Week 2: Optimization and Frameworks

Instructor: Ruixuan Wang
wangruix5@mail.sysu.edu.cn

School of Data and Computer Science
Sun Yat-Sen University

7 March, 2019
1. Backpropagation
2. Stochastic optimization
3. Hyper-parameter tuning
4. Deep learning frameworks
Derivatives: basic

- $L(\theta) = a$
- $L(\theta) = a\theta$
- $L(\theta) = au(\theta)$
- $L(\theta) = u(\theta) + v(\theta) - w(\theta)$
- $L(\theta) = \frac{u(\theta)}{v(\theta)}$
- $L(\theta) = u^n(\theta)$
- $L(\theta) = \frac{1}{u(\theta)}$
- $L(\theta) = \ln u(\theta)$
- $L(\theta) = e^{u(\theta)}$
- $L(\theta) = f(u(\theta))$

\[
\frac{dL}{d\theta} = 0
\]
\[
\frac{dL}{d\theta} = a
\]
\[
\frac{dL}{d\theta} = a \frac{du}{d\theta}
\]
\[
\frac{dL}{d\theta} = \frac{du}{d\theta} + \frac{dv}{d\theta} - \frac{dw}{d\theta}
\]
\[
\frac{dL}{d\theta} = \frac{1}{v} \frac{du}{d\theta} - \frac{u}{v^2} \frac{dv}{d\theta}
\]
\[
\frac{dL}{d\theta} = n u^{n-1} \frac{du}{d\theta}
\]
\[
\frac{dL}{d\theta} = -\frac{1}{u^2} \frac{du}{d\theta}
\]
\[
\frac{dL}{d\theta} = \frac{1}{u(\theta)} \frac{du}{d\theta}
\]
\[
\frac{dL}{d\theta} = e^{u(\theta)} \frac{du}{d\theta}
\]
\[
\frac{dL}{d\theta} = \frac{df}{du} \frac{du}{d\theta}
\]
Loss function $l(y, f(x; \theta))$ measures difference between prediction $f(x; \theta)$ and ideal output y.

Model parameters $\theta = \{W^h, b^h, W^o, b^o\}$

Training network: minimize loss with gradient descent to find best θ^*
Backpropagation: computation of gradient with chain rule

Gradient of loss function over model parameters can be computed with chain rule.
A simpler 2-layer network

- **ReLU** \(g(u_i) = \max(0, u_i) \), **Softmax** \(\sigma(z) \)
- **Cross entropy loss** \(l(y, \hat{y}) \)
- **Model parameters** \(\theta = [w_1, \ldots, w_8, b_1, \ldots, b_4]^T \)

\[
W^h = \begin{bmatrix} w_1 & w_3 \\ w_2 & w_4 \end{bmatrix}, \quad b^h = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}, \quad W^o = \begin{bmatrix} w_5 & w_7 \\ w_6 & w_8 \end{bmatrix}, \quad b^o = \begin{bmatrix} b_3 \\ b_4 \end{bmatrix}
\]
Backpropagation: computation of gradient with chain rule

an example:

\[
\frac{\partial l}{\partial w_8} = \frac{\partial l}{\partial z_2} \cdot \frac{\partial z_2}{\partial w_8}
\]
Pre-softmax function $z_2 = h_1 w_6 + h_2 w_8 + b_4$, therefore

$$\frac{\partial z_2}{\partial w_8} = h_2$$

To compute $\frac{\partial l}{\partial z_2}$, need to compute derivative of softmax $\frac{\partial \hat{y}_j}{\partial z_2}$
Softmax function

\[\hat{y}_j = \sigma(z)_j = \frac{e^{z_j}}{\sum_{k=1}^{K} e^{z_k}} \quad \text{for } j = 1, \ldots, K. \]

\[\frac{\partial \hat{y}_j}{\partial z_i} = \frac{e^{z_j}}{\sum_{k=1}^{K} e^{z_k}} \frac{dz_j}{dz_i} - \frac{e^{z_j}}{(\sum_{k=1}^{K} e^{z_k})^2} e^{z_i} \]

\[= \hat{y}_j \frac{dz_j}{dz_i} - \hat{y}_j \hat{y}_i \]

\[= \begin{cases} \hat{y}_i (1 - \hat{y}_i), & \text{if } i = j \\ -\hat{y}_i \hat{y}_j, & \text{if } i \neq j \end{cases} \]
Derivative of softmax function

