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Abstract. An approach to the analysis of images of regular texture is
proposed in which lattice hypotheses are used to define statistical mod-
els. These models are then compared in terms of their ability to explain
the image. A method based on this approach is described in which lattice
hypotheses are generated using analysis of peaks in the image autocor-
relation function, statistical models are based on Gaussian or Gaussian
mixture clusters, and model comparison is performed using the marginal
likelihood as approximated by the Bayes Information Criterion (BIC).
Experiments on public domain regular texture images and a commer-
cial textile image archive demonstrate substantially improved accuracy
compared to two competing methods. The method is also used for clas-
sification of texture images as regular or irregular. An application to
thumbnail image extraction is discussed.

1 Introduction

Regular texture can be modelled as consisting of repeated texture elements, or
texels. The texels tesselate (or tile) the image (or more generally a surface). Here
we consider so-called wallpaper patterns. Wallpaper patterns can be classified
into 17 groups depending on their symmetry [1]. Translationally symmetric reg-
ular textures can always be generated by a pair of shortest vectors (two linearly
independent directions), t; and to, that define the size, shape and orientation
(but not the position) of the texel and the lattice which the texel generates. The
lattice topology is always then quadrilateral. Geometric deformations, varying
illumination, varying physical characteristics of the textured surface, and sensor
noise all result in images of textured patterns exhibiting approximately regu-
lar, as opposed to exactly regular, texture. This paper considers the problem of
automatically inferring texels and lattice structures from images of planar, ap-
proximately regular textures viewed under orthographic projection. While this
might at first seem restrictive, this problem is, as will become apparent, far from
solved. There exists no fully automatic and robust algorithm to the best of the
authors’ knowledge. Furthermore, solutions will find application, for example in
analysis, retrieval and restoration of images of printed textiles, wallpaper and
tile designs.
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1.1 Related Work

Extraction of periodicity plays an important role in understanding texture and
serves as a key component in texture recognition [2], synthesis [3] and segmenta-
tion [4]. Previous work proposed for texel and lattice extraction can be grouped
broadly into two categories: the local feature-based approach [5,6,7,8,9,10,11]
and the global structure-based approach [1,12,13,14,15,16]. All texture analysis
is necessarily both local and global. The categorisation is in terms of the compu-
tational approach: whether it starts by identifying local features and proceeds to
analyse global structure, or starts with a global analysis and proceeds by refining
estimates of local structure.

The local feature-based approach starts by identifying a number of texel can-
didates. Matching based on visual similarity between these potential texels and
their neighbours is then performed. Successful matching leads to the connection
of texels into a lattice structure. The approach iterates until no more new texels
are found. Methods vary in the way they initialise texel candidates and in the
parametric models used to cope with geometric and photometric variation. Lin
et al. [6] asked users to provide an initial texel. Interest points and edges have
been used to generate texel candidates automatically [7,8,9]. However, Hays et
al. [5] pointed out that interest points often fail to find texel locations and in-
stead initialized by combining interest points and normalized cross correlation
patches. Affine models have been adopted to deal with local variation among
texels [7,10,11]. Global projective transformation models have also been used,
taking advantage of the spatial arrangement of texels [8,9]. Hays et al. [5] formu-
lated lattice detection as a texel correspondence problem and performed texel
matching based on visual similarity and geometric consistency. Lin et al. [6]
proposed a Markov random field model with a lattice structure to model global
topological relationships among texels and an image observation model able to
handle local variations.

