
IMPROVING CLASS BALANCING AT BOTH
FEATURE EXTRACTOR AND CLASSIFIER HEAD

Kanghao Chen∗ , Huijuan Lu∗ , Ruixuan Wang† and Wei-Shi Zheng

School of Computer Science and Engineering, Sun Yat-sen University, China;
chenkh25@mail2.sysu.edu.cn, luhj6@mail2.sysu.edu.cn,

†wangruix5@mail.sysu.edu.cn, wszheng@ieee.org.

ABSTRACT

Training data are often imbalanced across classes in practice,
and such class imbalance issue often causes model predic-
tions biased toward majority classes during inference. Dif-
ferent from existing solutions which employ various training
strategies to alleviate the class imbalance issue, this study
proposes a novel two-head model architecture to help alle-
viate the issue. One auxiliary classifier head helps the fea-
ture extractor of the classifier more fairly learn to extract fea-
tures for each class, and the main classifier head learns in a
more class-balanced manner by dividing each majority class
into multiple clusters in advance and considering each clus-
ter as a new class. Extensive empirical evaluations on four
class-imbalanced image datasets showed that the proposed
approach achieves state-of-the-art classification performance.

Index Terms— class imbalance, feature balancing, class
division.

1. INTRODUCTION

Deep neural networks have shown their superior performance
on various image classification tasks [1–3]. However, when
training samples are imbalanced across classes as widely ob-
served in real scenarios [4], the trained classifiers often have
biased predictions toward majority classes having larger train-
ing samples, and the minority classes having smaller training
samples are often ignored to some extent in both classifier
training and inference [5, 6].

Multiple approaches have been proposed to handle such
class imbalance issue. One group of approaches try to re-
balance classes during model training, e.g., by re-sampling to
obtain a similar number of training data for each class [7, 8],
or by class re-weighting in the training loss [9–11]. With
the class re-balancing strategies, the classifier would handle
the majority classes and minority classes more fairly during
model training. However, class re-balancing based on a very
limited number of training samples from the minority classes

*Equal contribution.
†Corresponding author.

Fig. 1. Two demonstrative classes from an image classifica-
tion dataset. There are many more images for the majority
class ‘cat’ than for the minority class ‘platypus’. This study
divides the majority class into multiple clusters to alleviate
the class imbalance issue during model training.

often causes model over-fitting for the minority classes. Since
over-fitting corresponds to less generalizability of classifiers,
another group of approaches try to directly improve the gener-
alizability of classifiers, e.g., by transfer learning with a pre-
trained classifier backbone using large dataset ImageNet [3],
or by augmenting the number of training data particularly for
minority classes with various augmentation techniques like
Mixup [12] and its extensions Remix [13] and Balanced-
Mixup [14]. Besides augmentation in the data space, aug-
mentation of minority classes in the feature space also helps
alleviate the over-fitting issue [15, 16]. Obviously, the above
two groups of approaches can be combined to handle the class
imbalance issue. For example, the state-of-the-art two-stage
training strategy [17] firstly trains a more generalizable fea-
ture extractor, and then fine-tunes the classifier head with re-
balancing strategies. The two-stage strategy is further ex-
tended to a cumulative learning strategy BBN [18], where
the first feature extractor learning is smoothly shifted to the
class re-balancing process. Another example is MiSLAS [19]
which combines class re-weighting and Mixup augmentation
during classifier training. All the existing approaches allevi-
ate the class imbalance issue by improving the training pro-
cess. In contrast, we propose a novel model architecture that
can directly help alleviate the class imbalance issue.
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Considering that a convolutional neural network (CNN)
classifier is often composed of a feature extractor and a fol-
lowing classifier head, we propose a novel two-head model
structure to respectively help the feature extractor fairly han-
dle all the classes and help the classifier head train in a class-
balanced manner. As an auxiliary head branch, the first clas-
sifier head separates the feature map outputs of the feature
extractor into multiple groups, with each group containing an
equivalent number of feature maps and corresponding to a
unique class, and enforces each group of feature maps to be
responsible for the prediction of one specific class. In this
way, the feature extractor would be trained to handle each
class fairly with a small subset of output feature channels,
regardless of the number of training samples for each class.
Such fair handling of each class is expected to help the fea-
ture extractor learn to extract features unbiasedly for each
class, and the class-specific group of feature channels also
helps the prediction of each (particularly minority) class to
be less affected by the other (particularly majority) classes.
On the other hand, to avoid training a class-imbalanced clas-
sifier, the training samples of each majority class are firstly
divided into multiple clusters, and each cluster is considered
as a new class for the main classifier head (Figure 1). In
this way, training samples are more balanced across (new)
classes for the main classifier head, and such class-balanced
training would largely reduce the negative effect (e.g., larger
weight magnitude for majority classes [19]) of class imbal-
ance on the classifier head. Extensive evaluations on four
class-imbalanced datasets show that the proposed framework
achieves state-of-the-art classification performance, support-
ing the effectiveness of the proposed framework. The main
contributions of this study are summarized below.

