fig. 5. The parameters of the
Gaussian filters at each sampling point were selected as in [23].

� RP: The dimension D0 of each linearized patch was reduced to
D¼300 whenever D04300.

� IH: Local intensity histograms of 256 bins were used.

The public library, vlfeat [37], was used for dictionary
learning and feature encoding. For SC, we used the implementa-
tion of LLC from [14] with 10 nearest neighbours (K¼10). K-means
with 300,000 randomly selected instances of each type of local
feature was used to build the dictionaries for BOW, SC and VLAD
methods.

In all the reported experiments we used the L2 and power
normalizations [30] to normalize the final image representation zi
of an image Ii, given by

zi’
signðziÞjzi j 1=2

Jzi J2
ð9Þ

where jzi j 1=2 applies the square root to each component of zi.
We used the LIBLINEAR [38] implementation for the SVM

classifiers. The code4 from the authors of [39] was used for Platt
scaling. We sampled equal number of positive and negative
instances from the training set when learning the Platt calibration
[31].

Mean Class Accuracy (MCA) was used as one of the evaluation
metrics, as required metric by the I3A contest. It is defined as

MCA¼ 1
K

XK
k ¼ 1

CCRk ð10Þ

where CCRk is the correct classification rate for class k and K is the
number of classes.

8.2. Datasets

In reported experiments, the Task 1 and Task 2 datasets from
the I3A contest were used. These were collected between 2011 and
2013 at the Sullivan Nicolaides pathology laboratory, Australia. For
each task, a set of training images was provided to the contest
participants. Submitted systems were then evaluated on a separate
4 http://www.work.caltech.edu/htlin/program/libsvm/doc/platt.m
hidden test set which was privately maintained by the contest
organizers and not released to the participants. The results
obtained on the contest's hidden test set by our entries are
reported in Sections 9.9 and 10.4. This paper also reports cross-
validation results on the contest training sets.

The Task 1 dataset consists of 68,429 images of individual
cells extracted from 419 patient positive sera (approximately
100–200 cell images per patient serum) along with their binary
segmentation masks. 13,596 images were available during train-
ing. The remaining 54,833 images were used for the hidden test
set to evaluate performance of systems submitted to the contest.
The specimens were automatically photographed using a mono-
chrome high dynamic range cooled microscopy camera. Cell ima-
ges are approximately 70�70 pixels in size. The dataset has six
pattern classes: homogeneous, speckled, nucleolar, centromere,
nuclear membrane, and golgi. An example image from each of the
six classes is given in Fig. 1.

The Task 2 dataset consists of uncompressed, monochromatic
images of 1001 patient sera with positive ANA test. Each specimen
was photographed at four different locations (four images per
specimen). A total of 1008 images from 252 specimens were made
available (approximately 25% of the data) while the remaining
images were retained by the organizers for testing. Each image
was 1388�1040 pixels and cell masks were obtained based on an
automatic segmentation for each image. The dataset has seven
pattern classes: homogeneous, speckled, nucleolar, centromere,
nuclear membrane, Golgi and mitotic spindle. An example image
from each of the seven classes is given in Fig. 2.

The distribution of classes for both tasks is shown in Table 1. The
homogeneous, speckled, nucleolar and centromere classes represent
common ANA patterns whilst the other three classes are less common.

Experimental results are presented in the following two sec-
tions. For cell classification (Section 9), we first used the I3A
contest training set to explore the effect that different aspects of
the system had on performance. These aspects included feature
types, encoding methods, cell pyramids, and data augmentation.
Subsequently, we used a leave-one-specimen-out setting to test
the ability to classify cells from previously unseen specimens.
Finally, we include the results reported on the held-out contest
test data for the proposed system as well as for the other contest
entries (Section 9.9). For specimen classification (Section 10), we
report results comparing performance using different features. We
then report results on cross-specimen and cross-image general-
ization. Finally, we include the results reported on the held-out
contest test data (Section 10.4).
9. Cell classification results (Task 1)

9.1. Experiment 1: comparison of different features and encoding
methods

We compared the performance of different features and
encoding methods on the Task 1 training dataset. Two-fold cross-
Golgi 724 40
Mitotic Spindle – 60
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Fig. 9. Performance of various features with different encodings (size of the dictionary vs MCA).