The global structure-based approach [1,12,13,14,15,16] tries to extract texels
using methods that emphasise the idea of periodic patterns as global processes.
Starovoitov et al. [16] used features derived from cooccurrence matrices to ex-
tract texels. Charalampidis et al. [15] used a Fourier transform and made use of
peaks corresponding to fundamental frequencies to identify texels. The autocor-
relation (AC) function is generally more robust than the Fourier transform for
the task of texel extraction especially in cases in which a regular texture image
contains only a few texel repetitions [1,12]. Peaks in the AC function of a regular
texture image can identify the shape and arrangement of texels. Chetverikov [13]
developed a regularity measure by means of finding the maximum over all di-
rections on the AC function. Leu [14] used the several highest peaks in the AC
function computed on the gradient field of the image to capture translation vec-
tors. A promising approach was presented by Lin et al. [12] in which salient peaks
were identified using Gaussian filters to iteratively smooth the AC function. The
generalized Hough transform was then applied to find translation vectors, t; and
to. Liu et al. [1] highlighted the fact that spurious peaks often result in incorrect
lattice vectors. Therefore, they proposed a “region of dominance” operator to
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select a list of dominant peaks. The translation vectors were estimated based on
these dominant peaks. However, the important problem of how to determine the
number of dominant peaks was not addressed. Whilst it is usually relatively easy
for a human to select an appropriate subset of peaks, automating this process is
difficult. Fig. 1 shows three different texels obtained similarly to Lin et al. [12]
from the same image by using different numbers of peaks. The peaks were ob-
tained using the region of dominance method [1]. Whilst using only the first ten
peaks can result in success, the method is rather sensitive to this choice.

b)
Fig. 1. Texels obtained using (a) ten, (b) forty, and (c) seventy dominant peaks in the
autocorrelation function. The peak locations are marked with white dots.

Available local feature-based methods can be effective under significant tex-
ture surface deformation and are more suited to such situations. However, they
require texels that can be identified based on local features (such as corners) and
perform matching between individual texels. Therefore they often fail to detect
larger, non-homogeneous texels. Fig. 2 shows examples of such failures.

Global structure-based methods are suitable for textures that do not exhibit
large geometric deformation and often successfully identify larger texels with
more complicated appearances. However, existing methods have free parameters

Fig. 2. Two examples of a local feature-based method [5] extracting incorrect lattices
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for which a fixed value that works on a wide range of images can often not be
found. Methods based on finding peaks in an AC function often yield many un-
reliable peaks and the number which are reliable can vary dramatically between
images. This serious drawback currently makes these methods difficult to apply
to large image collections.

1.2 Contributions

We propose a novel model comparison framework to test texel hypotheses and
find the optimal one. Hypotheses can be constructed using existing methods ac-
cording to different subsets of AC peaks by varying the number of peaks used.
A statistical model is defined for each lattice hypothesis. The most probable hy-
pothesis given the image observation will be selected. The design of the statistical
model takes account of photometric and (to a lesser extent) geometric variations
between texels. Hence, our method is robust and completely automatic.

The contributions of this paper can be summarized as follows. (i) A Bayesian
model comparison framework is proposed to extract texels from regular texture
images based on statistical models defined to handle variations between tex-
els. (ii) Lattice comparison is also used to classify texture images as regular or
irregular. (iii) Empirical comparison of the proposed method with two exist-
ing methods is performed on a challenging regular texture image database. (iv)
The method is applied to generate smart thumbnails for an image browsing and
retrieval system.

The rest of this paper is organized as follows. Section 2 presents the Bayesian
model comparison framework. Section 3 describes details of lattice model compar-
ison. Section 4 describes the method used in our experiments for generating lattice
hypotheses. Experimental results are given in Section 5. An application in which
the proposed method is used to generate smart thumbnails for regular texture im-
ages is reported in Section 6. Finally, conclusions are drawn in Section 7.

2 Bayesian Model Comparison Framework

Our approach is to formulate texel hypotheses as statistical models and then
compare these models given the image data. It is not sufficient for a model to be
able to fit the data well. The best texel hypothesis under this criterion would be
the image itself whereas our purpose is to extract the smallest texture element.
Therefore, overfitting must be guarded against by penalising model complexity.
Texel hypothesis comparison can be regarded as a typical model comparison
problem for unsupervised statistical modelling of data. Such a problem can be
formulated as Bayesian model comparison which naturally penalises complexity
(Occam’s razor).

