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ABSTRACT

Semantic segmentation in the open world is prerequisite when
deploying a well-trained segmentation model in real scenar-
ios, where objects of unseen classes during model training
may often appear in future new images to be segmented by
the model. However, such open set semantic segmentation
task has been rarely explored before. In this study, making
use of the large number of pixel-level prediction uncertainties
for each image, we proposed applying the non-parametric sta-
tistical test to detect whether objects of unseen classes appear
in a new image, and an adaptive threshold method to auto-
matically segment each pixel into either one of the known
classes or the unknown class. Experiments on the natural
image dataset showed that the proposed method significantly
outperforms multiple strong baseline methods.

Index Terms— open set, semantic segmentation, adap-
tive threshold, statistical test.

1. INTRODUCTION

Semantic segmentation aims to segment an image into multi-
ple semantic regions, often by classifying each image pixel
into one of the predefined classes based on deep learning
models, such as UNet [1], DeepLab [2, 3], and attention Net-
work [4, 5]. In most semantic segmentation studies, people
assume that the categories appearing in test images are the
same as those in the training images, i.e., the segmentation
is based on a close set of categories. However, the world is
open in real scenarios, i.e., objects or things of novel cate-
gories could appear in test images but do not appear in train-
ing images. This often happens in real applications, such as
autonomous driving and medical image diagnosis, where it is
almost impossible to collect and annotate all categories of ob-
ject or disease regions for the training of semantic segmenta-
tion models. In this case, it would be ideal if the segmentation
model can not only segment image regions of the previously
seen categories, but also tell users the region of any unseen
category (if existing in a new image) does not belong to those
categories learned during model training. This task can be
called open set semantic segmentation (Figure 1).
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Fig. 1. Examples of open set semantic segmentation. Left
column: input images in which regions of cat belongs to the
unknown class; Middle: segmentation results in close set se-
mantic segmentation where any unknown region was forced
to be segmented into known class(es); Right: open set seman-
tic segmentation result based on the proposed method.

While open set semantic segmentation has been rarely ex-
plored, the open set recognition has been extensively studied
recently, where the objective is to classify any new image into
one of the previously seen (i.e., known) classes or the unseen
(i.e., unknown) class. One approach explores the character-
istics of the classifier outputs particularly for images of the
unknown class, and finds that the maximum output probabil-
ity (over all possible known classes) is often relatively small
if the input image is from the unknown class [6, 7, 8], while
the maximum output probability is more likely close to 1.0 for
images of known classes. In other words, the output predic-
tion is relatively uncertain for images of the unknown class.
With this observation, people can determine whether a new
image is from the unknown class by comparing the maximum
output probability with a pre-defined threshold or by com-
paring the output prediction uncertainty (often represented by
the entropy of the output probability distribution) with a pre-
defined threshold [7]. Another approach is to train generative
models such that the distribution of each known class can be
explicitly or implicitly represented [9]. Then a new image
can be detected as the unknown class if the image is far from
the distribution of each known class, where the distance can
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be represented by Mahalanobis distance between the new im-
age and each class center [10] in the image feature space, or
by the reconstruction error between the original image and
the reconstructed image as used in the auto-encoder mod-
els [11, 12, 13]. These two approaches have the difficulty of
choosing an appropriate threshold to determine whether a new
image is from a known class or from the unknown class [14].
In contrast, the third approach explicitly construct pseudo im-
ages for the unknown class by generating adversarial exam-
ples based on the images of known classes [10], and then use
the images of known classes and the pseudo images of the
unknown class to directly train a classifier which can classify
both known classes and the unknown classes.