Softmax function

\[\hat{y}_j = \sigma(z)_j = \frac{e^{z_j}}{\sum_{k=1}^{K} e^{z_k}} \quad \text{for } j = 1, \ldots, K. \]

\[\frac{\partial \hat{y}_j}{\partial z_i} = \frac{e^{z_j}}{\sum_{k=1}^{K} e^{z_k}} \frac{dz_j}{dz_i} - \frac{e^{z_j}}{(\sum_{k=1}^{K} e^{z_k})^2} e^{z_i} \]

\[= \hat{y}_j \frac{dz_j}{dz_i} - \hat{y}_j \hat{y}_i \]

\[= \begin{cases} \hat{y}_i (1 - \hat{y}_i), & \text{if } i = j \\ -\hat{y}_i \hat{y}_j, & \text{if } i \neq j \end{cases} \]
Derivative of softmax function

Softmax function

\[\hat{y}_j = \sigma(z)_j = \frac{e^{z_j}}{\sum_{k=1}^{K} e^{z_k}} \quad \text{for} \quad j = 1, \ldots, K. \]

\[
\frac{\partial \hat{y}_j}{\partial z_i} = \frac{e^{z_j}}{\sum_{k=1}^{K} e^{z_k}} \frac{dz_j}{dz_i} - \frac{e^{z_j}}{(\sum_{k=1}^{K} e^{z_k})^2} e^{z_i}
\]

\[= \hat{y}_j \frac{dz_j}{dz_i} - \hat{y}_j \hat{y}_i \]

\[= \begin{cases}
\hat{y}_i (1 - \hat{y}_i), & \text{if } i = j \\
-\hat{y}_i \hat{y}_j, & \text{if } i \neq j
\end{cases} \]
Derivative of loss function over pre-softmax

- Network output $\hat{y} = f(x; \theta) = (\hat{y}_1, \hat{y}_2, \ldots, \hat{y}_K)$
- Ideal output $y = (y_1, \ldots, y_K) = (0, \ldots, 1, \ldots, 0)$
- Cross entropy loss

$$l(y, \hat{y}) = - \sum_{k=1}^{K} y_k \log \hat{y}_k$$

- Derivative of l over z_i, with chain rule

$$\frac{\partial l}{\partial z_i} = - \sum_{k=1}^{K} y_k \frac{\partial \log \hat{y}_k}{\partial z_i} = - \sum_{k=1}^{K} y_k \frac{1}{\hat{y}_k} \frac{\partial \hat{y}_k}{\partial z_i}$$

$$= -y_i \frac{1}{\hat{y}_i} \hat{y}_i (1 - \hat{y}_i) - \sum_{k \neq i} y_k \frac{1}{\hat{y}_k} (-\hat{y}_k \hat{y}_i)$$

$$= \hat{y}_i \left(\sum_{k=1}^{K} y_k \right) - y_i = \hat{y}_i - y_i$$
Derivative of loss function over pre-softmax

- Network output $\hat{y} = f(x; \theta) = (\hat{y}_1, \hat{y}_2, \ldots, \hat{y}_K)$
- Ideal output $y = (y_1, \ldots, y_K) = (0, \ldots, 1, \ldots, 0)$
- Cross entropy loss

$$l(y, \hat{y}) = - \sum_{k=1}^{K} y_k \log \hat{y}_k$$

- Derivative of l over z_i, with chain rule

$$\frac{\partial l}{\partial z_i} = - \sum_{k=1}^{K} y_k \frac{\partial \log \hat{y}_k}{\partial z_i} = - \sum_{k=1}^{K} y_k \frac{1}{\hat{y}_k} \frac{\partial \hat{y}_k}{\partial z_i}$$

$$= - y_i \frac{1}{\hat{y}_i} \hat{y}_i (1 - \hat{y}_i) - \sum_{k \neq i} y_k \frac{1}{\hat{y}_k} (-\hat{y}_k \hat{y}_i)$$

$$= \hat{y}_i \left(\sum_{k=1}^{K} y_k \right) - y_i = \hat{y}_i - y_i$$
Network output $\hat{y} = f(x; \theta) = (\hat{y}_1, \hat{y}_2, \ldots, \hat{y}_K)$

Ideal output $y = (y_1, \ldots, y_K) = (0, \ldots, 1, \ldots, 0)$

Cross entropy loss

$$l(y, \hat{y}) = - \sum_{k=1}^{K} y_k \log \hat{y}_k$$

Derivative of l over z_i, with chain rule

$$\frac{\partial l}{\partial z_i} = - \sum_{k=1}^{K} y_k \frac{\partial \log \hat{y}_k}{\partial z_i} = - \sum_{k=1}^{K} y_k \frac{1}{\hat{y}_k} \frac{\partial \hat{y}_k}{\partial z_i}$$

$$= -y_i \frac{1}{\hat{y}_i} \hat{y}_i (1 - \hat{y}_i) - \sum_{k \neq i} y_k \frac{1}{\hat{y}_k} (-\hat{y}_k \hat{y}_i)$$

$$= \hat{y}_i \left(\sum_{k=1}^{K} y_k \right) - y_i = \hat{y}_i - y_i$$
Derivative of loss function over pre-softmax