• A novel auxiliary classifier head is proposed to help the
feature extractor fairly handle each class.

• A class-division strategy is proposed to help train the
classifier head in a more class-balanced manner, largely
alleviating the negative impact of class imbalance.

• The classifiers trained with the proposed framework
achieved state-of-the-art performance on four represen-
tative class-imbalanced classification tasks.

2. METHODOLOGY

In order to alleviate the class imbalance issue, we propose a
novel framework to help the classifier more fairly learn from
each class (Figure 2). To reduce the bias of the feature ex-
tractor toward majority classes, a feature balancing strategy
is proposed such that the same amount of feature components
from the output of the feature extractor is responsible for each
class (Figure 2, feature-balancing head). To reduce the bias
of the classifier head toward majority classes, a class division
strategy is proposed (Figure 2, class-division head), i.e., the

training data of each majority class are divided into multiple
clusters, and each cluster is considered as one separate (new)
class. In this way, the training dataset becomes class-balanced
during model training.

2.1. Feature balancing

Considering that re-balancing strategies from the model in-
put (e.g., re-sampling) and the model output (e.g., class re-
weighting) are effective in alleviating the class imbalance is-
sue, we argue that re-balancing inside the model may also
help. With this consideration, we propose a feature balancing
strategy based on an auxiliary task for model training (Fig-
ure 2, left part with green background), particularly by en-
forcing that a similar number of feature channels from the
output of the feature extractor are responsible for each class.

Formally, given a training image xi and the correspond-
ing ground-truth class label yi ∈ {1, 2, ..., C}, where C is
the total number of classes, denote by Fi ∈ RD×H×W the
feature map output from the feature extractor of the convolu-
tional neural network backbone (e.g., ResNet-50), with width
W , height H and channel number D. Then, the feature maps
Fi are divided into C equivalent groups (Figure 2, right part
for an example), with each group containing D/C (an integer
without loss of generality) feature channels. The c-th group
of feature channels Fic is then convolved with a class-specific
kernel Kc, followed by a global average pooling (GAP), i.e.,

zic = GAP (Fic ∗Kc) , (1)

where ∗ denotes the convolution operator. Note that the col-
lection of the class-specific convolutions over all the classes
is actually a special group convolution, with a single convo-
lution for each group. Denote by zi = (zi1, zi2, . . . , ziC)

T

the vector containing all zic’s, and denote by g(·) the softmax
function, then the feature balancing strategy can be imple-
mented by adding a regularization term L1 during training,

L1 =
1

N

N∑
i=1

lCE(g(zi), yi) , (2)

where lCE is the cross-entropy loss and N is the total number
of training data. By minimizing this loss term, a small and
equivalent number of unique feature channels are enforced
to represent the visual features relevant to each class. This
would probably help ensure fairness in feature learning across
all the classes, thus largely preventing the feature extractor
from mainly learning features of the majority classes [19].

2.2. Class division

Class imbalance often causes significantly larger magnitude
of model weights associated with outputs of majority classes
in the classifier head [19]. Such consequent imbalance in
model weights in turn leads to biased classification prediction
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Fig. 2. The proposed learning framework to alleviate the class imbalance issue. The feature-balancing head (with green
background) is proposed to help the feature extractor more fairly learn from each class, and the class-division head (with yellow
background) is proposed to directly alleviate the class imbalance issued by training a class-balanced classifier. Right side of the
dashed line: the demonstrative single-layer group convolution in the feature-balancing head.

toward majority classes during inference. To alleviate such
weight imbalance, remedy strategies include directly reduc-
ing the magnitude of weights associated with majority classes
or fine-tuning the classifier head using class re-balancing
strategies at a post-processing stage [17, 20]. Different from
these remedy strategies, a class-division strategy is proposed
here such that a class-balanced classifier is trained, therefore
fundamentally avoiding the weight imbalance in the classifier
head. The basic idea is to divide the training samples of ma-
jority classes into multiple clusters and consider each cluster
as a new class for model training.