Table 2
Two-fold cross-validation results (MCA7std) for different feature combinations with and without CPM and data augmentation (dictionary size of 1500).

Features Original dataset without CPM Original dataset with CPM Augmented dataset with CPM

BOW SC-sum SC-max BOW SC-sum SC-max BOW SC-sum SC-max

rSIFT þ mLP 90:470:4 91:070:4 90:270:4 91:170:4 92:070:5 91:970:4 93:670:4 94:170:3 94:070:5
rSIFT þ RP 89:670:3 90:670:3 89:770:4 90:670:4 91:970:4 91:670:3 93:170:3 93:970:3 93:770:3
rSIFT þ IH 91:070:4 91:270:3 89:970:4 92:670:4 93:270:3 92:770:4 94:270:3 94:370:3 94:170:3
all 92:670:3 93:170:5 92:670:4 93:670:4 94:170:4 94:170:4 95:270:3 95:270:2 95:270:2

Table 3
Different performance measures for classification based on 2-fold cross-validation (all features, SC, max pooling, dictionary size of 1500).

Method MCA Accuracy Precision Recall Fscore

Original dataset without CPM 92:670:4 97:770:1 0:93370:003 0:92570:004 0:92970:003
Original dataset with CPM 94:170:4 98:170:1 0:94170:003 0:94470:003 0:94270:002
Augmented dataset with CPM 95:270:2 98:470:1 0:94970:003 0:95270:003 0:95070:003
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validation experiments were carried out, and each was repeated
10 times. Fig. 9 reports the MCAs for different dictionary sizes.
rSIFT gave a slightly better performance than the other features. IH
gave the worst results. For all encoding methods, larger diction-
aries gave higher MCA. SC with sum pooling always gave better
performance than other encoding and pooling methods. For all
features except IH, FV performed better than VLAD indicating that
the additional (2nd order) information it captured was useful.
When the dictionary size was 64, FV obtained similar MCA to SC
with sum pooling with a dictionary size of 4000, but with an
increased feature dimensionality. For example, using rSIFT the
dimensionality of an FV image representation was 16,384 com-
pared to 4000 using SC with sum pooling.

9.2. Experiment 2: combinations of features

We investigated the performance of combinations of different
features. We used BoW and SC encodings for this purpose as they
gave better performance than VLAD and FV in Experiment 1. The
dictionary size was fixed to 1500. Table 2 reports the results (see
columns 2–4). Similar performance was observed using BoW and SC
when combining all four types of feature. An improvement of more
than 3% was obtained when combining other features with rSIFT
(Fig. 9 and Table 2 columns 2–4). Table 5 reports the confusion
matrix obtained when combining all the features and encoding with
SC and max-pooling. The Golgi class was the least accurately clas-
sified; about 8% of Golgi images were misclassified as nucleolar.

9.3. Experiment 3: effect of cell pyramids

To improve classification accuracy, particularly of the Golgi
class, we incorporated spatial structure into the feature encoding
process via cell pyramids (CPM). Table 2 reports the performance
of different feature combinations with and without CPM using BoW
and SC approaches (see columns 5–7). When combining all the
features and using CPM, the overall MCA was improved by about
1%. In particular, CPM improves the classification accuracy of the
Golgi images by about 3% (see Tables 5 and 6).

9.4. Experiment 4: effect of data augmentation

We investigated the effect of augmenting the training set by
including rotated images as explained in Section 6. An ensemble
SVM was used for classification. Augmenting the dataset
improved the classification accuracy (see Table 2 columns 8–10
vs. columns 5–7, and Table 7 vs. Table 6). When combining all the
features, the overall MCA was further improved by about 1%.



Table 4
Computational time (in sec. averaged over 500 cell images) required for different descriptors for feature extraction and encoding (SC, max pooling, dictionary size of 1500).

Features Original dataset without CPM Original dataset with CPM Augmented dataset with CPM

Feature extract Feature encode Total Feature extract Feature encode Total Feature extract Feature encode Total

mLP 0.02 0.47 0.49 0.02 0.88 0.91 0.10 3.54 3.64
IH 0.79 0.54 1.33 0.79 1.06 1.85 3.16 4.15 7.31
rSIFT 0.06 0.55 0.61 0.06 1.02 1.08 0.23 4.19 4.42
RP 0.55 0.49 1.04 0.54 0.93 1.46 2.16 3.72 5.88

Table 5
Confusion matrix obtained using all features combined, SC with max pooling, and
dictionary size of 1500. (Neither CPM nor data augmentation were used here.)