- Network output $\hat{y} = f(x; \theta) = (\hat{y}_1, \hat{y}_2, \ldots, \hat{y}_K)$
- Ideal output $y = (y_1, \ldots, y_K) = (0, \ldots, 1, \ldots, 0)$
- Cross entropy loss

$$l(y, \hat{y}) = - \sum_{k=1}^{K} y_k \log \hat{y}_k$$

- Derivative of l over z_i, with chain rule

$$\frac{\partial l}{\partial z_i} = - \sum_{k=1}^{K} y_k \frac{\partial \log \hat{y}_k}{\partial z_i} = - \sum_{k=1}^{K} y_k \frac{1}{\hat{y}_k} \frac{\partial \hat{y}_k}{\partial z_i}$$

$$= -y_i \frac{1}{\hat{y}_i} \hat{y}_i (1 - \hat{y}_i) - \sum_{k \neq i} y_k \frac{1}{\hat{y}_k} (-\hat{y}_k \hat{y}_i)$$

$$= \hat{y}_i \left(\sum_{k=1}^{K} y_k \right) - y_i = \hat{y}_i - y_i$$
From \(\frac{\partial z_2}{\partial w_8} = h_2 \) and \(\frac{\partial l}{\partial z_i} = \hat{y}_i - y_i \)

\[
\frac{\partial l}{\partial w_8} = \frac{\partial l}{\partial z_2} \frac{\partial z_2}{\partial w_8} = h_2 (\hat{y}_2 - y_2)
\]

Similarly,

\[
\frac{\partial l}{\partial w_7} = \frac{\partial l}{\partial z_1} \frac{\partial z_1}{\partial w_7} = h_2 (\hat{y}_1 - y_1)
\]

\[
\frac{\partial l}{\partial b_4} = \frac{\partial l}{\partial z_2} \frac{\partial z_2}{\partial b_4} = \hat{y}_2 - y_2
\]

Why called backpropagation?

- Propagation of prediction errors \(\hat{y}_i - y_i \) in gradient!
Derivative of loss function over weight parameters

From $\frac{\partial z_2}{\partial w_8} = h_2$ and $\frac{\partial l}{\partial z_i} = \hat{y}_i - y_i$

$$\frac{\partial l}{\partial w_8} = \frac{\partial l}{\partial z_2} \frac{\partial z_2}{\partial w_8} = h_2(\hat{y}_2 - y_2)$$

Similarly,

$$\frac{\partial l}{\partial w_7} = \frac{\partial l}{\partial z_1} \frac{\partial z_1}{\partial w_7} = h_2(\hat{y}_1 - y_1)$$

$$\frac{\partial l}{\partial b_4} = \frac{\partial l}{\partial z_2} \frac{\partial z_2}{\partial b_4} = \hat{y}_2 - y_2$$

Why called backpropagation?

- Propagation of prediction errors $\hat{y}_i - y_i$ in gradient!
Derivative of loss function over weight parameters

From $\frac{\partial z_2}{\partial w_8} = h_2$ and $\frac{\partial l}{\partial z_i} = \hat{y}_i - y_i$

\[
\frac{\partial l}{\partial w_8} = \frac{\partial l}{\partial z_2} \frac{\partial z_2}{\partial w_8} = h_2(\hat{y}_2 - y_2)
\]

Similarly,

\[
\frac{\partial l}{\partial w_7} = \frac{\partial l}{\partial z_1} \frac{\partial z_1}{\partial w_7} = h_2(\hat{y}_1 - y_1)
\]

\[
\frac{\partial l}{\partial b_4} = \frac{\partial l}{\partial z_2} \frac{\partial z_2}{\partial b_4} = \hat{y}_2 - y_2
\]

Why called backpropagation?