Although semantic segmentation is often regarded as
dense classification of image pixels, at least some of the ap-
proaches for the open set recognition may not be easily mod-
ified to solve the open set semantic segmentation task. For
example, the adversarial example approach might not be eas-
ily transferred to open set semantic segmentation because it
is not clear how to generate adversarial examples for every
image pixels. The Mahalanobis distance based approach [10]
also might not be easily adapted because the distribution of
pixel-level features within each class may be multi-mode and
therefore does not satisfy the underlying assumption of Gaus-
sian distribution. On the other hand, some other approaches
for open set recognition seems feasible for open set semantic
segmentation. In this study, the maximum output probability
method and the entropy-based uncertainty method [7] were
applied as baselines for open set semantic segmentation.

To solve the difficulty of determining the threshold ex-
isted in most approaches, we make use of the characteristics
of open set semantic segmentation, i.e., multiple output pre-
dictions can be collected for each image, with each prediction
corresponding to one image pixel, and propose an adaptive
method to automatically determine the threshold for each im-
age segmentation. The effectiveness of the adaptive threshold
was confirmed with the entropy-based uncertainty method on
multiple open set semantic segmentation tasks. Another con-
tribution of this study is the application of the non-parametric
statistical test to the determination of existence of the un-
known category in any new image. Experiments show that
correctly determining the existence of the unknown category
(as the first step) can help effectively reduce the false segmen-
tation of some known pixels into the unknown category. Last
but not least, we also summarized the challenges existed in
the rarely explored open set semantic segmentation tasks for
future study.

2. OPEN SET SEMANTIC SEGMENTATION

Open set semantic segmentation aims to classify each im-
age pixel into either one of the existing (i.e., known) classes
or the unknown class, where the unknown class is often the
combination of many other classes not appearing in the train-

ing dataset. The segmentation model need to be trained only
based on a set of training images without the unknown class
therein. Following the finding in open set classification that
the classifier output prediction is often relatively uncertain
(i.e., the classifier’s output probability distribution is more
spread across multiple classes, often represented by the en-
tropy of probability distribution) for images of the unknown
class, here we investigate the utility of prediction uncertainty
for each image pixel in the open set semantic segmentation
task, where the uncertainty u,; for the i-th pixel of an image
can be represented by the entropy of the output prediction
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One reasonable presumption is that the predictions for pix-
els of the unknown class would be more uncertain than those
for pixels of known classes. However, given any new im-
age without the unknown class therein, relatively high pre-
diction uncertainty has been observed particularly around the
boundary of objects within the image. Therefore, given the
probability prediction for each pixel, it is required to reliably
determine whether there really exist pixels or regions of the
unknown class, and if existing, where the pixels or regions
are. Here we propose applying a statistical test method to de-
termine the existence of the unknown class and an adaptive
threshold method to find pixels of the unknown class for any
new image.

2.1. Determination of unknown-class existence

After the segmentation model is trained based on a set of
training images without the unknown class inside, correctly
determining the existence of unknown class in a new image
would clearly improve the performance of open set semantic
segmentation, particularly in reducing the false classification
of pixels of the known classes into the unknown class. The
key challenge is to determine whether the pixels with higher
prediction uncertainties are from the unknown class or from
part (e.g., boundary) of objects of known classes. Assuming
that the number of pixels with relatively high prediction un-
certainties is very small in images without the unknown class
(Figure 3, first two), while there are more pixels with rel-
atively higher prediction uncertainty in images with certain
unknown regions inside (Figure 3, last two), we propose ap-
plying the non-parametric statistical Mann-Whitney U test to
determine the existence of the unknown class in any new im-
age. The non-parametric U test instead of the parametric t-test
is adopted because the distribution of prediction uncertainties
is often long-tailed (Figure 3) and therefore the parametric
test is not feasible.

The procedure of the U test is as follows. First, a small
proportion « (v = 0.5% used in experiments) of pixels with
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Fig. 2. The pipeline of open set semantic segmentation. The region of the unknown class is segmented based on the adaptive
threshold (upper path) and then fused with the initial segmentation result (lower path) to generate the final open set segmentation
result. Dog is the unknown object which never appears in the training set, while Human is one known class.

