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Abstract. This paper proposes a novel deep neural network architec-
ture to effectively localize potential biomarkers in medical images, when
only the image-level labels are available during model training. The pro-
posed architecture combines a CNN classifier and a generative adversar-
ial network (GAN) in a novel way, such that the CNN classifier and the
discriminator in the GAN can effectively help the encoder-decoder in the
GAN to remove biomarkers. Biomarkers in abnormal images can then be
easily localized and segmented by subtracting the output of the encoder-
decoder from its original input. The proposed approach was evaluated
on diabetic retinopathy images with real biomarkers and on skin images
with simulated biomarkers, showing state-of-the-art performance in lo-
calizing biomarkers even if biomarkers are irregularly scattered and are
of various sizes in images.
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1 Introduction

Visual biomarkers in medical images are important indicators for radiologists to
investigate the risks, categories, and status of particular diseases. Therefore, au-
tomatic localization and segmentation of existing or potentially novel biomarkers
from various medical images would be a key step for intelligent diagnosis and
treatment of diseases. While it is relatively easier for human experts to roughly
locate biomarkers (e.g., with bounding boxes surrounding biomarker regions), it
is challenging, if not impossible, for humans to precisely localize and segment
biomarkers particularly when they are irregularly scattered in images. As a re-
sult, it is highly desirable to precisely localize biomarkers only based on weak
annotations, e.g., image-level labels representing whether images contain diseases
(labelled ‘abnormal’) or not (labelled ‘normal’).

Multiple approaches have been proposed to alleviate the great challenge of
biomarker localization only based on image-level annotations. One traditional
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approach is multiple instance learning [7], a weakly supervised technique which
can train a classifier not only predicting the labels of images, but also roughly
localizing the discriminative regions (possible biomarkers) in abnormal images.
Such technique has been applied to solve various medical imaging problems, such
as segmenting retinal nerve fibers from retinal fundus images [6] and cancer de-
tection in digital pathology images [5]. Another group of approaches, proposed
in the computer vision community, is through visualizing image regions on which
convolutional neural network (CNN) classifiers focus when predicting classes of
images. Among them, perturbation methods occlude or mask each possible local
region and check the changes in classifier outputs, with larger drops in output
indicating higher importance in predicting image classes [14]. In comparison,
feature activation methods locate important local regions based on activated
regions in feature maps of certain convolutional layer’s output, e.g., the popu-
lar class activation mapping (CAM) [13] and its variants Grad-CAM [10] etc.
Recently, the CAM-based methods have been widely applied in medical image
analyses, e.g., for pneumonia detection on chest X-ray images [8], bladder cancer
prediction in digital pathology images [12] and Alzheimer diagnosis in MRI im-
ages [11]. However, all the above methods can only roughly locate biomarker or
lesion regions, leaving the precise localization of biomarkers as an open problem.

In this paper, to precisely localize biomarkers, we propose a deep neural
network architecture by combining a CNN classifier, a generator and a discrim-
inator. The generator aims to output a normal version of each abnormal input
image by removing potential biomarkers from the input image, such that the
biomarkers in abnormal images can be easily localized and segmented by sub-
tracting the output of the generator from its input. To help achieve this goal, a
CNN classifier is added to encourage biomarker removal by classifying the sub-
traction (of the output of the generator from its input) as normal or abnomal. On
the other hand, to make the output of the generator realistically normal, a dis-
criminator is added and trained adversarially to discriminate real and generated
normal images. Note that the generator and discriminator naturally form a gen-
erative adversarial network (GAN) [4]. Qualitative and quantitative evaluations
on diabetic retinopathy images with real biomarkers and on skin images with
simulated biomarkers showed superior performance of the proposed architecture
to that of the CAM-based methods in precisely localizing biomarkers.

