
FUSING METADATA AND DERMOSCOPY IMAGES FOR SKIN DISEASE DIAGNOSIS

Weipeng Li1,2,∗ Jiaxin Zhuang1,2,∗ Ruixuan Wang1,2 Jianguo Zhang3 Wei-Shi Zheng1,2

1 School of Data and Computer Science, Sun Yat-sen University, China
2 Key Laboratory of Machine Intelligence and Advanced Computing, MOE, Guangzhou, China

3 Department of Computer Science and Engineering,
Southern University of Science and Technology, China

ABSTRACT

To date, it is still difficult and challenging to automatically
classify dermoscopy images. Although the state-of-the-art
convolutional networks were applied to solve the classifica-
tion problem and achieved overall decent prediction results,
there is still room for performance improvement, especially
for rare disease categories. Considering that human derma-
tologists often make use of other information (e.g., body lo-
cations of skin lesions) to help diagnose, we propose using
both dermoscopy images and non-image metadata for intelli-
gent diagnosis of skin diseases. Specifically, the metadata in-
formation is innovatively applied to control the importance of
different types of visual information during diagnosis. Com-
prehensive experiments with various deep learning model ar-
chitectures demonstrated the superior performance of the pro-
posed fusion approach especially for relatively rare diseases.
All our codes will be made publicly available1.

Index Terms— Skin disease classification, metadata, data
fusion.

1. INTRODUCTION

Nowadays, skin cancer is one of the most common cancers,
with over 5,000,000 patients in the United States [1]. Among
skin cancers, melanoma is the most serious form and causes
most of skin cancer deaths. While early detection and diagno-
sis of melanoma can largely increase the survival of patients,
the diagnosis accuracy of melanoma from expert’s visual in-
spection is only about 60% [2]. In this case, the state-of-
the-art Artificial Intelligence(AI) techniques could potentially
help clinicians more accurately diagnose skin cancers.

Deep learning, one stream of the most successful AI tech-
niques, has been rapidly developed and applied to various sce-
narios, such as face identification [3], surveillance [4], and
healthcare [5], etc. In particular, the convolutional neural net-
works (CNNs) have shown excellent performance in classify-
ing images and achieved human-level performance in various
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medical image diagnosis tasks [6, 7, 8]. However, these deep
models (such as AlextNet [9] and ResNet [10]) often requires
large training data in order to perform well for relevant tasks.
This has impeded the application of deep learning to small-
sample or data-imbalance tasks where training data at least for
part of classes are difficult to collect. In this paper, we are in-
terested in the intelligent diagnosis of skin diseases where the
number of available images for model training are very differ-
ent between classes. One way to alleviate this data-imbalance
issue is to transfer the pretrained deep learning models based
on a large dataset and finetune it based on task-specific small
dataset. Such transfer learning technique recently has shown
to perform well in many domains, including medical image
analysis tasks [11]. Another popular way is to set higher
penalty coefficients for small-sample classes in the loss func-
tion, which can improve the cost of mis-classifying each train-
ing example coming from small-sample classes and therefore
force the classifier pay enough attention to the classification
of images from small-sample classes during learning [12].

Different from these existing approaches, this paper pro-
poses using metadata to help improve the performance of
intelligent skin disease diagnosis. This is inspired partially
by the finding that different skin diseases may often appear
at different body parts [13], such that such kind of non-image
metadata could help differentiate one disease from another.
While existing multi-modality medical image classification
tasks have been explored recently [14], there exists few work
in fusing image and non-image metadata for the medical
image classifications, although the general data-fusion ideas
have been applied to natural image classifications, e.g., by
concatenating metadata information and the extracted visual
features from a CNN [15]. In this paper, we applied a novel
data-fusion framework to the data-imbalance skin image
classification task, and experiments showed that the metadata
can effectively improve the recall rate of the skin diseases
particularly with smaller training data.