Fig. 3. Distributions (histograms) of prediction uncertainties
over pixels of all validation images (first), of one test image
without the unknown class therein (second), and of two other
test images including regions of the unknown class (last two).

the highest prediction uncertainties are first collected over a
set of validation images in which there is no unknown class,
and then these pixels are sub-sampled to typically represent
the small proportion of pixels with high prediction uncertainty
for an virtual average validation image. For any new image, a
similar small proportion of pixels with the highest prediction
uncertainties are also collected. Finally, the Mann-Whitney U
test is used to test whether the prediction uncertainties of these
pixels from the new image are significantly higher than the
prediction uncertainties of the previously sub-sampled pixels.
It is expected that there would be no such one-tail significant
difference if the new image does not contain the unknown
class, while there would be for a new image containing un-
known regions (due to higher prediction uncertainties from
the unknown regions). Note that such statistical test method
is not suitable for open set classification tasks because there
is just one prediction uncertainty value for one image in the
classification tasks. In this sense, we consider the application
the statistical Mann-Whitney U test to the open set semantic
segmentation to be novel.

2.2. Adaptive threshold for segmentation of unknown-
class regions

Once a new image has been determined to contain region(s)
of the unknown class, the next is to automatically find pixels

belonging to the unknown-class region. Since in general the
unknown-class region occupies just part of the image, the pre-
diction uncertainties of the known-class pixels would be gen-
erally much lower. As a result, the distribution (here approxi-
mated by a histogram) of the prediction uncertainties over all
pixels of the image would have at least two modes (peaks),
with the mode of smaller uncertainties mainly contributed by
the pixels of known classes and the mode of larger uncertain-
ties contributed potentially by the pixels of the unknown class
(Figure 3, last two histograms). Such multi-mode property
provides us with a simple but effective method to identify the
pixels of the unknown-class, i.e., find one local minimum (a
valley between peaks) of the uncertainty distribution and then
all those pixels whose prediction uncertainties are higher than
the minimum would be considered as the unknown class. It
is clear that the local minimum in general would be different
for different images (Figure 3, last two histograms), thus call-
ing local minimum as adaptive threshold. In contrast, a fixed
threshold (minimum) could be used for all images, but such
fixed threshold in general performs worse than the proposed
adaptive threshold (see Experiment section 3.2).

One question may arise if there are two or more local
minima (i.e., three or more peaks) in the uncertainty distribu-
tion, i.e., which local minimum shall we choose as the adap-
tive threshold for the image? One may choose the largest
(rightmost in the histogram), the smallest (leftmost in the his-
togram), or the global minimum (the entropy with smallest
frequency in the histogram) between the peaks. We argue that
the choice strategy of local minimum could be determined by
users in real applications. For example, in autonomous driv-
ing or intelligent medical diagnosis, missing segmentation of
unknown-class object or regions could cause serious conse-
quences, therefore users may choose the leftmost local mini-
mum as the adaptive threshold to avoid any potential missing
of unknown objects or disease regions. In this study, we ex-



Table 1. Dataset construction. Training and validation sets
do no include any object of the unknown class.

Unknown class | Train  Valid Test
known uknown
cat & dog 1215 634 572 492
car & bus 1307 936 309 361

bike & motor | 1344 963 305 301

perimentally show that either way of adaptive threshold per-
forms better than strong baseline methods.

3. EXPERIMENT

3.1. Experimental setup

Since open set semantic segmentation has been rarely ex-
plored, there is no public dataset for such a task. Here we
adapted Pascal VOC 2012 to the condition of open set seman-
tic segmentation. More specifically, from all the 21 classes in
the dataset, two classes (e..g, cat and dog) were pre-selected
to form the unknown class and all the images containing ei-
ther of the two pre-selected classes were left out as part of
the test set. For the other images containing the remaining
19 classes, around 1200-1300 images were randomly selected
as the training set, and 600-1000 other images were used as
the validation set (which does not include the unknown class
as well). Such data split were performed three times, with
the unknown class being different each time (See Table 1 for
details). Segmentation models (e.g., DeepLabV3) were then
trained and evaluated with each of the created open set seg-
meantation datasets.