- Propagation of prediction errors $\hat{y}_i - y_i$ in gradient!
Derivative of loss function over weight parameters

From \(\frac{\partial z_2}{\partial w_8} = h_2 \) and \(\frac{\partial l}{\partial z_i} = \hat{y}_i - y_i \)

\[
\frac{\partial l}{\partial w_8} = \frac{\partial l}{\partial z_2} \frac{\partial z_2}{\partial w_8} = h_2(\hat{y}_2 - y_2)
\]

Similarly,

\[
\frac{\partial l}{\partial w_7} = \frac{\partial l}{\partial z_1} \frac{\partial z_1}{\partial w_7} = h_2(\hat{y}_1 - y_1)
\]
\[
\frac{\partial l}{\partial b_4} = \frac{\partial l}{\partial z_2} \frac{\partial z_2}{\partial b_4} = \hat{y}_2 - y_2
\]

Why called backpropagation?

- Propagation of prediction errors \(\hat{y}_i - y_i \) in gradient!
Backpropagation: another derivative

\[\frac{\partial l}{\partial w_1} = \frac{\partial l}{\partial h_1} \cdot \frac{\partial h_1}{\partial w_1} = \left(\sum_i \frac{\partial l}{\partial z_i} \cdot \frac{\partial z_i}{\partial h_1} \right) \cdot \left(\frac{dh_1}{du_1} \cdot \frac{\partial u_1}{\partial w_1} \right) \]
Backpropagation: another derivative (cont’)

\[
\frac{\partial u_1}{\partial w_1} = \frac{\partial}{\partial w_1} (x_1 w_1 + x_2 w_2 + b_1) = x_1 \\
\frac{dh_1}{du_1} = \frac{d}{du_1} (\max(0, u_1)) = 1_{u_1>0}
\]
Backpropagation: another derivative (cont')

\[
\frac{\partial z_1}{\partial h_1} = \frac{\partial}{\partial h_1} (h_1 w_5 + h_2 w_7 + b_3) = w_5 \\
\frac{\partial z_2}{\partial h_1} = \frac{\partial}{\partial h_1} (h_1 w_6 + h_2 w_8 + b_4) = w_6
\]
Backpropagation: another derivative (cont')

\[
\frac{\partial l}{\partial w_1} = \left(\sum_i \frac{\partial l}{\partial z_i} \frac{\partial z_i}{\partial h_1} \right) \left(\frac{dh_1}{du_1} \frac{\partial u_1}{\partial w_1} \right) \\
= \begin{cases}
 x_1 \{w_5(\hat{y}_1 - y_1) + w_6(\hat{y}_2 - y_2)\}, & \text{if } u_1 > 0 \\
 0, & \text{if } u_1 \leq 0
\end{cases}
\]
Suppose we have a single input $x = [0.2, 0.5]^T$

Ideal (expected) output $y = [0, 1]^T$

Model parameters θ was initialized as follows
Backpropagation: computation example (cont’)

- Forward computation first, with results in red

Suppose learning rate $\eta = 0.5$, update with gradient descent,

$$
\theta_{t+1} = \theta_t - \eta \nabla L(\theta_t)
$$

$$
\frac{\partial l}{\partial w_8} = h_2(\hat{y}_2 - y_2) = 1.02 \times (0.225744 - 1) = -0.789741
$$

$$
w_8 = 0.15 - 0.5 \times (-0.789741) = 0.544871
$$
Backpropagation: computation example (cont’)

- Forward computation first, with results in red

Suppose learning rate $\eta = 0.5$, update with gradient descent,

$$\theta_{t+1} = \theta_t - \eta \nabla L(\theta_t)$$

$$\frac{\partial l}{\partial w_8} = h_2(\hat{y}_2 - y_2) = 1.02 \times (0.225744 - 1) = -0.789741$$

$$w_8 = 0.15 - 0.5 \times (-0.789741) = 0.544871$$
Backpropagation: computation example (cont’)

- Forward computation first, with results in red

Suppose learning rate $\eta = 0.5$, update with gradient descent,

$$\theta_{t+1} = \theta_t - \eta \nabla L(\theta_t)$$

$$\frac{\partial l}{\partial w_8} = h_2(\hat{y}_2 - y_2) = 1.02 \times (0.225744 - 1) = -0.789741$$

$$w_8 = 0.15 - 0.5 \times (-0.789741) = 0.544871$$
Backpropagation: computation example (cont’)

\[
\frac{\partial l}{\partial w_1} = x_1 \{ w_5 (\hat{y}_1 - y_1) + w_6 (\hat{y}_2 - y_2) \}
\]

\[
= 0.2 \times \{ 0.5 \times (0.774256 - 0) + 0.25 \times (0.225744 - 1.0) \}
\]

\[
= 0.038713
\]

\[
w_1 = 0.1 - 0.5 \times 0.038713 = 0.080644
\]
Backpropagation: computation example (cont')

\[\frac{\partial l}{\partial w_1} = x_1 \{ w_5 (\hat{y}_1 - y_1) + w_6 (\hat{y}_2 - y_2) \} \]