2. MULTIPLICATION-BASED DATA FUSION

In this section, we introduce a new framework to fuse meta-
data and image data for skin image classification. The meta-
data used here includes the body location of each image, the
gender and the age of the patient. Suppose the metadata in-
formation can be represented by a one-dimensional vector,
one general data-fusion method is to directly concatenate the
feature vector of the metadata and the visual feature vector
extracted from the last layer of a CNN (Figure 1(a)), followed
by one or more fully connected layers. Such concatenation
does not directly consider potential effect of the metadata in-
formation on the visual feature extraction process. For exam-
ple, if one specific body location is related to just one or some
of skin diseases, such metadata information could be used to
directly suppress the prediction probability of all the other ir-
relevant diseases. Simply direct concatenation of metadata
and visual features would not directly capture such kind of
metadata effect.

Different from such concatenation-based data fusion, we
propose a multiplication-based data fusion to make the meta-
data directly interact with the visual features. Inspired by the
Squeeze-and-Excitation operation in the SENet network [16],
we propose using the metadata to control the importance of
each feature channel at the last convolutional layer, expecting
that the network would be able to focus on specific part of the
feature channels based on specific metadata information. Fig-
ure 1(b) demonstrates the data fusion process. Specifically,
the metadata feature vector is fed into a two-layer fully con-
nected sub-network, with first layer (i.e., a 1 × 1 convolu-
tion) followed by a rectified linear unit (ReLU) and second
layer followed by a Sigmoid activation function, and the out-
put size of the sub-network is the same as that of the feature
channels at the last convolutional layer. Then, each feature
map in the output of the last convolutional layer is weighted
(i.e., multiplicated) by one corresponding vector element in
the sub-network output, resulting in the re-weighted feature
maps. Obviously, such data-fusion operation can be embed-
ded into any CNN model, such as AlexNet [9], VGGNet [17],
ResNet [10], DenseNet [18] and even the SENet [16].

3. EXPERIMENT

3.1. Experimental settings

The dataset was from the ISIC’2018 challenge on skin le-
sion diagnosis2, containing totally 10015 images for seven
skin diseases, namely Melanocytic Nevi (NV, 6705 images),
Melanoma (MEL, 1113 images), Benign Keratosis (BKL,
1098 images), Basal Cell Carcinoma (BCC, 514 images), Ac-
tinic Keratosis / Bowens disease (AKIEC, 327 images), Vas-
cular Lesion (VASC, 143 images), and Dermatofibroma (DF,
115 images). Along with each image, three types of metadata

2https://challenge2018.isic-archive.com/task3

(a) Conventional concatenation-based data fusion

(b) Proposed multiplication-based data fusion

Fig. 1. The proposed multiplication-based data fusion can
make the metadata directly control the importance of each
feature channel, helping the network focus on more discrim-
inative channels, while the conventional concatenation-based
method may not.

information were also provided, including the patient’s age,
gender, and body part location of the image. Considering
that skin images were captured with different background
illumination and normal skin image regions are often in var-
ious colors, we applied the color constancy algorithm [19]
to normalize original skin images. Then, the images (orig-
inally around 600 × 450 pixels) are resized to 300 × 300
pixels when the backbone CNN architecture is AlexNet [9],
VGG [17], ResNet [10], DenseNet [20], or SENet [16], and to
441 × 441 pixels for PNASNet [18]. During model training,
the image dataset was augmented by multiple transforma-
tions, including randomly cropping (patch size 331 × 331
pixels for PNASNet, and 224× 224 pixels for all other CNN
backbones), randomly flipping horizontally and vertically,
randomly changing image brightness, contrast, saturation,
and random rotation within certain ranges. All backbone
CNN models are pretrained on ImageNet Dataset.

During the training of each model, a class-weighted loss
function [21] was used to (partially) alleviate the data im-
balance issue. Stochastic gradient descent (SGD) with a
mini-batch size of 32 was used, with the learning rate starting
from 0.001 and then divided by 10 at the 50th, 120th, and
200th epoch respectively. Weight decay (coefficient 0.0001)
and a momentum of 0.9 was also applied. Each model was
trained for up to 250 epochs, with the consistent observa-
tion of training convergence within 250 epochs. Considering
the imbalanced sample size across classes, we used 5-fold
cross-validation to evaluate the performance of each model.
More specifically, the average recall over the seven categories



(i.e., mean class recall, MCR) and its standard deviation over
5-fold cross-validation sets were reported for each model.