Homo. Spec. Nucl. Cent. NuMe. Golgi

Homo. 93.5 05.1 00.3 00.1 00.8 00.1
Spec. 04.6 90.6 01.7 02.2 00.6 00.3
Nucl. 01.0 02.1 94.8 01.0 00.6 00.5
Cent. 00.2 03.4 01.6 94.5 00.1 00.1
NuMe. 02.2 01.1 00.8 00.1 95.1 00.6
Golgi. 01.3 01.3 07.7 01.3 01.5 87.0

Table 6
Confusion matrix obtained using all features combined, SC with max pooling,
dictionary size of 1500, and CPM. (No data augmentation was used here.)

Homo. Spec. Nucl. Cent. NuMe. Golgi

94.7 04.2 00.3 00.1 00.6 00.1
04.0 91.9 01.4 01.7 00.8 00.2
00.9 01.7 95.5 00.9 00.6 00.5
00.1 02.8 01.5 95.5 00.0 00.1
01.9 00.8 00.6 00.1 96.0 00.6
00.9 00.8 05.2 00.6 01.7 90.9

Table 7
Confusion matrix obtained using all features combined, SC with max pooling,
dictionary size of 1500, CPM, and data augmentation.

Homo. Spec. Nucl. Cent. NuMe. Golgi

95.5 03.3 00.3 00.1 00.5 00.3
04.1 92.1 01.3 01.4 00.8 00.4
00.8 01.2 96.2 00.5 00.5 00.8
00.1 02.3 01.5 96.0 00.0 00.1
01.7 00.4 00.6 00.1 96.5 00.8
00.4 00.3 03.1 00.1 01.0 95.0

Table 8
Confusion matrix for leave-one-specimen-out experiment. (All features, CPM, data
augmentation, SC, max pooling, dictionary size of 1500.)

Homo. Spec. Nucl. Cent. NuMe. Golgi

81.8 14.8 00.8 00.2 02.0 00.4
09.0 75.5 03.7 10.6 00.8 00.4
01.1 03.4 89.4 02.5 01.3 02.3
00.3 10.7 03.4 85.4 00.0 00.2
05.8 01.9 01.5 00.0 87.9 02.8
04.8 02.1 17.4 01.5 07.5 66.7
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BoW and SC gave similar performance; the MCA saturated at
about 95%.

9.5. Different measures for classification

In experimental results reported above, MCA was used as the
performance measure. This measure was specified for use in the
I3A contest. Here we report results using various alternative
measures, specifically accuracy, precision, recall, and F-score. Dif-
ferent measures summarize performance in different ways; e.g.,
accuracy ignores class imbalance thus is biased towards classes
that have more examples in the dataset. On the other hand, MCA
gives equal importance to all the classes. We direct the interested
reader to [40] for detailed explanation and definitions of these
measures for multi-class classification. Table 3 reports perfor-
mance using these measures. These results suggest consistent
conclusions regardless of the measure used. Adding CPM
improved performance. CPM with data augmentation gave the
best performance by all measures.

9.6. Computational time for feature extraction and encoding

Table 4 reports comparisons of the computational time
required for feature extraction and encoding in order to compute
the cell-level representations. This was by far the most time con-
suming part of the proposed system. These timings were obtained
using Matlab 2014b and Windows 7 running on a machine with a
Core i7 processor and 8 GB RAM. IH took more time than other
features while resulting in lower MCA (see Fig. 9). On the other
hand, mLP took the least time and resulted in competitive MCA.
When all feature types were used along with data augmentation
and CPM, the system took approximately 21s to compute the cell-
level representation for one image.

9.7. Experiment 5: leave-one-specimen-out

The above experiments disregarded the identities of the spe-
cimens from which cells had been extracted. To test the general-
ization performance of our system across different specimens, we
conducted an experiment in a leave-one-specimen-out setting.
Specifically, we used the specimen IDs to split the data into
training and validation sets. Since 83 different specimens were
available, we used images from 82 specimens for training in each
split, and the images from the remaining specimen for testing. In
this experiment we used the combination of all feature types, the
augmented dataset, CPM, SC, max-pooling, and dictionary size of
1500. Table 8 reports the confusion matrix. An MCA of 81.1% was
obtained. The Golgi class had poor results (66.7%). This class
exhibits high intra-class variability and was poorly represented in
the available data set; only 4 Golgi specimens were in the
training set.