\[= 0.2 \times \{ 0.5 \times (0.774256 - 0) + 0.25 \times (0.225744 - 1.0) \} \]

\[= 0.038713 \]

\[w_1 = 0.1 - 0.5 \times 0.038713 = 0.080644 \]
\[
\frac{\partial l}{\partial w_1} = x_1 \{ w_5 (\hat{y}_1 - y_1) + w_6 (\hat{y}_2 - y_2) \}
\]
\[
= 0.2 \times \{0.5 \times (0.774256 - 0) + 0.25 \times (0.225744 - 1.0)\}
\]
\[
= 0.038713
\]
\[
w_1 = 0.1 - 0.5 \times 0.038713 = 0.080644
\]
Above example used single data to update model parameters.

How to update parameters if we have lots of (training) data?

- Training dataset $D = \{(x_n, y_n) | n = 1, \ldots, N\}$
- Loss function

$$L(\theta) = \frac{1}{N} \sum_{n=1}^{N} l(y_n, f(x_n; \theta))$$
Above example used *single* data to update model parameters.

How to update parameters if we have lots of (training) data?

- Training dataset $D = \{(x_n, y_n) | n = 1, \ldots, N\}$
- Loss function

$$L(\theta) = \frac{1}{N} \sum_{n=1}^{N} l(y_n, f(x_n; \theta))$$
Batch gradient descent

- Update model parameters using all data with gradient descent

\[\theta_{t+1} = \theta_t - \eta \nabla L(\theta_t) \]

\[= \theta_t - \frac{\eta}{N} \sum_{n=1}^{N} \nabla l(y_n, f(x_n; \theta_t)) \]

where \(\eta \) is learning rate, \(\nabla L(\theta_t) \) is gradient of loss function \(L \) over current model parameters \(\theta_t \).

- Very slow, and intractable for big data to fit in memory
- Guarantee to find minimum of loss function

```
for iter in range(nb_epochs):
    params_grad = eval_grad(loss_func, dataset, params)
    params = params - learning_rate * params_grad
```

This section is mainly from http://ruder.io/optimizing-gradient-descent/
Batch gradient descent

- Update model parameters using all data with gradient descent
 \[\theta_{t+1} = \theta_t - \eta \nabla L(\theta_t) \]
 \[= \theta_t - \frac{\eta}{N} \sum_{n=1}^{N} \nabla l(y_n, f(x_n; \theta_t)) \]

 where \(\eta \) is learning rate, \(\nabla L(\theta_t) \) is gradient of loss function \(L \) over current model parameters \(\theta_t \).

- Very slow, and intractable for big data to fit in memory

- Guarantee to find minimum of loss function

```python
for iter in range(nb_epochs):
    params_grad = eval_grad(loss_func, dataset, params)
    params = params - learning_rate * params_grad
```

This section is mainly from http://ruder.io/optimizing-gradient-descent/
Stochastic gradient descent

- Update model parameters using each single data \((x_n, y_n)\)

\[
\theta_{t+1} = \theta_t - \eta \nabla L(\theta_t) \\
= \theta_t - \eta \nabla l(y_n, f(x_n; \theta_t))
\]

- Very fast update, tractable for big data
- May jump to better local minimum
- Converge almost certainly to local minimum
- Convergence fluctuates

```python
for i in range(nb_epochs):
    np.random.shuffle(dataset)
    for example in dataset:
        params_grad = eval_grad(loss_func, example, params)
        params = params - learning_rate * params_grad
```
Stochastic gradient descent

- Update model parameters using each single data \((x_n, y_n)\)

\[
\theta_{t+1} = \theta_t - \eta \nabla L(\theta_t) \\
= \theta_t - \eta \nabla l(y_n, f(x_n; \theta_t))
\]

- Very fast update, tractable for big data
- May jump to better local minimum
- Converge almost certainly to local minimum
- Convergence fluctuates

```python
for i in range(nb_epochs):
    np.random.shuffle(dataset)
    for example in dataset:
        params_grad = eval_grad(loss_func, example, params)
        params = params - learning_rate * params_grad
```
Mini-batch gradient descent

- Update model parameters using a mini-batch of data $S \subset D$

$$
\theta_{t+1} = \theta_t - \eta \nabla L(\theta_t)
= \theta_t - \frac{\eta}{|S|} \sum_{(x_n, y_n) \in S} \nabla l(y_n, f(x_n; \theta_t))
$$