2 Method

The purpose is to precisely localize potential biomarkers or lesion regions in ab-
normal images when only the image-level labels are available. Different from the
visualization methods (e.g., CAM or Grad-CAM) which can only approximately
localize potential biomarkers at low resolution in images after training a classi-
fier, the motivation of our idea is to design a new architecture which can learn
to directly find precise locations of potential biomarkers. With this motivation,
we proposed a novel deep neural network by combining two different learning
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architectures (Figure 1): a supervised CNN classifier and a GAN (composed of
an encoder-decoder and a discriminator).

In the proposed architecture, the encoder-decoder network tries to remove
any potential biomarkers from the input image, generating a fake normal im-
age for abnormal input image, or keeping the output image the same as the
input if the input is normal. By subtracting the output of the encoder-decoder
from its input, any biomarkers can be easily localized and segmented. While it
is possible to train such an encoder-decoder just with normal images, this does
not make use of the existing abnormal images, therefore not directly learning
biomarker features for localization. Instead, to more effectively achieve the goal
of the encoder-decoder, a CNN classifier is added on top of the encoder-decoder,
with input being the subtraction of the encoder-decoder’s output from its input,
and expected output being the label of the original input image to the auto-
encoder. In order to accurately classify images, the CNN classifier together with
the encoder-decoder would have to differentiate abnormal images from normal
ones. Ideally, if the input to the classifier contains only biomarkers for abnormal
original images and contains nothing (zero values everywhere) for normal im-
ages, the classifier would more easily and accurately predict the category of the
original images. In other words, training a more accurate classifier could help the
encoder-decoder’s output keep the normal regions and remove biormakers from
the original image, such that the input to the classifier only contains biomarker
signals.

However, the classifier may help localize just part of biomarkers from the
original images. This is because localizing part of biomarker signals from original
abnormal images (and localizing little signal from normal images) is enough for
the classifier to easily differentiate between normal and abnormal images. In this
case, the encoder-decoder output would still contain some biomarkers.

To further help the encoder-decoder remove potential biomarkers from orig-
inal (abnormal) images, a discriminator is added to judge whether the output
of the encoder-decoder looks like a real normal image or not. By forcing the
encoder-decoder’s outputs to look more like normal images, the discriminator
helps the encoder-decoder remove as much biomarker signals as possible from
original images.

It is clear that the encoder-decoder and the discriminator together form a
generative adversarial network (GAN). One may consider that the GAN itself,
without the classifier component in the architecture, may be enough to help
the encoder-decoder remove potential biomarkers from images. However, GAN
itself could help too much such that, although the encoder-decoder generates
quite normal images, the normal regions of the encoder-decoder’s output may
also be changed compared to the input. In this case, the subtraction of the
encoder-decoder’s output from its input, i.e., the input to the classifier, would
contain both normal and biomarker signals, which in turn makes it relatively
more difficult for the classifier to differentiate abnormal images from normal ones.
That means, the classifier and the discriminator should work together to help
the encoder-decoder remove potential biomarkers, i.e., the discriminator helps
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Fig. 1. The proposed architecture for biomarker localization. The classifier and the
discrminator together can help the encoder-decoder more effectively remove biomark-
ers from input images. Biomarkers can then be localized by subtracting the encoder-
decoder’s output from its input.

the encoder-decoder output normal images and the classifier helps the encoder-
decoder only change biomarker regions to generate normal outputs. This has
been experimentally confirmed (see Section 3.2).

In the proposed architecture, let us denote the encoder-decoder by G, the
discriminator by D, and the classifier by C, then the problem of biomarker
localization can be formulated as optimizing the deep neural network model by

min
G,C

max
D

LGAN (D,G) + λ1LCE(C,G) + λ2LED(G), (1)

where LGAN (D,G) is the objective function of the GAN (here we used WGAN;
[1]), LCE(C,G) is the cross-entropy loss for the classifier C, and LED(G) is the
encoder-decoder loss (here we used L1 loss) emphasizing the similarity between
its output and input. λ1 and λ2 are coefficients balancing the three different
parts.