9.8. Experiment 6: performance on images extracted from Task
2 dataset

We also made use of cell images segmented from the Task
2 dataset. (We did not use the mitotic spindle images in the
experiment reported in this section.) An automatic procedure was
used to select cells from the Task 2 dataset given the segmentation
masks provided with that dataset. Firstly, all disjoint regions were
identified in the segmentation mask images using connected
component analysis. Secondly, eccentricity values were calculated



Fig. 10. Sample specimen images from I3A Task-2 dataset. The bounding boxes indicate the cell images which are automatically extracted from these specimen images.
(a) A centromere specimen. (b) The segmentation mask for (a). (c) A speckled specimen. (d) The segmentation mask for (c).

Table 9
Confusion matrix of the system trained on Task 1 images and tested on the cell
images extracted from Task 2 (SC with max pooling, dictionary size of 1500).

Homo. Spec. Nucl. Cent. NuMe. Golgi

Homo. 65.4 28.5 01.5 00.0 03.8 00.7
Spec. 04.5 90.8 00.6 01.7 02.2 00.2
Nucl. 01.2 01.9 95.7 00.0 00.3 00.9
Cent. 00.1 11.1 06.5 82.0 00.2 00.1
NuMe. 03.7 01.9 00.3 00.0 92.0 02.2
Golgi. 00.0 01.4 03.1 00.2 05.1 90.2
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for each connected component. Finally, low-eccentricity compo-
nents that could be bounded by an 80�80 square with which no
other component overlapped were selected. Approximately 5000
isolated cells were selected in this way. This is illustrated in Fig. 10
where red bounding boxes denote cell images that were extracted.

We trained an ensemble classifier using all the images from the
Task 1 training dataset and then tested it on the cell images
extracted from the Task 2 dataset. We used the combination of all
feature types with the augmented dataset, CPM, SC and max-
pooling (dictionary size of 1500). The results are reported in
Table 9; an MCA of 86% was obtained.
9.9. Performance on the test dataset

We submitted two systems to the I3A contest for Task 1; the
first system used only data made available in the Task 1 training
set; the second system trained on a data set consisting of the Task
1 training set together with the additional 5000 cell images
extracted from the Task 2 training set (see Section 9.8). Both sys-
tems used all the features together with SC (max-pooling, dic-
tionary size 1500), the rotated versions of the images, and CPM.

Fig. 11 reports the MCAs obtained by all of the methods sub-
mitted to the contest on the Task 1 test set. Our first submission
which made use of only the Task 1 training data obtained an MCA
of 84.2%, higher than all the other teams' entries. Our second
submission which used additional data (cells extracted from the
Task 2 dataset) achieved an MCA of 87.1%. The next best entry, that
of Gragnaniello et al. [18], obtained an MCA of 83.6%. Table 10
reports confusion matrices from our method and the method of
Gragnaniello et al. The reader is referred to the I3A report [3] for
detailed results of other entries.
9.10. Examples of correctly and incorrectly classified cells

Figs. 12–17 show examples of cells from each class that were
correctly and incorrectly classified. Some of the misclassified
images are particularly noisy, e.g., the misclassified Golgi images in
Fig. 17. In most other cases of misclassification shown, visual
inspection reveals qualitative similarity to the class whose label
was assigned to it.
10. Specimen classification results (Task 2)

10.1. Experiment 1: comparison of different features

We performed five-fold cross-validation experiments to com-
pare the performance obtained when using different features for
Task 2. The dictionary size was fixed to 5000. Table 11 reports the
MCA for each feature type as well as their combination. mLP with
larger patch sizes outperformed other features. rSIFT with larger
patch sizes gave the worst result. Combining features together
resulted in an improved MCA of 89.9%. Table 12 shows the con-
fusion matrix.



Fig. 11. The MCA at cell level attained by each method on the test set of Task 1.

Table 10
Confusion matrices for the proposed method and that of Gragnaniello et al. [18] on
the Task 1 test set.

(a) Proposed method (trained with cell images from Task 1 and Task
2 training sets)

Cent. Golgi Homo. Nucl. NuMe. Spec.