- In general $|S|$ ranges between tens and two/three hundreds
- Take the best of batch and stochastic gradient descents

```python
for i in range(nb_epochs):
    np.random.shuffle(dataset)
    for batch in get_batches(dataset, batch_size=64):
        params_grad = eval_grad(loss_func, batch, params)
        params = params - learning_rate * params_grad
```
Mini-batch gradient descent (cont’)

Challenges of mini-batch stochastic gradient

- adjust learning rate
- well approximate true gradient with mini-batch data
Challenges of mini-batch stochastic gradient

- adjust learning rate
- well approximate true gradient with mini-batch data
Momentum

- consider downhill directions from previous steps

\[\mathbf{v}_{t+1} = \gamma \mathbf{v}_t + \eta \nabla L(\theta_t) \]
\[\theta_{t+1} = \theta_t - \mathbf{v}_{t+1} \]

- \(\gamma = 0.9 \) or similar value

- \(\mathbf{v}_{t+1} = \eta \{ \nabla L(\theta_t) + \gamma \nabla L(\theta_{t-1}) + \gamma^2 \nabla L(\theta_{t-2}) + \ldots \} \)

- reduce oscillations in stochastic/mini-batch gradient descent
Momentum

- consider downhill directions from previous steps

\[
\begin{align*}
\mathbf{v}_{t+1} &= \gamma \mathbf{v}_t + \eta \nabla L(\theta_t) \\
\theta_{t+1} &= \theta_t - \mathbf{v}_{t+1}
\end{align*}
\]

- \(\gamma = 0.9 \) or similar value
- \(\mathbf{v}_{t+1} = \eta \{ \nabla L(\theta_t) + \gamma \nabla L(\theta_{t-1}) + \gamma^2 \nabla L(\theta_{t-2}) + \ldots \} \)
- reduce oscillations in stochastic/mini-batch gradient descent

(a) SGD without momentum
(b) SGD with momentum
Momentum (cont’)

- Momentum may cause ball roll down too fast (red arrow)!
- Need a smarter ball knowing when to slow down before the hill slopes up again (blue arrow).
Nesterov accelerated gradient (NAG)

- Look ahead, i.e., consider downhill direction at future’s approximate position $\theta_t - \gamma v_t$

$$

\begin{align*}
 v_{t+1} &= \gamma v_t + \eta \nabla L(\theta_t - \gamma v_t) \\
 \theta_{t+1} &= \theta_t - v_{t+1}
\end{align*}

- Avoid ball going down too fast with accumulated momentum
Nesterov accelerated gradient (NAG)

- Look ahead, i.e., consider downhill direction at future’s approximate position $\theta_t - \gamma v_t$

$$
\begin{align*}
\nu_{t+1} &= \gamma \nu_t + \eta \nabla L(\theta_t - \gamma \nu_t) \\
\theta_{t+1} &= \theta_t - \nu_{t+1}
\end{align*}
$$

- Avoid ball going down too fast with accumulated momentum
Nesterov accelerated gradient (NAG)

- Look ahead, i.e., consider downhill direction at future’s approximate position $\theta_t - \gamma v_t$

$$
\begin{align*}
 v_{t+1} &= \gamma v_t + \eta \nabla L(\theta_t - \gamma v_t) \\
 \theta_{t+1} &= \theta_t - v_{t+1}
\end{align*}
$$

- Avoid ball going down too fast with accumulated momentum

Momentum and NAG update gradient. Can we update learning rate over iterations?
Adagrad

- Adaptively update learning rate for each parameter, with square root of sum of squares of its historical derivatives

\[
g_{t+1,i} = g_{t,i} + \left(\frac{\partial L(\theta_t)}{\partial \theta_i} \right)^2
\]

\[
\theta_{t+1,i} = \theta_{t,i} - \frac{\eta}{\sqrt{g_{t+1,i} + \epsilon}} \frac{\partial L(\theta_t)}{\partial \theta_i}
\]

- Larger update in history for \(\theta_i \) will cause smaller learning rate \(\eta/(\sqrt{g_{t+1,i} + \epsilon}) \) in updating \(\theta_i \).
- No need to manually tune learning rate.
- \(g_{t+1,i} \) becomes larger over iterations, causing very small learning rate ultimately for each \(\theta_i \).
Adagrad

- Adaptively update learning rate for each parameter, with square root of sum of squares of its historical derivatives

\[
\begin{align*}
g_{t+1,i} &= g_{t,i} + \left(\frac{\partial L(\theta_t)}{\partial \theta_i}\right)^2 \\
\theta_{t+1,i} &= \theta_{t,i} - \frac{\eta}{\sqrt{g_{t+1,i} + \epsilon}} \frac{\partial L(\theta_t)}{\partial \theta_i}
\end{align*}
\]