3.2. Metadata preprocessing

To quantitatively represent metadata, the gender of each pa-
tient was encoded as a two-dimensional one-hot vector, and
the body location (totally 14 possible options) of each image
was encoded by a 14-dimensional one-hot vector. The age
of each patient was normalized to the range [0, 1]. The three
types of metadata information were concatenated to form a
17-dimensional feature vector for each corresponding image.
Because one or two types of metadata information were orig-
inally missing for a small number (around 50-100 per type of
metadata) of images, the average of the provided age values
was used to fill the missing age information, while the most
frequent gender and body location from the provided meta-
data were used to respectively fill the missing gender and lo-
cation information.

3.3. Comparison with baseline approaches

To evaluate the effectiveness of the proposed multiplication-
based fusion approach, we compared our approach with two
baseline approaches on multiple CNN backbone architec-
tures. One baseline approach is just based on the image data
without using the metadata, and the other baseline is the
concatenation-based fusion approach. Table 1 shows that the
traditional concatenation-based fusion approach is generally
better than the basic approach without using metadata (except
on the PNASNet backbone), and the proposed multiplication-
based fusion approach (last column in table) significantly
outperforms both baseline approaches (p-values are smaller
than 0.05 with Wilcoxon’s Sign Rank Test), whatever the
backbone CNN architecture is. This strongly supports that
the proposed multiplication-based fusion approach is more
effective than the traditional concatenation-based fusion ap-
proach in improving the classification performance.

Table 1. Comparison of the proposed multiplication-based
fusion approach with two baseline approaches on multiple
backbone CNN architectures.

Backbones No metadata Concatenation-based Ours

AlexNet 74.68± 0.92 76.55± 1.25 78.26±1.55
VGG19 81.60± 1.67 82.35± 1.68 84.06±1.16

ResNet50 82.50± 1.31 82.98± 1.35 84.02±1.50
DenseNet161 84.59± 1.42 85.85± 0.92 87.03±1.40

SENet154 85.44± 1.09 86.46± 0.69 87.64±0.52
PNASNet-5 87.90± 1.32 87.25± 0.73 89.09±0.67

To further inspect the detailed effect of the proposed
fusion approach, the classification performance for each in-
dividual disease class was also reported with the SENet154

backbone in Table 2. Interestingly, compared to the basic
approach without using metadata, the performance of the
proposed approach increases on the two smallest disease
classes (DF and VASC), with the largest performance boost
from the smallest (rare) disease (DF), while the performance
of the proposed approach decreases on the two largest disease
classes (NV and MEL). This suggests that the appropriate use
of metadata as in the proposed approach may help partially
alleviate the data imbalance issue. One possible reason is
that the rare disease is more location-specific such that the
location metadata can largely help the classifier differentiate
the rare disease from others.

Table 2. Classification performance of each approach on each
disease class. The backbone CNN architecture is SENet154.

Diseases Baseline Fusion-network Meta-network

NV (6705) 95.31± 1.35 95.38±1.68 93.42± 1.19
MEL (1113) 84.24±0.79 76.54± 1.25 78.26± 0.73
BKL (1098) 81.31± 0.45 84.47± 0.69 85.64±1.03
BCC (514) 90.58± 1.25 91.99± 1.35 92.02±1.38

AKIEC (327) 83.45 ±1.23 80.84± 0.92 80.23±1.20
VASC (143) 99.23± 0.86 99.22± 0.73 99.36±0.67

DF (115) 63.56± 1.32 76.78± 0.73 84.55±0.47

3.4. Effect of metadata elements

To explore the effect of each metadata information and their
combinations on the classification performance, an ablation
study of the metadata is performed by using each individual
metadata and each possible combination of two metadata in-
formation respectively for the proposed approach. Interest-
ingly, Table 3 shows that while the individual or combined
age and location metadata can help improve the classifica-
tion performance, the gender metadata actually degraded the
classification performance when used individually. The com-
bination of gender with any other metadata also slightly de-
graded the classification performance compared to that with-
out using the gender. Actually, the best performance of the
proposed approach was obtained when just using age and lo-
cation metadata together. Such observation strongly suggests
that age and location are related to skin diseases, while gen-
der is not, i.e., these seven skin diseases are neither male- nor
female-preferred.