During training of each segmentation model, SGD opti-
mizer was used with the initial learning rate 0.007, the mo-
mentum value 0.9, and the coefficient of weight decay 0.001.
The learning rate was updated with the Poly strategy. In eval-
uation, the significance level was set 0.05 during the Mann-
Whitney U test and the adaptive threshold was determined
by the rightmost, the leftmost, and the global minimum of
the entropy histogram respectively for each image. Since the
performance is similar between these threshold choice strate-
gies, only the performance with the global minimum based
adaptive threshold was reported. The Intersection-over-Union
(IoU) was used as the metric to measure the performance of
the proposed method for segmentation of the unknown class,
and the mean IoU was used to measure the performance on
the segmentation of the known classes. For each test, five
runs were performed and the average and standard deviation
of the IoU or the mean IoU were reported.

3.2. Comparison with baseline methods

The proposed method was firstly evaluated on the Pascal
dataset by comparing with a few baseline methods, with

DeepLabV3+ as the model backbone. The maximum out-
put based method ODIN [15] and the entropy-based uncer-
tainty method originally for open set recognition were used
as two baselines considering their feasibility for the open set
semantic segmentation. Note that these two baselines do not
provide the way to choose an appropriate threshold for seg-
mentation. Here the optimal threshold with the highest mean
IoU over all classes was greedily searched for each of the
two baselines. In addition, to evaluate the effectiveness of the
proposed adaptive threshold, a fixed threshold across all test
images was used to replace the adaptive threshold and then
combined with the first step (i.e., determining existence of
the unknown class) of the proposed method as another base-
line (‘Utest+Fixed’ in Table 2). The fixed threshold was es-
timated on the validation set such that the proportion of pix-
els whose maximum output probabilities are larger than the
threshold is equal to a preset level 3. 8 was respectively set to
0.005,0.01,0.02,0.05,0.1,0.15 and only the one (0.05) with
the best performance was reported. To evaluate the effective-
ness of the first step of the proposed method, the performance
of the adaptive threshold without the first step was also re-
ported (‘Adaptive’ in Table 2).

From Table 2, we can see that the proposed method (last
row) significantly outperforms not only the baselines adapted
from open set recognition (also see Figure 4), but also the
baselines ‘Utest+Fixed’ and ‘Adaptive’. In particular, the
U test can also help improve the segmentation performance
when combined with the fixed threshold method, probably
because U test can well tell which images did not contain the
unknown class and therefore avoided the error of segment-
ing pixels into the unknown class in these images. Compared
to the fixed threshold, adaptive threshold together with the
U test further improved the segmentation performance partic-
ularly on the regions of the unknown class, confirming that
the adaptive threshold can find a better image-specific thresh-
old for segmentation of the unknown class. All these suggest
that both the Mann-Whitney U test and the adaptive threshold
in the proposed method are helpful in improving the perfor-
mance of open set semantic segmentation.

3.3. Evaluation with different backbone models

The proposed method was also evaluated with differ-
ent deep segmentation model architectures, including the
DeepLabV3 [3] used above, the well-known U-Net [1] and
the EMANet [5]. DeepLabV3 is based on dilated convolution
with multiple scale poolings; U-Net makes use of skip con-
nections between encoder layers and corresponding decoder
layers, and EMANet uses attention mechanism during seg-
mentation. Therefore, these three models represent three dif-
ferent types of architectures for semantic segmentation. Ini-
tial results (not shown due to limited space) tell us that the
proposed method is always better than the baselines on all
the three model architectures, supporting that the proposed



Table 2. Performance of the proposed method and baselines. Each unknown column: IoU for the unknown class; each known
column: mean IoU over all the known classes; each all column: mean IoU over the unknown and all the known classes. The
standard deviation of the (mean) IoU is around 0.004-0.006, and the backbone is DeepLabV3+ for all methods.