Let I = {z1,22,...,xn} be an image with N pixels. Here, z,,1 < n < N
is the intensity of the n'" pixel. Let H = (t1,t2) denote a texel hypothesis for
I, Hy, the k'™ in a set of hypotheses, and M), a statistical model defined based
on Hj; with parameters ;. Texel extraction can be formulated as choosing the
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most probable texel hypothesis given the image. According to Bayes’ theorem,

the posterior probability is proportional to the likelihood of the hypothesis times

a prior:

p(I|Hy)p(Hy,)
p(I)

In the absence of prior knowledge favouring any of the texel hypotheses, the

(improper) prior is taken to be uniform. For each Hy, we define a unique Mj
deterministically so p(My|Hy) is a delta function. Hence,

p(Hi|I) = oc p(I|Hy)p(Hy,) (1)

P(HRIT) o p(I|My) = / P16, M)p(64 | M) 6, )

Texel hypotheses can be compared by comparing the marginal likelihoods,
p(I|My), for their models. Here p(I|0y, M}) is the probability density function
of the image data given the model M} and its parameters 0y, and p(0x|My) is
the prior probability density function of parameters 5 given the model M.
The integral in Equation (2) can only be computed analytically in certain
cases such as exponential likelihoods with conjugate priors. Otherwise, approxi-
mations can be obtained using sampling methods, for example. While it would
be interesting to explore these alternatives in future work, this paper uses the
Bayes Information Criterion (BIC) as a readily computable approximation. BIC
approximates the marginal likelihood integral via Laplace’s method and the
reader is referred to the papers by Schwarz [17] and Raftery [18] for full details

of its derivation. Given a maximum likelihood parameter estimate, 8, we have

log p(I|M) =~ log p(I|0, M)+ log p() + g log 27 — %i log N — % log |i| + O(N /%)

(3)
where d is the number of parameters and i is the expected Fisher information
matrix for one observation. The subscript k£ has been dropped here for clarity.
The term log p(I]6, M) is of order O(N), (d/2)log N is of order O(log N), and
the remaining terms are of order O(1) or less. The log marginal likelihood can
be approximated by removing all terms of order O(1) or less. The BIC for the
model is then

BIC(M) = —logp(I|6, M) + (d/2)log N ~ —log p(I| M) (4)

The first term can be interpreted as an error of fit to the data while the second
term penalises model complexity.

The proposed approach to regular texture analysis involves (i) generation of
multiple texel hypotheses, and (ii) comparison of hypotheses based on statistical
models. The hypothesis with the model that has the largest marginal likelihood
is selected. Using the BIC approximation, hypothesis H; is selected where,

A~

k= argmax{p(Hy|])} = arg min{ BIC(Mj,)} (5)
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This method can also be used to classify textures as regular or irregular. If a
‘good’ lattice can be detected in an image then it should be classified as regular.
The proposed lattice comparison framework can be adopted for this purpose
by comparing the most probable lattice found with a reference hypothesis in
which the entire image is a single ‘texel’. If the reference hypothesis has a higher
BIC value then the image is classified as regular. Otherwise, it is classified as
irregular, i.e.

BIC(Mg) < BIC(Mj) Irregular texture
BIC(Mg) > BIC(M;) Regular texture (6)

where Mg refers to the model corresponding to the reference lattice and M; is
the best lattice hypothesis selected by Equation (5).

3 Lattice Models

The lattice model should be able to account for both regularity from periodic
arrangement and statistical photometric and geometric variability. Let us first
suppose a regular texture image I with N pixels x1, x2, ..., 2N, and a hypothesis
H with @ pixels per texel. Based on H, each pixel of the image is assigned to
one of () positions on the texel according to the lattice structure. Thus, the N
pixels are partitioned into ) disjoint sets, or clusters. If we choose to assume
that the IV pixels are independent given the model, we have,

p(I|M) = prnlM H I .l (7)
f(n,H)=q

where f(n,H) € {1,...,Q} maps n to its corresponding index in the texel. Fig. 3
illustrates this assigment of pixels to clusters.

