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Immunoelectron microscopy is used in cell biological research to study the spatial distribution of intra-
cellular macromolecules at the ultrastructural level. Colloidal gold particles (immunogold markers) are
commonly used to localise molecules of interest on ultrathin sections and can be visualised in transmis-
sion electron micrographs as dark spots. Quantitative analysis involves detection of the immunogold
markers, and is often performed manually or interactively as part of a stereological estimation technique.
The method presented in this paper automatically detects and counts immunogold markers, estimating
the location, size and type of each marker. It was evaluated on single-labelled as well as double-labelled
images showing markers of two different sizes. This is a first step towards automatic analysis of immu-
noelectron micrographs, enabling a rapid and more complete quantitative analysis than is currently

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Immunoelectron microscopy is a powerful tool used for study-
ing the spatial distribution of macromolecules at the ultrastruc-
tural level. A common approach is to label ultrathin sections that
contain protein antigens using antibodies whose locations can be
highlighted using electron dense microscopic markers such as col-
loidal gold (Webster et al., 2008; Lucocq, 2008). Most often anti-
bodies act as primary affinity reagents that bind to the antigens
(the molecules of interest) and these are then localised using sec-
ondary (second step) affinity reagents complexed to the gold par-
ticles. Such immunogold markers are relatively easily visualised
in transmission electron micrographs because of the electron den-
sity of the gold particles. The particles are elemental crystals of
gold that appear approximately spherical by transmission electron
microscopy and appear as relatively dark spots against the cellular
background after images have been recorded (see Fig.1 for a well
contrasted example). A further application of this technology pro-
vides co-localisation of multiple antigens by using immunogold
markers of different sizes to mark the locations of the different
antibodies, and therefore the antigens. This approach can be used
to study the possible functional relationships between macromol-
ecules as well as their localisation relative to various intracellular
compartments.

The particulate nature of the colloidal gold particles opens up
the possibility of quantifying the label by counting procedures.
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The relative number of gold particles associated with cell compart-
ments or structures (distribution) and the concentration (density)
over structure profiles are useful measures that report important
information about the target antigen. Accordingly a portfolio of
quantitative methods, based on established sampling strategies
and stereological estimators, has now been developed. These
methods allow minimally biased estimation of particle distribution
and particle densities and provide statistical techniques for evalu-
ating the results (Mayhew, 2007; Mayhew et al., 2002; Lucocq,
1994, 2008; Lucocq et al., 2004; Lucocq and Gawden-Bone, 2009,
2010). The starting point for these and many other quantitative
analyses is the detection of immunogold markers in electron
micrographs. Detection and counting are almost always carried
out by the experimenter but this can be a tedious and labour-
intensive task. It not only requires training but also can be error-
prone (Monteiro-Leal et al., 2003).

A few methods for automatic or semi-automatic detection of
immunogold markers have been reported. An early method applied
morphological operations and interactive threshold selection to
segment markers of fixed size (Lebonvallet et al., 1991). Brandt
et al. (2001) modelling the appearance of a gold marker as a Gauss-
ian-blurred circular region with fixed radius. They used template
matching and hysteresis thresholding for marker detection. De-
tected regions with low circularity were removed to reduce the
false positive rate. However in preliminary experiments for this
study we have found that whilst fine-tuning of thresholds could
produce reasonable results on one region of an image, poor detec-
tion tended to occur elsewhere even within the same image using
this method. Finally, Monteiro-Leal et al. (2003) used simple grey
level thresholding with user-selected threshold values to obtain
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Fig.1. A well contrasted region of an immunoelectron micrograph in which cell
(mid-grey), background (light grey) and 10 nm diameter immunogold markers
(punctate, dark grey) are clearly distinguishable. Thawed ultrathin cryosection
contrasted using uranyl acetate/methylcellulose. Bar, 100 nm.

foreground regions, which were then classified based on their
shape and size as small particle, large particle, or cluster of parti-
cles. This method assumed that pixels at immunogold markers
were darker than anything else in the images. However, images
in which markers are very highly contrasted are often obtained
at the expense of loss of intracellular structure information.

The method presented in this paper automatically detects and
counts immunogold markers, estimating the location, size and type
of each marker. We have evaluated the method using images
showing immunogold markers of similar size (single labelling) as
well as using markers of two different sizes (double labelling)
marking different molecular components.

2. Method
2.1. Overview

The work reported here started with a search, which utilised a
multi-scale difference-of-Gaussians image representation (Lowe,
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Fig.3. False negative and false positive rates per hundred markers obtained when
detecting 10 nm markers in single-labelled micrographs. (a) Effect of varying
thresholds 7 and po. (b) Effect of applying the Hessian eigenvalue ratio test with
po = 1.88 (The threshold 7 ranges from 6.9 to 11.0 for the “without Hessian test”
curve and from 5.5 to 11.0 for the “with Hessian test” curve).