Suppose the classes are re-ordered increasingly based on
the number of training samples, and denote by nc the num-
ber of training samples for the re-ordered c-th class (so nc ≤
nc+1). If the training samples of the largest class are divided
into a predefined u number of clusters, and the smallest class
corresponds to a single cluster, then the c-th class can be di-
vided into uc clusters based on the linear relationship between
the training samples of these classes, i.e.,

uc = 1 +

[
nc − n1

nC − n1
(u− 1)

]
, (3)

where [·] represents the rounding operator. Various clustering
strategies can be adopted to generate clusters for each class.
Totally K =

∑C
c=1 uc clusters would be obtained, and the

classifier head is designed to output K new classes (rather
than the original C classes), i.e., a K-class classifier would be
trained (Figure 2, the classifier head with yellow background).

Specially, considering that the training samples belonging
to the same original class but different clusters often contain
more similar visual features than the samples from different
original classes, smoothed labels are designed for those train-
ing samples belonging to multiple clusters (i.e., correspond-
ingly new classes) but from the same original class. Specifi-

cally, if one training sample belongs to one of the uc (where
uc > 1) clusters from the original c-th class and the cluster
index in the totally K clusters is denoted by k, then a pre-
defined higher soft ground-truth value α (e.g., 0.5) is set to
the k-th cluster (i.e., k-th new class) and a non-zero soft label
value (1 − α)/(uc − 1) is set to each of the other (uc − 1)
clusters belonging to the same original class. With the soft la-
bels for training samples, the K-class classifier can be trained
partly by minimizing the cross-entropy loss L2,

L2 = − 1

N

N∑
i=1

K∑
k=1

qik log pik , (4)

where pik is the k-th output of the classifier (with softmax
activation at the output layer), and qik is the k-th element in
the soft label vector for the i-th training sample. Together
with the feature-balancing loss term L1, the whole system can
be jointly trained by minimizing the overall loss L = L2 +
λL1, where λ is the coefficient constant to trade off the two
loss terms. Once the classifier is well trained, for any test
data, the K-class classifier is employed to predict the class of
the data with the help of the correspondence between the K
clusters and the original C classes.

3. EXPERIMENTS

3.1. Experimental setting

Datasets: The proposed approach was evaluated based on
the CIFAR-10, the CIFAR-100 and the 200-class Tiny-
ImageNet [21] with controllable degrees of class imbal-
ance, as well as a large-scale imbalanced dataset ImageNet-
LT [4]. Following the evaluation of LDAM [20], on the first
three datasets, class-imbalanced dataset versions were created
by exponentially reducing the number of training examples
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across classes while keeping the test set unchanged. The im-
balance ratio β between the sample sizes of the largest class
and the smallest class is used to describe the degree of class
imbalance. Following the previous studies [18, 19], β was
respectively set to 10, 50 and 100. Imagenet-LT [4] contains
1000 classes of totally 115.8K images, with class sample sizes
ranging from 5 to 1280.
Implementation details: Following previous studies,
ResNet-32, ResNet-18, and ResNeXt-50 were adopted as
classifier backbones respectively for CIFAR, Tiny-ImageNet,
and ImageNet-LT datasets. The SGD optimizer with mo-
mentum 0.9 was used to train classifiers for all experiments,
with batch size 128, 128, and 512 respectively, and train-
ing over 200, 200, and 90 epochs respectively on CIFAR,
Tiny-ImageNet, and ImageNet-LT datasets. On two CIFAR
datasets and Tiny-ImageNet, the initial learning rate was 0.1
and decayed by 0.01 at the 120th and 160th epoch respec-
tively. On ImageNet-LT, the initial learning rate was 0.2 and
decayed by a cosine schedule [22]. The widely used data aug-
mentations (e.g., random crop and flipping) were used for all
model training. The cluster number u was set to 10 by default
for all experiments, and random splitting was used to divide
a larger class into multiple clusters considering that the pro-
posed approach is insensitive to clustering strategies (see Sec-
tion 3.3). The coefficient λ was set 1.5 for all experiments.
Baseline methods: The proposed approach was compared
with multiple baseline methods, including not only the basic
cross-entropy loss (CE), focal loss (Focal) [23], class balance
(CB) [11], deferred re-sampling (DRS) [20] and Mixup [12]
data augmentation, but also the recently proposed hybrid
strategies CB+Focal [11], LDAM+DRW [20], BBN [18],
MiSLAS [19] and Hybrid-SC [24]. For the large-scale dataset
ImageNet-LT, OLTR [4] and LWS [17] were also used for
comparison. The suggested hyper-parameter settings from the
original studies were used in our own implementation.