Fig. 3. An example of cluster allocation according to a texel hypothesis, H = (ti,t2).
The value of f(n, H) is the same for each of the highlighted pixels. There are @ pixels
in each parallelogram.
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Modelling each of the @) clusters as Gaussian with fixed variance gives:

Q
BIC(M) = (Q/2)logN —=> " Y logp(znliy,o?) (8)

=1 n:f(n,H)=q

Q
= Q2N +Cit 5> Y i) )
q=1n:f(n,H)=q
where C} is a constant that depends on o?
estimate of the mean of the ¢** cluster.
Alternatively, a more heavy-tailed distribution can be used for each cluster.
This might better model outliers due to physical imperfections in the texture
surface and variations due to small geometric deformations. For example, a clus-
ter can be modelled as a mixture of two Gaussians with the same mean but
different variances, (02, 03), and a mixing weight, m; that places greater weight
on the low variance Gaussian. In that case,

, and (i, is a maximum likelihood

Q
BICOH ==Y S logplaalipotofm) + (Q/2)logN (10)
q=1n:f(n,H)=q
— (Q/2)1og N + O ()

Q A 2 A~ 2
T —(x, — 1—m —(Ty —
_Z Z log( 1 exp (7n 2Mq) 4 1 exp ( 2ﬂq) )

— o1 207 o2 203
q=1n:f(n,H)=q

where (5 is a constant.

4 Lattice Hypothesis Generation

In principle, there is an unlimited number of lattice hypotheses. However, prob-
ability density will be highly concentrated at multiple peaks in the hypothesis
space. The posterior distribution can therefore be well represented by only con-
sidering a, typically small, number of hypotheses at these peaks. In the maxi-
mum a posteriori setting adopted here, the approach taken is to identify multiple
hypotheses in a data-driven manner and then compare these hypotheses using
BIC. The approach is general in that any algorithms that generate a variety of
reasonable hypotheses can be used.

In the experiments reported here, aspects of the methods of Lin et al. [12] and
Liu et al. [1] were combined to generate hypotheses. Peaks in AC functions are
associated with texture periodicity but automatically deciding which peaks can
characterize the arrangement of texels is problematic and has not been properly
addressed in the literature [1,12,13,14]. In particular, changing the number of
peaks considered can result in different lattice hypotheses. Since the total number
of peaks is limited, we can only obtain a limited number of hypotheses.
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Given a grey-scale image I(z,y),1 <z < L,1 <y < W where L and W are
image height and width, its AC function can be computed as follows:

S S I I+ @+ y)
Sy S I2(i, )

Applying the fast Fourier transform (FFT) to calculate the AC function is a
more efficient alternative.

AC(z,y) = (12)

AC(w,y) = FHFI (2, y)]"FI(z,y)]] (13)

where ' and F~! denote FFT and inverse FFT, respectively.

Lin et al. [12] used iterative smoothing with Gaussian filters to obtain salient
peaks. However, Liu et al. [1] advised to take into account the spatial rela-
tionships among peaks and used a “region of dominance” operator. The basic
idea behind this operator is that peaks that dominate large regions of the AC
function are more perceptually important. In this paper, we combine these two
algorithms. First, we apply Gaussian filters to iteratively smooth the AC func-
tion. Then, salient peaks obtained from the first stage are ranked according to
their dominance. The most highly ranked peaks are selected as input for lattice
hypothesis construction using a Hough transform [12]. The number of peaks in
the rank-ordered list to use was varied in order to generate multiple hypotheses.
Typically a few tens of the generated hypotheses will be distinct.