During model training, an alternating strategy is adopted by updating dif-
ferent parts of the model iteratively, i.e.,

min
G,C

L1 = λ1LCE(C,G) + λ2LED(G), (2)

min
G

max
D

L2 = LGAN (D,G) + λ2LED(G). (3)

3 Experimental Evaluation

3.1 Experimental settings

Two datasets were used to evaluate the proposed model. One was derived from
the Kaggle Diabetic Retinopathy (DR) dataset 5, from which 2,101 abnormal

5 https://www.kaggle.com/c/diabetic-retinopathy-detection/data
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images containing clear diabetic biomarkers and 2,101 normal images were se-
lected. Uninformative dark regions in each image were removed before inputting
to the neural network. Since it is highly costly for humans to precisely locate
and segment the biomarkers in all abnormal images, here 40 abnormal images
were randomly selected and then annotated at pixel level by two practising oph-
thalmologists. Note that the pixel-level annotations were not for model training
but only for quantitative evaluation of the proposed model on the DR dataset.

The second dataset consists of skin images with artificial biomarkers. To
generate this dataset, 2,920 normal images (actually image patches) of size 128×
128 were firstly extracted from a dermoscopy image dataset [2]. To simulate
varying number, size, and location of biomarkers in real skin images, the values of
these parameters were randomly generated in a certain range for each simulated
skin image. More specifically, for each image of the half dataset, one to three
images were randomly selected from the ImageNet [3] and resized to either 4×4,
8×8 or 16×16 pixels. The thumbnail images were embedded into the skin image
and then locally smoothed as artificial biomarkers. Pixel-level annotations were
available for all artificial biomarkers.

In the proposed architecture, a modified UNet [9] was selected for the encoder-
decoder network, with Tanh activation function added at last layer to constrain
the pixel values of the UNet’s output within the same range ([-1,1]) as that of
the UNet’s input. The UNet is pre-trained with all images for each dataset. A
Resnet-18 was used for the classifier network and a seven-layer CNN for the dis-
criminator network. Gradient penalty coefficient η in the WGAN loss was set to
10. Adam was used for model training, with default learning rate=0.0002, batch
size=32. For all tests, λ1 = 0.4 and λ2 = 10.0. We use PR curves for quantitative
evaluation, which were generated by comparing the pixel-level localization re-
sults with ground truth annotations. The heat maps of localization results were
normalized to [0,1] before PR generation. Please note that ROC curves are not
suitable for evaluating the biomarker localization performance, as the propor-
tions of positive and negtive pixels in each dataset are highly imbalanced (1:56
for DR dataset, 1:88 for skin dataset). Therefore, we only included the ROC
curves for each experiment in the supplimentary material.

Please note that our goal is to search for and localize visual (pixel-level)
biomarkers from images with the help of image-level labels, rather than training
a model to find biomarkers from new images. Therefore, for each dataset, all
the images were used to train our model, and the model was then evaluated
qualitatively and quantitatively. Thus we trained and evaluated our model on
the same dataset.

3.2 Roles of architecture components

This section evaluates the role of the classifier network and the discriminator
network in the proposed architecture in localizing biomarkers from retinal im-
ages. We first compared the qualitative results. Figure 2 shows that, without the
discriminator, the classifier helped localize only part of the biomarkers (3rd col-
umn), leaving most of biomarkers remained in the output of the encoder-decoder
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Fig. 2. Localization of biomarkers in retinal images. From left to right: original images,
encoder-decoder output without the discriminator, the difference between first and
second column, encoder-decoder output without the classifier, the difference between
first and fourth column, encoder-decoder output with both classifier and discriminator
included, the difference between first and sixth column.

(2nd column). On the other hand, without the classifier, the discriminator lo-
calized most (if not all) biomarker regions (5th column). However, some normal
regions were also altered (red boxes in 4th column), causing some false biomarkers
including some regions along vessels (see localized vessel curves in 5th column).
In comparison, the combination of the classifier and the discriminator in the
proposed approach resulted in the precise localization of most biomarkers, with
much fewer false biomarkers (7th column) and biomarkers removed in the out-
put of the encoder-decoder (6th column). These results suggest that the classifier
and the discriminator networks together help localize biomarkers as discussed in
Section 2. This is further confirmed by quantitative evaluation of different model
components, which shows that the proposed architecture (green ‘G-D-C’ curve
in Figure 3) performs better than that without the classifier (blue ‘G-D’ curve)
or without the discriminator (red ‘G-C’ curve).