- Larger update in history for \(\theta_i \) will cause smaller learning rate \(\eta/(\sqrt{g_{t+1,i} + \epsilon}) \) in updating \(\theta_i \).
- No need to manually tune learning rate.
- \(g_{t+1,i} \) becomes larger over iterations, causing very small learning rate ultimately for each \(\theta_i \).
RMSprop (Root Mean Square propagation)

- Solve monotonically decreasing learning rate issue in Adagrad

\[
g_{t+1,i} = \gamma g_{t,i} + (1 - \gamma) \left(\frac{\partial L(\theta_t)}{\partial \theta_i} \right)^2
\]

\[
\theta_{t+1,i} = \theta_{t,i} - \frac{\eta}{\sqrt{g_{t+1,i} + \epsilon}} \frac{\partial L(\theta_t)}{\partial \theta_i}
\]

- \(\gamma = 0.9 \) or similar value
- \(g_{t+1,i} \) is exponential decaying average of squared derivatives
- No need to manually tune learning rate
RMSprop (Root Mean Square propagation)

- Solve monotonically decreasing learning rate issue in Adagrad

\[
g_{t+1,i} = \gamma g_{t,i} + (1 - \gamma)\left(\frac{\partial L(\theta_t)}{\partial \theta_i}\right)^2
\]

\[
\theta_{t+1,i} = \theta_{t,i} - \frac{\eta}{\sqrt{g_{t+1,i} + \epsilon}} \frac{\partial L(\theta_t)}{\partial \theta_i}
\]

- \(\gamma = 0.9\) or similar value
- \(g_{t+1,i}\) is exponential decaying average of squared derivatives
- No need to manually tune learning rate
Adam (Adaptive Moment Estimation)

- Adds momentum and bias to RMSprop

\[
\begin{align*}
m_{t+1,i} &= \beta_1 m_{t,i} + (1 - \beta_1) \frac{\partial L(\theta_t)}{\partial \theta_i} \\
g_{t+1,i} &= \beta_2 g_{t,i} + (1 - \beta_2) \left(\frac{\partial L(\theta_t)}{\partial \theta_i} \right)^2 \\
\hat{m}_{t+1,i} &= \frac{m_{t+1,i}}{1 - \beta_1^{t+1}} \\
\hat{g}_{t+1,i} &= \frac{g_{t+1,i}}{1 - \beta_2^{t+1}} \\
\theta_{t+1,i} &= \theta_{t,i} - \frac{\eta}{\sqrt{\hat{g}_{t+1,i}} + \epsilon} \hat{m}_{t+1,i}
\end{align*}
\]

- \(m_{t+1,i} \) and \(g_{t+1,i} \) are first (mean) and second moment (uncentered variance) of derivative
- \(m_{t+1,i} \) and \(g_{t+1,i} \) are biased toward zero, so \(\hat{m}_{t+1,i} \) and \(\hat{g}_{t+1,i} \)
Adam (Adaptive Moment Estimation)

- Adds momentum and bias to RMSprop

\[m_{t+1,i} = \beta_1 m_{t,i} + \left(1 - \beta_1\right) \frac{\partial L(\theta_t)}{\partial \theta_i} \]

\[g_{t+1,i} = \beta_2 g_{t,i} + \left(1 - \beta_2\right) \left(\frac{\partial L(\theta_t)}{\partial \theta_i}\right)^2 \]

\[\hat{m}_{t+1,i} = \frac{m_{t+1,i}}{1 - \beta_1^{t+1}} \]

\[\hat{g}_{t+1,i} = \frac{g_{t+1,i}}{1 - \beta_2^{t+1}} \]

\[\theta_{t+1,i} = \theta_{t,i} - \frac{\eta}{\sqrt{\hat{g}_{t+1,i}} + \epsilon} \hat{m}_{t+1,i} \]

- \(m_{t+1,i} \) and \(g_{t+1,i} \) are first (mean) and second moment (uncentered variance) of derivative
- \(m_{t+1,i} \) and \(g_{t+1,i} \) are biased toward zero, so \(\hat{m}_{t+1,i} \) and \(\hat{g}_{t+1,i} \)
Gradient descent: summary

- Batch gradient descent
- Stochastic gradient descent
- Mini-batch gradient descent
 - Adapt gradient
 - Adapt learning rate
 - NAG
 - Momentum
 - Adagrad
 - Adam
 - RMSprop

However, actually vanilla SGD or mini-batch gradient with simple decreasing learning rate schedule works well!
Gradient descent: summary

- Batch gradient descent
- Stochastic gradient descent
- Mini-batch gradient descent

Adapt gradient

- NAG
- Momentum
- Adagrad

Adapt learning rate

- Adam
- RMSprop

- However, actually vanilla SGD or mini-batch gradient with simple decreasing learning rate schedule works well!
Hyper-parameter tuning

The above is about finding network’s weight parameters.