Fig.2. (a) Cropped image showing three immunogold markers located near a cell’s external membrane. (b-f) DoG responses at filter scales ¢ =2.40, ¢ =3.39, g =4.79,

o =6.77, and ¢ = 9.58, respectively. Gold particles were approximately 10 nm in size.
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Table 1
Detection results with and without the Hessian eigenvalue ratio test for the
micrographs labelled with 10 nm markers.

True positives  False positives  False negatives

Without Hessian test 141 49 3
With Hessian test 138 6 6
Table 2

Detection results with and without the Hessian eigenvalue ratio test for the double
labelled micrographs.

True positives False positives False negatives

Without Hessian test 391 23 12
With Hessian test 390 16 13

2004). A set of local maxima indicating markers without severe
spatial overlaps was selected as a candidate immunogold marker
set. Analysis of Hessian matrices at candidate locations was then
used to remove poor detections that occurred at strong edges or
ridges. In the case of double-labelling, the method was modified
to detect and classify differently sized markers.

2.2. Detecting candidate markers

Given an image I (x, y), a linear scale-space (Lindeberg, 1994) is
defined by convolution of the image with two-dimensional (2D)
isotropic Gaussian kernels G (g, x, y) at scales ¢ > 0, where

BT

1 X +y?
60.59) = 372 20 57}

The Laplacian of Gaussian (LoG) filter is widely used for blob
detection and is often approximated as a difference of Gaussians
(DoG). The response of a DoG filter to an image I (x, y) is given by

R(0.x.y) = G(0,x,y) *I(x,y) — G(V20,X.y) *I(x,y), (1)

where x denotes the convolution operation. The response of DoG fil-
ters at scales separated by a factor of v2 to three immunogold
markers is shown in Fig.2.

Consider an ideal immunogold marker image,

1 if(x—x)* + (v —yo)* <12
0 otherwise

I(x,y) = { 2)

where r is the marker’s radius and (x, y.) is its centre. The DoG re-
sponse R(o,x,y) to this ideal marker has its maximum at
(0.60r, x¢, ye)-

Given user-provided values, 1y and 1.y, for the minimum and
maximum radii of immunogold markers to be detected, DoG filters
were applied at equally separated scales at increments correspond-
ing to a pixel increment in marker diameter. Specifically, scales
used were g € {0.6 (rmiq j/2)} where rmiq = (fmin + 'max)/2, and j
indexes the non-negative integers ranging from 0 to ceiling
("max — min + 1). Local maxima were detected by comparing re-
sponses to those at neighbouring pixels at the same scale and at
adjacent scales. In other words, a particular image location and

Fig.5. Left: part of a double-labelled micrograph. Centre: detections overlaid on the micrograph: green circles denote true positives and the red triangle denotes a false
positive. Right: detection and classification results with the one false negative denoted by a triangle and the two misclassified true positive detections denoted by filled circles
(po=1.88, T=9.0). Ultrathin section of a cell embedded in Lowicryl HM23. Bar, 100 nm. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig.6. Part of a double-labelled micrograph with immunogold marker detection
and classification result (po=1.88, 7=9.0). There were three false negatives
(denoted by squares). All detected markers in this image were correctly classified.
Ultrathin section of a cell embedded in Lowicryl HM23. Bar, 100 nm.

Fig.7. Part of a double-labelled micrograph with immunogold marker detection
and classification result (po = 1.88, 7 =9.0). There were five false positives (trian-
gles) and five false negatives (squares). One of the true positive detections was
misclassified (filled circle). Ultrathin section of cells embedded in Lowicryl HM23.
Bar, 100 nm.

Fig.8. Successful detection and classification of clustered markers (po=1.88,
7=9.0). Gold particles were approximately 20 nm in size.

(o]

Fig.9. Successful detection and classification in a strongly textured region
(po =1.88, 7=9.0). Bar, 100 nm.

scale (0,x,y) was at a local maximum if (i) the responses at the eight
neighbouring pixels at that scale were lower, and (ii) the responses
at that pixel location and at its eight neighbours were lower at both
the next highest scale and at the next lowest scale.

Each local maximum indicates the image location and size of a
possible immunogold marker. Specifically, a maximum at
(0¢ X, Yc) represents a marker hypothesis centred at location
(xc, yc) with radius ¢/0.6. The local maxima with responses larger
than a threshold t were sorted into a list ordered by response
strength. Candidate markers were then selected from this list as
follows. Each entry in the list was considered in turn from stron-
gest to weakest. An entry was selected as a candidate marker if
its centre, (X, yc), was not closer in the image to any previously se-
lected candidate’s centre than that candidate’s radius.