Cent. 97.5 00.1 00.5 00.8 00.2 00.9
Golgi. 00.1 82.0 05.4 03.6 08.2 00.7
Homo. 00.2 00.8 82.6 05.7 04.5 06.1
Nucl. 00.8 00.5 01.4 94.8 01.3 01.3
NuMe. 00.1 00.6 04.9 00.7 92.2 01.4
Spec. 10.3 00.5 12.0 02.0 01.5 73.6
(b) Gragnaniello et al. [18]

Cent. Golgi Homo. Nucl. NuMe. Spec.

Cent. 95.5 00.4 00.2 01.2 00.1 02.7
Golgi. 00.0 71.8 04.7 07.3 14.6 01.6
Homo. 00.1 00.8 78.6 04.9 08.1 07.6
Nucl. 00.8 01.6 02.0 92.5 01.7 01.5
NuMe. 00.1 00.8 03.1 00.9 93.3 01.8
Spec. 13.4 00.7 11.1 02.7 02.2 70.0

Table 11
Classification performance using different features based on five-fold cross-vali-
dation. (All¼histogram of rSIFT plus histogram of mLP, with smaller and larger
patch sizes.)

Feature type MCA(%)

mLP (12� 12;16� 16) 85.63
rSIFT (12� 12;16� 16) 85.62
mLP (48� 48;64� 64) 87.34
rSIFT (48� 48;64� 64) 82.20
All 89.93

Table 12
Confusion matrix based on 5 fold-cross-validation for Task 2 specimen image
classification.

Homo. Spec. Nucl. Cent. Golg. Nume. Mits.

Homo. 86.8 09.4 01.9 00.0 00.0 01.9 00.0
Spec. 01.9 96.1 00.0 00.0 00.0 01.9 00.0
Nucl. 00.0 00.0 98.0 02.0 00.0 00.0 00.0
Cent. 00.0 00.0 00.0 100.0 00.0 00.0 00.0
Golg. 00.0 00.0 00.0 00.0 100.0 00.0 00.0
Nume. 00.0 00.0 00.0 00.0 00.0 95.2 04.8
Mits. 26.7 06.7 00.0 00.0 00.0 13.3 53.3

Table 13
Confusion matrix for leave-one-specimen-out experiment.

Homo. Spec. Nucl. Cent. Golg. Nume. Mits.

Homo. 88.7 09.4 00.0 00.0 00.0 01.9 00.0
Spec. 03.8 94.2 00.0 00.0 00.0 01.9 00.0
Nucl. 00.0 00.0 98.00 02.00 00.0 00.0 00.0
Cent. 00.0 00.0 00.0 100.00 00.0 00.0 00.0
Golg. 00.0 00.0 00.0 00.0 100.0 00.0 00.0
Nume. 00.0 00.0 00.0 00.0 00.0 95.2 04.7
Mits. 26.7 06.7 00.0 00.0 00.0 13.3 53.3
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10.2. Experiment 2: leave-one-specimen-out experiments

A leave-one-specimen-out experiment was carried out using
the specimen IDs provided to split the data into training and
validation sets. Since 252 different specimens were available, we
used images and their rotated versions from 251 specimens for
training in each split. Table 13 reports the confusion matrix.
Accuracy of 100% was obtained for the centromere and Golgi
classes. The mitotic spindle class had the lowest accuracy being
confused mostly with the homogeneous class. An overall MCA of
89.9% was obtained.

10.3. Experiment 3: classification of individual images taken at dif-
ferent locations

In the above two experiments (Sections 10.1 and 10.2), the
classification decision for each specimen was made based on
averaging the classification scores (probabilities) of its four images
taken from different locations as explained in Section 7. In this
experiment we consider each of the four images separately and
classify them individually. A leave-one-specimen-out experiment
was performed, where at each iteration a classifier was trained on
the images (and their rotated versions) obtained from 251 speci-
mens, and tested on each of the four images of the test specimen.
An MCA of 87.9% was obtained, 2% lower than the best accuracy
(89.9%) obtained in the experiment reported in Section 10.2.