3.2. Effectiveness evaluation

Evaluations on CIFAR: Two groups of comparisons were
performed on both CIFAR-10 and CIFAR-100 datasets with
the imbalance ratios 10, 50, and 100 respectively. In the first
group (Table 1, first six rows), the proposed approach was
compared with those methods each of which only employs
one type of strategy. In the second group (Table 1, last seven
rows), considering that the state-of-the-art approaches often
employ two or more types of strategies, our approach also
combines with Mixup and class re-weighting [11] (in Table 1,
last row ) as used in MiSLAS [19]. From the first group of
results, it can be observed that the proposed approach con-
sistently outperforms all the single-strategy baselines on both
CIFAR datasets with various imbalance ratios. In the second
group, the proposed approach achieves state-of-the-art perfor-
mance on CIFAR-10 and clearly outperforms all the recently
proposed methods (e.g., MiSLAS, Hybrid-SC) on CIFAR-

Fig. 3. Performance on CIFAR-100 with imbalance ratio 100.
Top left: number of training data over classes. Top right: re-
call performance over classes. Second row: weight norm of
classifier head for each class based on the CE baseline (Left)
and ours (Right). The classes were ordered with decreasing
number of training samples along the x-axis.

100. Figure 3 shows that the proposed approach achieves sig-
nificant performance gain mainly on those minority classes
and more balanced weight norms over classes in the classifier
head compared to those of the CE baseline, confirming that
the proposed approach can help alleviate the class imbalance
issue by improving the performance on minority classes.
Evaluations on ImageNet: Similar results were obtained on
the Tiny-ImageNet and the ImageNet-LT datasets. On the
Tiny-ImageNet with all the imbalance ratios, the proposed
approach outperforms all the single-strategy baselines (Ta-
ble 2, first five rows), and the combination of our approach
with Mixup and class re-weighting outperforms all the state-
of-the-art hybrid-strategy methods (Table 2, last five rows).
On the ImageNet-LT with the preset class imbalance, the pro-
posed approach again outperforms the single-strategy base-
lines (Table 3, first six rows, last column) and achieves state-
of-the-art performance compared to hybrid-strategy methods
(Table 3, last five rows, last column). When inspecting more
detailed performance on the majority classes (with more than
100 training images per class), the medium-size classes (with
20 to 100 images per class), and the minority classes (less than
20 images per class) respectively, it can be observed that the
proposed approach significantly improves the performance on
both minority and medium-size classes compared to the basic
training strategies CE, Focal, and Mixup, and meanwhile does
not downgrade the performance on the majority classes (Ta-
ble 3). All these results suggest that the proposed approach
can effectively help alleviate the class imbalance issue.

3.3. Ablation and robustness study

Effect of two classifier heads: Table 4 shows that, with vary-
ing levels of imbalance ratios, both the feature-balancing head
(FBH; second row) and the class-division head (CDH; third
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Table 1. Performance (top-1 accuracy, %) comparison on the CIFAR-10 and CIFAR-100 datasets with varying imbalance
ratios. RB: re-balancing; DA: data augmentation; ES: ensemble; RL: representation learning. Since test set is class-balanced,
top-1 accuracy is equivalent to mean recall over all classes.

Group Methods Combined CIFAR-10 CIFAR-100
strategies β = 100 β = 50 β = 10 β = 100 β = 50 β = 10

Single

CE - 70.36 74.81 86.39 38.32 43.85 55.71
Focal RB 70.38 76.72 86.66 38.41 44.32 55.78
Mixup DA 73.06 77.82 87.10 39.54 44.99 58.02
CB RB 72.37 78.96 86.54 33.99 45.41 57.12
LDAM RB 73.35 78.40 86.54 39.42 44.75 56.27
Ours RB 78.79 82.12 88.58 44.92 50.31 62.85

Hybrid

CB+Focal RB+RB 74.57 79.27 87.49 39.60 45.32 57.99
DRS RL+RB 75.61 79.81 87.38 41.61 45.48 58.11
LDAM+DRW RB+RB 77.03 81.03 88.16 42.04 46.62 58.71
BBN ES+RB 79.82 82.18 88.32 42.56 47.02 59.12
MiSLAS RL+RB+DA 82.10 85.70 90.00 47.00 52.30 63.20
Hybrid-SC ES+RB 81.40 85.36 91.12 46.72 51.87 63.05
Ours-Full RB+RL+DA 82.46 84.85 88.97 50.08 55.70 66.60