3.5. Effect of fully connected layers

The above tests are based on two fully connected layers for
the metadata transformation in the proposed fusion approach.
Here we also evaluate the effect of the number of fully con-
nected layers on the classification performance. As Table 4
(first row) shows, too few (i.e., one) or too many (i.e., four)
fully connected layers would make the classifier perform rel-
atively worse than that with two or three fully connected lay-



Table 3. Ablation study of metadata effect with the SENet154
as backbone for the proposed fusion approach. A tick means
the corresponding metadata is used during model training.

Age - X - - X - X X

Gender - - X - X X - X

Localization - - - X - X X X

MCR
85.44
(1.09)

85.84
(0.85)

84.04
(0.05)

87.06
(0.20)

84.16
(0.71)

85.91
(0.58)

87.70
(0.99)

87.64
(0.52)

ers. Since the performance of the proposed approach with one
fully connected layer for metadata transformation performs
actually similar to the traditional fusion approach in which
the metadata is directly concatenated with the visual features
without any fully connected layer, here we also performed a
comparative study by respectively inserting one to four fully
connected layers to transform the metadata information be-
fore concatenation in the traditional approach (Table 4, last
row). In this comparative study, the output size (i.e., 2048) of
the last fully connected layer is the same as that of the feature
vector from the last convolutional layer, while the output size
of any other possible hidden fully connected layer(s) was set
the same size as that for the corresponding proposed approach
(e.g., for two fully connected layers, the output size of the hid-
den layer is 1024, while for three fully connected layers, the
output sizes of two hidden layers are 512 and 1024 respec-
tively). Table 4 (last row) shows that the performance of the
traditional approach performs slightly better with two or three
fully connected layer than with one or four layers. However,
the best performance with two or three layers are from the
proposed approach, supporting that the reported superior per-
formance of the proposed approach above is not due to the
two-layer fully connected layers for metadata transformation.

Table 4. Effect of number of fully connected layers for meta-
data transformation, with SENet154 as the backbone.

Approaches One layer Two layers Three layers Four layers

Ours
86.47
(0.53)

87.64
(0.52)

87.71
(0.87)

86.21
(0.70)

Concatenation-based
86.54
(0.74)

86.81
(0.14)

86.88
(0.54)

85.53
(0.67)

3.6. Qualitative analysis

Here we also provide representative qualitative analysis to
further demonstrate the effect of metadata in the proposed
approach. The classification activation map (CAM) method
was used to show the attended image region based on the
last set of feature maps when predicting the disease for any
specific image [22]. Figure 2 shows that when both the base-

line approach without using metadata and the proposed fusion
approach predicted correctly (first row), the attended regions
(red in the heatmaps, superimposed on the original image)
are also similar between the two approaches. In compari-
son, when the baseline approach predicted incorrectly (sec-
ond row, middle), the approach seems not focusing on the
possibly key region (i.e., the bright region around the image
center), while the proposed approach did with correct predic-
tion (second row, right). These results indicate that the pro-
posed approach may more appropriately use metadata to help
the classifier focus on relevant regions during diagnosis.

Fig. 2. Representative activation maps by the proposed ap-
proach (right) and the approach without using metadata (mid-
dle) for two input images (left), respectively.

4. CONCLUSIONS

This paper applied a novel multiplication-based fusion strat-
egy to the intelligent diagnosis of skin disease. Experi-
ments showed that the proposed approach can effectively
improve the diagnosis performance particularly for small-
sample classes. It was also observed that not all metadata
helped improve diagnosis performance, indicating that effec-
tive metadata selection before data fusion may be necessary
if the number of metadata types becomes large. Qualitative
analysis also supported that the proposed fusion approach
can help classifiers more accurately focus on lesion regions
during diagnosis. Future work includes exploring effects of
more types of metadata for more skin diseases.
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