10.4. Performance on the test dataset

Fig. 18 reports the MCAs obtained by each of the submitted
methods on the Task 2 test set. Our method achieved an MCA of
88.5%, outperforming all the other methods submitted. The second
placed method, that of Liu et al. (described in [3]), achieved an
MCA of 86.1%. Table 14 reports the confusion matrices of our
method and that of Liu et al.
11. Conclusion and recommendations

In this paper we explained in detail our winning entries for
both Task 1 (cell image classification) and Task 2 (specimen image
classification) of the I3A contest. To more fully understand the
contributions of the components of our classification systems, we



Fig. 13. Examples of Speckled cells that were (a)–(c) correctly classified, (d) classified as Homo., (e) classified as Cent., and (f) classified as Golg.

Fig. 14. Examples of Nucleolar cells that were (a)–(c) correctly classified, (d) classified as Homo., (e) classified as Cent., and (f) classified as Spec.

Fig. 15. Examples of Centromere cells that were (a)–(c) correctly classified, (d) classified as Homo., (e) classified as Nucl., and (f) classified as Spec.

Fig. 16. Examples of Nuclear Membrane cells that were (a)–(c) correctly classified, (d) classified as Homo., (e) classified as Nucl., and (f) classified as Spec.

Fig. 12. Examples of Homogeneous cells that were (a)–(c) correctly classified, (d) classified as Spec., (e) classified as Nucl., and (f) classified as NuMe.
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empirically studied the local feature extraction and encoding
methods, as well as data augmentations applied in training the
systems. We found that (1) the combination of different features
outperforms individual feature types; (2) for cell classification SC
performs better than BOW. FV and VLAD could achieve similar
accuracies to BOW and SC but only with feature representations of
much higher dimensionality; (3) adding spatial information from
the cell images via the use of cell pyramids can improve classifi-
cation performance for cell images (an improvement of � 3% was
observed for Golgi images); and (4) augmenting the training set by
the use of rotated training images further improves the classifi-
cation performance. When combined, these aspects differentiate



Fig. 18. The MCA at specimen level obtained by each method on the test set of Task 2.

Fig. 17. Examples of Golgi cells that were (a)–(c) correctly classified, (d) classified as Nucl., (e) classified as NuMe., and (f) classified as Spec.

Table 14
Task 2 confusion matrices for (a) our method, and (b) the methods of Liu et. al. (a) Our method (b) Liu et. al..

(a)

Cent. Golgi Homo. Nucl. NuMe. Spec. MitSp

Cent. 98.7 00.0 00.0 00.7 00.0 00.0 00.7
Golgi. 00.0 80.8 00.0 03.9 03.9 11.5 00.0
Homo. 00.0 00.0 93.0 00.0 00.0 01.9 05.1
Spec. 00.0 00.0 18.2 61.4 02.3 11.4 06.8
Nucl. 00.0 01.3 00.7 00.7 96.0 00.7 00.7
NuMe. 00.0 00.0 01.6 00.0 00.0 98.4 00.0
MitSp 00.0 00.0 07.0 00.6 00.0 01.3 91.1
(b)

Cent. Golgi Homo. Nucl. NuMe. Spec. MitSp

Cent. 98.7 00.7 00.0 00.0 00.0 00.0 00.7
Golgi. 00.0 80.8 07.7 03.9 03.9 03.9 00.0
Homo. 00.0 00.0 93.0 00.0 00.0 01.3 05.7
Spec. 00.0 02.3 34.1 52.3 02.3 06.8 02.3
Nucl. 00.0 00.0 00.7 00.7 98.0 00.7 00.0
NuMe. 00.0 00.0 06.5 00.0 00.0 91.9 01.6
MitSp 00.0 00.0 11.4 00.6 00.0 00.0 88.0
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our entries from other entries in the competition. They are
important factors to consider in building state-of-the-art cell and
specimen image classification systems.

System design choices were guided by using mean class accu-
racy as the measure of classification performance. (This was the
measure specified for use in the I3A contest.) However, experi-
ments with alternative measures suggested similar conclusions.
Future contests could be usefully enhanced by investigating the
statistical and clinical significance of differences in performance
between competing methods. One way to go about assessing
statistical significance is bootstrap sampling, as recently incorpo-
rated in the PASCAL Visual Object Classes Challenge [41]. It would
also be informative to quantify the reliability of the ground truth
labels, especially given the visual similarity of many of the mis-
classified examples to their assigned classes (see Figs. 12–17). The
features we used were pre-defined (hand-crafted). We believe that
future work could further explore learning adaptive feature
extractors for cell and specimen classification.
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