3.3 Comparison with visualization methods for localization

In this section we compare the localization ability of the proposed approach with
the widely used visualization techniques CAM and Grad-CAM. ResNet-18 and
VGG-19 binary classifiers were trained for CAM and Grad-CAM respectively.
As can be seen from Figure 4 (Left), while CAM found most biomarker regions,
it also considered surrounding areas as part of biomarkers. This is largely due
to the upsampling of the output of the last convolutional layer (4 × 4) to the
image size (128 × 128). CAM also failed to detect most of the abnormal areas
in the first image(3nd column, 1st row). As an extension of CAM, Grad-CAM
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Fig. 3. Effect of model components. G-D represents encoder-decoder with only the
discriminator, G-C represents encoder-decoder with only the classifier, and G-D-C
represents our full model. The performance of the only encoder-decoder model was also
evaluated, with AUC=0.083 only (not shown in figure). The PR curves were generated
as decsribed in Section 3.1.

allows us to generate visual explanations from multiple layers, e.g., the inter-
mediate convolutional layer (4th column, denoted as Grad-CAM-1) and the last
convolutional layer (5th column, denoted as Grad-CAM-2). Although relatively
accurate localization of biomarkers is attained in the 4th column by Grad-CAM,
the results are still either not precise (1st row) or not accurate (2nd and 3rd row)
enough. In comparison, the proposed approach gave much more precise local-
ization of biomarkers with irregular shapes and scattered distributions, proving
its superior performance to that of CAM and Grad-CAM. This is confirmed by
quantitative evaluation of each method (Figure 4, Right), with the area under
the PR curve (AUC) being 0.481 for the proposed model, 0.065 for CAM, and
0.061, 0.042 for different layers of Grad-CAM.
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Fig. 4. Comparisons with visualization methods on real diabetic retinopathy dataset.
Left-half: localization results by CAM (3rd column), Grad-CAM-1 (4th column), Grad-
CAM-2 (5th column) and our approach (6th column) on exemplar retinal images (1st

column). Red regions in the heatmaps indicate higher probabilities to be biomarkers
and blue for normal regions. The binary ground truth annoations are shown in the 2nd

column. Right half: the PR curve for each method.
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The superior performance of the proposed model was further confirmed on the
skin images with artificial biomarkers. Figure 5 (Left half) shows that the pro-
posed approach can almost perfectly and precisely localize the artificial biomark-
ers, while CAM and Grad-CAM again demonstrated inferior performance, with
Grad-CAM better than CAM in localization. Figure 5 (Right) confirms that our
model is better (AUC=0.397) than CAM (AUC=0.075), Grad-CAM-1 (AUC=0.146)
and Grad-CAM-2 (AUC=0.009). Note that in all tests, the classification perfor-
mance of the classifiers are similar (above 97% on both datasets), removing the
potential influence of classification performance on biomarker localization.
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Fig. 5. Comparisons with visualization methods on skin image data. Left half: exemplar
skin images (1st column), binary ground truth segmentation (2nd column), localization
results by CAM (3rd column), Grad-CAM-1 (4th column), Grad-CAM-2 (5th column),
and our approach (6th column). Right half: the PR curve for each method.

4 Conclusion

In this paper, a new deep neural network architecture fusing a CNN classifier and
GAN together was introduced to effectively localize biomarkers from medical im-
ages. Compared with widely used localization methods, the proposed model can
more precisely localize potential biomarkers even if they are irregularly scattered
and of various forms and sizes. This provides a new way to detect potentially
novel biomarkers for various diseases, which will be investigated as future work.
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