5 Experiments

A dataset of 103 regular texture images was used for evaluation, comprising 68
images of printed textiles from a commercial archive and 35 images taken from
three public domain databases (the Wikipedia Wallpaper Groups page, a Corel
database, and the CMU near regular texture database). These images ranged in
size from 352 x 302 pixels to 2648 x 1372 pixels. The number of texel repeats
per image ranged from 5 to a few hundreds. This data set includes images that
are challenging because of (i) appearance variations among texels, (ii) small
geometric deformations, (iii) texels that are not distinctive from the background
and are large non-homogeneous regions, (iv) occluding labels, and (v) stains,
wear and tear in some of the textile images.

Systematic evaluations of lattice extraction are lacking in the literature. We
compared the proposed method with two previously published algorithms. Two
volunteers (one male and one female) qualitatively scored and rank ordered
the algorithms. In cases of disagreement, they were forced to reach agreement
through discussion. (Disagreement happened in very few cases).

When the proposed method used Gaussians to model clusters, the only free
parameter was the variance, o2. A suitable value for 02 was estimated from a
set of 20 images as follows. Many texel hypotheses were automatically generated
using different numbers of AC peaks and a user then selected from them the
best translation vectors, ti,ts. Pixels were allocated to clusters according to
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the resulting lattice and a maximum likelihood estimation of 02 was computed.
The result was 02 = 264. Since this semi-automatic method might not be using
precise texel estimates, it might overestimate the variance compared to that
which would be obtained using optimal lattices. Therefore, further values for o2
(100, 144 and 196) were also used for evaluation in order to test the sensitivity of
the method. In any particular experiment, o2 was fixed for all 103 test images.
The method was also evaluated using a Gaussian mixture to model each cluster,
with free parameters set to o = 60, 02 = 800, and 7; = 0.9.

The observers were shown lattices overlaid on images and were asked to label
each lattice as obviously correct (OC), obviously incorrect (OI), or neutral. They
were to assign OC if the lattice was exactly the same or very close to what
they expected, OI if the result was far from their expectations, and neutral
otherwise. The presentation of results to the observers was randomised so as to
hide from them which algorithms produced which results. The proposed method
was compared with two related algorithms [12,1]. Liu et al. [1] did not specify
how to determine the number of peaks in the autocorrelation function. Results
are reported here using three different values for the number of peaks, namely
10, 40, and 70. Table 1 summarises the results. It seems clear that the method
proposed in this paper has superior accuracy to the two other methods. The
value of 02 had little effect on the results. Fig. 4 shows some examples of lattices
obtained. The two images displayed in the first row have clear intensity variations
between texels. The two examples in the second row have labels in the image and
appearance varies among texels. Examples shown in rows 3 to 5 contain large
non-homogenous texels. The left example in the last row is a neutral result.
This example has a significant geometric deformation among texels. The right
example in the last row is an OI result since it did not find the smallest texel.

Table 1. Comparison of proposed algorithm with related algorithms. Accuracy is de-
fined as the number of OC results divided by the total number of test images.

Algorithm variant # OC results|# OI results|# Neutral results|Accuracy
Gaussian (o® = 100) 83 9 11 0.81
Gaussian (02 = 144) 83 14 6 0.81
Gaussian (0 = 196) 82 14 7 0.80
Gaussian (0? = 264) 79 18 6 0.77
Gaussian mixture 81 17 5 0.79
Liu et al. [1] (10 peaks) 45 54 4 0.44
Liu et al. [1] (40 peaks) 50 47 6 0.49
Liu et al. [1] (70 peaks) 28 70 5 0.27
Lin et al. [12] 22 70 11 0.21

A further experiment was performed to compare the proposed method to
the two other methods. For each image, lattice results from our algorithm using
Gaussians, our algorithm using Gaussian mixtures, the algorithm of Liu et al. [1],
and the algorithm of Lin et al. [12], respectively, were shown on the screen
simultaneously. The two subjects rank ordered those four results. Algorithms
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shared the same rank if they yielded equally good results. For example, if three
of the algorithms gave good lattices of equal quality and the fourth algorithm
gave a poor lattice then three algorithms shared rank 1 and the other algorithm
was assigned rank 4. Table 2 summarizes the rankings. For the Gaussian model,
we set 02 = 264 which yields the worst accuracy of the variance values tried.
For the algorithm of Liu et al. [1], we set the number of dominant peaks to
40, which achieved the best performance of the values tried. Even with these
parameter settings which disadvantage the proposed method, Table 2 shows
that it is superior to the other algorithms.