2.3. Eliminating edges and ridges

The candidate gold markers detected so far are likely to include
false positive detections due to strong DoG responses to highly
contrasted edge-like and ridge-like features. While increasing the
response threshold, 7, would remove these false detections, it
would also remove many true detections. In order to eliminate
edges and ridges with strong DoG response, a method based on
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Fig.10. Successful detection and classification of low contrast markers in a strongly textured region (po = 1.88, T = 9.0). Bar, 100 nm.

Fig.11. Part of a micrograph labelled using 8 nm markers and showing a Golgi stack. All markers were detected. There was one false positive, denoted as a triangle (po = 1.88,
7=9.0). Thawed ultrathin cryosection. Bar, 100 nm.

analysis of the local Hessian was used. Consider a candidate gold The four second-order partial derivatives in H were calculated

marker at (¢’,x,y’) with locally maximal response R (d’,x,y’). based on finite difference approximations. Let « and # denote the
The Hessian matrix at scale ¢’ and position (X, y') has the form eigenvalues of H with o > B. An ideal, radially symmetric marker
image would have an eigenvalue ratio of p = o/ = 1.0 whereas elon-
RX’X’ Rx’y/ . . .
H-= R R (3) gated structures such as edges and ridges will give larger values for
vy Ryy

this ratio. A large ratio indicates anisotropy. Since only the ratio is
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relevant, eigenvalues need not be computed explicitly (Harris and
Stephens, 1988). In order to check that the ratio p is greater than
a threshold value po, we only need to apply the following test
(Lowe, 2004)

Tr*(H)  (py+1)°
DetH) ~ py @

where Tr denotes the trace and Det the determinant of the matrix.
This is because (p + 1)%/p strictly increases as p increases (provided
that p is positive), and

TPH) _ (@+p)° _(p+1) 5
DetH) — af =~ p '’ ()

If inequality (4) holds, the candidate marker (¢’, x',y’) is discarded.
The threshold py is a free parameter of the algorithm (see Section 3).

2.4. Marker detection and classification in double-labelled images

Double labelling, in which immunogold markers manufactured
to be two different sizes are introduced, can be used to study spa-
tial relationships between two different macromolecules. Fig.5
shows part of a double-labelled micrograph. Running the marker
detection algorithm independently at the two scale ranges corre-
sponding to the two marker types can work poorly; large markers
give rise to false detections at smaller scales not all of which can be
successfully removed based on analysis of Hessian matrices. In-
stead, the method was used with a scale range wide enough to in-
clude both marker types and marker detections were subsequently
classified into the two types.

When selecting candidate markers the rule for excluding mark-
ers that heavily overlapped other markers was modified. This was
necessary because the markers’ radii spanned a greater range in
double-labelled images. Specifically, a tentative marker centred
at (X, yc) with radius r was not selected as a candidate marker if
there existed a previously selected candidate marker centred at

(x;, ¥i) with radius r; such that \/(xc X))+ —y)?<r or

\/ (xc —Xi)* + (Ve — ¥;)* < r. In other words, it was prohibited to
have a marker’s centre lying within another marker. Classification
of immunogold marker type as small (‘10 nm’) or large (‘20 nm’)
was performed based on thresholding of the estimated radii.

In the double-labelled images, immunogold markers often visu-
ally overlapped or appeared very close together. Even when cor-
rectly detected as candidates these cases can result in large
values of p. Therefore the test in (4) was not applied to marker can-
didates whose centres were separated by a distance less than the
sum of their diameters.

3. Results

Evaluation was performed on a set of five micrographs of sec-
tions that were single-labelled with 10 nm diameter immunogold
markers, a set of five micrographs of sections that were double-la-
belled with 10 and 20 nm markers, and an additional set of three
micrographs from sections single-labelled with 8 nm diameter
markers. Micrographs were typically approximately 3000 x
3000 pixels. Ground-truth estimates of marker locations, radii,
and type were obtained using an interactive annotation tool.

As an indication of processing time, a C# implementation run-
ning on a mid-range PC (1.8 GHz, 4 GB RAM, 64-bit processor) took
43 s to process the 3828 x 2276 pixel micrograph (from which the
image in Fig.7 was cropped) using DoG filters at 16 different scales
(Tmin = 6.5, and 1y = 14).

Fig.12. Part of a micrograph labelled using 8 nm markers and showing lysosome.
There was one false negative, denoted as a square. There were no false positives
(po =1.88, T=9.0). Thawed ultrathin cryosection. Bar, 100 nm.