Method cat & dog car & bus bike & motor
unknown  known all unknown  known all unknown  known all
Entropy 0.5131 0.6317 0.6258 0.3972  0.3949 0.395 0.3528 0.6842 0.6676
ODIN 0.5293  0.6339 0.6287 0.3852  0.3268 0.3297 0.3414 0.65 0.6346
Utest+Fixed 0.415 0.6099 0.6002 0.1892  0.6338 0.6116 0.1772  0.7265 0.6991
Adaptive (No UTest) 0.487 0.5685 0.5644 0.3289  0.5815 0.5689 0.3805 0.7149 0.6982
Utest+Adaptive (Ours)  0.5593  0.6493  0.6448 0.2933  0.6301 0.6133 0.3356  0.7296 0.7099
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Fig. 4. Examples of open set segmentation results with various methods. From left to right: original input images, ground-truth
segmentation maps, segmentation by entropy, ODIN, fixed threshold combined with the U test, and the proposed method.

method is robust to model architectures.

3.4. Challenges in open set semantic segmentation

We investigated the detailed open set segmentation results and
observed a few challenging conditions in the open set seg-
mentation task.

e Unseen objects in known classes (Figure 5, first row):
it is almost impossible to collect and annotate a large
number of image regions for each known class, and as
a result, the segmentation model may be over-trained
and cannot correctly segment some image regions of
known classes. This is particularly true for the (known)
background class, in which objects not appearing in the
training set are often considered as part of the back-
ground region in the test images. In this case, it seems
reasonable if the open set segmentation model con-
siders such object regions as the unknown class. To
more objectively evaluate various methods, it is neces-
sary to create a public dataset particularly for the open
set semantic segmentation task, carefully defining each
known and unknown class.

Unknown-class objects similar to known classes (Fig-
ure 5, second row): it is possible that certain objects
of the unknown class are similar to the some objects
of known classes. For example, the car in the exam-
ple (second row) is very similar to the sheep class, and
therefore the segmentation model segment the region of
the cat into the sheep class with high confidence. In this
case, it is very challenging for the segmentation model
to more precisely learn to separate not only among the
known classes, but also between the known and (un-
seen) unknown class.

Small unknown objects versus boundary of known ob-
jects (Figure 5, third row): another challenging con-
dition is to accurately segment the small objects of
the unknown class. Since boundaries of known ob-
jects are often causing higher prediction uncertainty,
it is difficult to tell whether the small number of pix-
els with higher prediction uncertainty are really from
an small unknown object or from the boundaries of
known objects. Considering higher-level information
(such as shape) during open segmentation may help dis-
ambiguate this confusion.
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Fig. 5. Challenging conditions in open set semantic segmen-
tation. First row: unseen objects of know classes; Second
row: unknown object similar to known classes; Third row:
small unknown object. First column: original test images;
Second column: ground-truth segmentation maps; Third col-
umn: prediction uncertainty (entropy) maps; Last column:
open set semantic segmentation with the proposed method
(similar results obtained with other baseline methods).

An ideal open set semantic segmentation model need to
effectively handle all the above challenging conditions, and
much future study is required to solve this relatively new task.

4. CONCLUSIONS

Open set semantic segmentation is a rarely explored topic.
In this study, making use of the large number of pixel-level
prediction uncertainties for each image, we proposed the ap-
plication of the non-parametric statistical test to the determi-
nation of unknown-class existence and an adaptive threshold
method to automatically segment each pixel into either one of
the known classes or the unknown class. Experiments on the
natural image dataset showed that the proposed method sig-
nificantly outperforms existing methods originally for open
set recognition tasks. Some challenging conditions were also
identified for future work.
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