Table 2. Comparisons by ranking results of different algorithms

Algorithm ‘# Rank 1‘# Rank 2|# Rank 3‘# Rank 4
Gaussian, o° = 264 83 12 6 2
Gaussian mixture 86 11 5 1
Liu et al. [1] (# peaks = 40) 56 5 23 19
Lin et al. [12] 18 2 24 59

The method was also used to classify texture images as regular or irregular as
described in Equation (6). A set of 62 images was selected randomly from a mu-
seum fine art database and from the same commercial textile archive as used ear-
lier. Figure 5 shows some examples of these images. A classification experiment

Fig. 5. Examples of images to be classified as having irreqular texture
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was performed using these images as negative examples and the 103 regular tex-
ture images as positive examples. Figure 6 shows the ROC curve obtained by vary-
ing the value of 02 in the Gaussian model (02 € {49, 64, 81,100, 144}). The equal
error rate was approximately 0.22.

The computational speed depends on the number of lattice hypotheses (and
many different subsets of peaks lead to the same lattice hypothesis). A Matlab
implementation typically takes a few minutes per image on a 2.4GHz, 3.5GB
PC which is adequate for off-line processing.

6 Smart Thumbnail Generation for Regular Texture
Images

Thumbnail images are widely used when showing lots of images on a display
device of limited size. Most traditional approaches generate thumbnails by di-
rectly sub-sampling the original image which often reduces the recognisability of
meaningful objects and patterns in the image. Suh et al. [19] developed a novel
thumbnail generation method by taking into account human visual attention.
A saliency map and a face detector were used to identify regions expected to
attract visual attention. Although this method is effective for many images, it
is not appropriate for images with regular texture that often comprise abstract
patterns.

In an informal experiment, 9 human observers of varied age were asked to
draw a rectangle on each of 14 regular texture images to delineate the region
they would like to see as a thumbnail on a limited display. Most users tended
to select regions a little larger than a single texel, or containing a few texels.
This suggests that thumbnails might usefully be generated from regular tex-
ture images automatically by cropping based on texel extraction. Currently, we
are exploring the use of such thumbnails for content-based image browsing and
retrieval. Thumbnails are generated by cropping a rectangular sub-image that
bounds a region a little larger than a texel,(1.5t1,1.5t5). Fig. 7 compares two
thumbnails generated in this way with the standard method of directly reducing
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the resolution. Thumbnails extracted using knowledge of the texels can convey
more detailed information about the pattern design.

7 Conclusions

A fully automatic lattice extraction method for regular texture images has been
proposed using a framework of statistical model selection. Texel hypotheses were
generated based on finding peaks in the AC function of the image. BIC was
adopted to compare various hypotheses and to select a ‘best’ lattice. The exper-
iments and comparisons with previous work have demonstrated the promise of
the approach. Various extensions to this work would be interesting to investigate
in future work. Alternative methods for generating hypotheses could be explored
in the context of this approach. Further work is needed to explore the relative
merits of non-Gaussian models. This should enable better performance on im-
ages of damaged textiles, for example. BIC can give poor approximations to the
marginal likelihood and it would be worth exploring alternative approximations
based on sampling methods, for example. Finally, it should be possible in princi-
ple to extend the approach to analysis of near-regular textures on deformed 3D
surfaces by allowing relative deformation between texels. This could be formu-
lated as a Markov random field over texels, for example. Indeed, Markov random
field models have recently been applied to regular texture tracking [6].
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