3.1. Micrographs with single labelling (10 nm markers)

Fig.3(a) displays plots of false-negative and false-positive rates
per hundred true markers obtained from the set of images sin-
gle-labelled with the 10 nm marker. Each curve was generated
by varying the value of the DoG response threshold 7. A series of
curves was generated by varying the eigenvalue ratio threshold
po. Four of these curves are shown in the Figure. When py = 1.88
and 7=6.9, a rate of 4.9 false positives per 100 markers was
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Fig.13. Part of a micrograph labelled using 8 nm markers and showing lysosome. There were no detection errors (po = 1.88, T =9.0). Thawed ultrathin cryosection. Bar,

100 nm.

achieved at an approximately equal rate of 4.2 false negatives per
100 markers. Fig.3(a) also shows that good results were obtained
when pg = 3.28. Fig.3(b) shows the effect of omitting the Hessian
eigenvalue ratio test. Table 1 shows the numbers of true positives,
false positives, and false negatives obtained on the single-labelled
data set with po =1.88 and t = 6.9. The ratio test reduced the num-
ber of false positives significantly at the cost of a much smaller in-
crease in the number of false negatives.

3.2. Micrographs with double labelling (10 and 20 nm markers)

Table 2 shows the numbers of true positives, false positives, and
false negatives obtained on the double-labelled data set (po = 1.88
and 7 =9.0). Note that the Hessian eigenvalue ratio test was ap-
plied only to isolated marker candidates as described in Section 2.4.
Applying the Hessian test to every candidate marker would have
resulted in a large number of false negatives (113) because of a
high incidence of heavily clustered markers in this data set.

Fig.4 shows an unusual example that gave rise to false positive
errors. It shows an artefact with an appearance similar to a gold
marker. Two candidate markers were detected and because they
were not spatially isolated, the Hessian test was not applied,
resulting in false detections.

Figs.5 and 6 show illustrative parts of micrographs along with
detection and classification results. Results were good despite ex-
treme clustering of markers. Fig.7 shows a particularly problem-
atic, unusually heavily clustered, small section of micrograph
that accounted for a third of all detection errors in the double-la-
belled data set. Generally, the method performed well on clustered
markers as shown in Fig.8, for example. It also performed well in
the presence of visual clutter caused by intracellular texture (see
Fig.9) and on poorly contrasted markers (see Fig.10).

The radii distributions (histograms of the estimated radii using
a bin size of 0.5 pixels) had a first local minimum at 8 pixels. This
was the case for every image in the data set. Therefore, markers
with estimated radii greater than 8 pixels were classified as large
(‘20 nm’) and other markers as small (‘10 nm’). There were 148
small markers and 242 large markers in the data set (according
to the ground-truth labelling). Five large markers (2%) were mis-
classified as small. All small markers were correctly classified.

3.3. Micrographs with single labelling (8 nm markers)

Figs.11-13 show illustrative parts of the three micrographs con-
taining 8 nm markers. Fig.11 shows markers located on and around
a Golgi stack; the only detection error in this example is a single
false positive. Figs.12 and 13 include lysosomes; there is one error
in Fig.13, a false negative. These results provide further evidence
that the detection algorithm is robust to changes in the scale of
gold markers and to the presence of different organelles in the
images.

4. Discussion and conclusions

The results presented here show that the method can detect
immunogold markers with low false positive and false negative
rates in both single-labelled and double-labelled micrographs.
The method can be used to estimate marker radius and also to clas-
sify markers in double-labelled images with low misclassification
error. Importantly, the clustered markers were generally well de-
tected although heavy clustering gave rise to some errors. This fea-
ture makes this approach well suited to the analysis of gold
labelling on ultrathin sections as well as in pre-embedding label-
ling. The fraction of false detections was also low, but false detec-
tions generally occurred in regions of highly contrasted clutter,
some of which appeared to be artifacts of specimen preparation.

Workload involved in manual analysis of digitized immunoelec-
tron micrographs depends on the exact nature of the task under-
taken. However, as a rough indication, it took an expert (J.
Lucocq) 43 s to count the 107 markers in the micrograph from
which Fig.7 was cropped. The method presented in this paper is
fully automatic; large batches of images could be analysed without
the need for user interaction. The processing time in our CPU
implementation is dominated by the multi-scale DoG filtering step.
This could be significantly accelerated by using a GPU implementa-
tion, for example (Kong et al., 2010).

This study now opens up the possibility of future work on auto-
mated gold particle counting. We now plan to focus on analysis of
the spatial distribution of gold labelling and the associated mole-
cules. Thus, once the marker locations have been identified, spatial
statistics can be computed using point process models (or marked
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point processes in the case of double labelling). A more ambitious
goal is the automatic assignment of markers to intracellular com-
partments, requiring analysis of the cellular structure profiles that
are apparent in the immunoelectron micrographs.
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