Table 2. Performance comparison on Tiny-ImageNet.
Methods β = 100 β = 50 β = 10

CE 27.35 31.03 43.71
Focal 27.80 31.25 43.33
Mixup 29.30 33.61 46.42
LDAM 27.87 31.44 46.10
Ours 36.28 40.62 52.98

DRS 28.59 33.39 45.83
LDAM+DRW 33.57 37.30 49.81
BBN 34.47 38.49 47.16
MiSLAS 37.72 42.75 53.47
Ours-Full 41.16 45.86 56.71

Table 3. Performance comparison on Imagenet-LT.
Method Majority Medium Minority All

CE 65.9 37.5 7.7 44.4
Focal 64.3 37.1 8.2 43.7
Mixup 68.3 39.4 8.8 45.6
LDAM 65.0 42.2 15.7 46.7
OLTR 59.9 45.8 27.6 48.7
Ours 64.1 47.8 24.0 50.3

DRS 57.5 44.6 27.5 46.8
LDAM+DRW 60.4 46.8 28.8 49.1
LWS 60.2 47.2 30.3 49.9
MiSLAS 65.1 50.4 32.9 53.2
Ours-Full 66.4 50.6 31.0 53.5

row) respectively can help improve the classification perfor-
mance compared to the conventional CNN classifier trained
with the cross-entropy (first row). The combination of the
two heads further improves the performance (last row), alto-
gether supporting the effectiveness of both classifier heads in
alleviating the class imbalance issue.

Table 4. Ablation study on CIFAR-100 and Tiny-ImageNet.

FBH CDH CIFAR-100/Tiny-ImageNet
β = 100 β = 50 β = 10

- - 38.32/27.35 43.85/31.03 55.71/43.71
✓ - 43.07/33.01 48.49/36.62 61.61/49.12
- ✓ 43.63/30.45 49.55/34.76 62.57/47.37
✓ ✓ 44.92/36.28 50.31/40.62 62.85/52.98

Fig. 4. Performance of the proposed approach on CIFAR-100
with different cluster number u (Left) and clustering strate-
gies (Right).

Sensitivity of hyper-parameters: Figure 4 (Left) shows
the class-division head itself (excluding the feature-balancing
head) can help improve the performance when the cluster
number u varies within a relatively large range (e.g., [5, 20]),
and Figure 4 (Right) shows that the performance of the pro-
posed approach changes little when different clustering strate-
gies (Random splitting, K-means, Hierarchical clustering)
were adopted to divide the training samples of larger class
into multiple clusters. These results support that the proposed
approach is insensitive to the choice of hyper-parameter val-
ues during model training.
On different backbones: As shown in Table 5, the proposed
approach consistently outperforms existing methods on dif-
ferent model backbones, further supporting the robustness
and generalizability of the proposed approach.
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Table 5. Performance comparison on CIFAR-100 with differ-
ent model backbone architectures. Imbalance ratio is 100.

Method ResNet-110 VGG-16 MobileNet-v2

CE 42.47 40.25 37.11
Mixup 44.78 40.60 37.57
DRS 44.18 42.14 42.03
LDAM+DRW 43.38 40.22 43.55
MiSLAS 47.55 46.27 44.17
Ours-Full 50.45 47.85 44.66

4. CONCLUSION

In this paper, a novel two-head framework is proposed to help
alleviate the class imbalance issue. The feature-balancing
head can help the feature extractor handle each class fairly,
while the class-division head divides each majority class into
multiple new classes such that the classifier is trained in a
more class-balanced manner. Experiments on four image
classification datasets clearly support that the proposed ap-
proach can particularly improve the performance on minor-
ity classes. The combination of the proposed approach with
existing strategies can further improve classification perfor-
mance. We expect the proposed approach can be employed in
more scenarios like object detection and image segmentation.
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David Lopez-Paz, “mixup: Beyond empirical risk min-
imization,” in ICLR, 2018.

[13] Hsin-Ping Chou, Shih-Chieh Chang, Jia-Yu Pan, Wei
Wei, and Da-Cheng Juan, “Remix: Rebalanced mixup,”
in ECCV Workshops, 2020.

[14] Adrian Galdran, G. Carneiro, and Miguel
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