We also need to determine

- parameters in gradient descent, e.g., learning rate
- number of network layers and number of neurons per layer

These are called hyper-parameters!
Hyper-parameter tuning

The above is about finding network’s weight parameters.

We also need to determine

- parameters in gradient descent, e.g., learning rate
- number of network layers and number of neurons per layer

These are called hyper-parameters!
Hyper-parameter tuning (cont’)

How to choose from multiple sets of hyper-parameter values?

- Rule: choose the set with which the trained network model has better generalization performance!

Generalization ability

How well does the trained model work for unseen data?
Hyper-parameter tuning (cont’)

How to choose from multiple sets of hyper-parameter values?

- Rule: choose the set with which the trained network model has better *generalization* performance!

Generalization ability

How well does the trained model work for unseen data?
Hyper-parameter tuning (cont’)

How to choose from multiple sets of hyper-parameter values?

- Rule: choose the set with which the trained network model has better generalization performance!

Generalization ability

How well does the trained model work for unseen data?

举一反三
Data set for hyper-parameter tuning

Whole data set divided:

- Training set (e.g., 60%): used to train model parameter
- Validation set (e.g., 20%): to find optimal hyper-parameters
- Test set (e.g., 20%): to evaluate final model's performance

Choose the set of hyper-parameters with which the trained model has the best performance on the validation set.
Data set for hyper-parameter tuning

Whole data set divided:

- **Training set** (e.g., 60%): used to train model parameter
- **Validation set** (e.g., 20%): to find optimal hyper-parameters
- **Test set** (e.g., 20%): to evaluate final model's performance

Choose the set of hyper-parameters with which the trained model has the best performance on the validation set.
When whole set is small: K-fold cross validation

- for each run, use one unique subset as validation set, the other (K-1) subsets as training set
- average performance over K runs
Hyper-parameter tuning: grid search

Where are the multiple sets of hyper-parameters from?

Grid search
- exhaustive searching in hyper-parameter space
- often in log scale
- only for small number of hyper-parameters
Hyper-parameter tuning: grid search

Where are the multiple sets of hyper-parameters from?

Grid search
- exhaustive searching in hyper-parameter space
- often in log scale
- only for small number of hyper-parameters

![Graph showing grid search example]
Hyper-parameter tuning: grid search

Where are the multiple sets of hyper-parameters from?

Grid search
- exhaustive searching in hyper-parameter space
- often in log scale
- only for small number of hyper-parameters
Hyper-parameter tuning: random search

Random search

- randomly sample multiple times in hyper-parameter space
- better than grid method if hyper-parameter number is higher
Hyper-parameter tuning: evolutionary method

Evolutionary optimization

- repeat: replace worst-performing hyper-parameter sets (gray) with new sets (red) through crossover and mutation

Google used the method to find better network structures; see Jaderberg et al., 2017, "Population Based Training of Neural Networks"
Deep learning frameworks/platforms

In practice, how do we get a real deep learning system?

- construct the structure of a neural network
- minimize the loss function with training dataset
Deep learning frameworks/platforms

In practice, how do we get a real deep learning system?

- construct the structure of a neural network
- minimize the loss function with training dataset

Such functions are provided by deep learning frameworks/platforms (including libraries, packages, toolkits)!
In practice, how do we get a real deep learning system?

- construct the structure of a neural network
- minimize the loss function with training dataset

Such functions are provided by deep learning frameworks/platforms (including libraries, packages, toolkits)!
It is simple to construct a network

Construct a two-layer network and run to get gradient

- PyTorch coding is more natural and easy to learn

TensorFlow

```python
import numpy as np
def seed(0):
    import tensorflow as tf

N, D = 3, 4

with tf.device('/gpu:0'):
    x = tf.placeholder(tf.float32)
    y = tf.placeholder(tf.float32)
    z = tf.placeholder(tf.float32)

    a = x * y
    b = a + z
    c = tf.reduce_sum(b)

    grad_x, grad_y, grad_z = tf.gradients(c, [x, y, z])

with tf.Session() as sess:
    values = {
        x: np.random.randn(N, D),
        y: np.random.randn(N, D),
        z: np.random.randn(N, D),
    }

    out = sess.run([c, grad_x, grad_y, grad_z],
                    feed_dict=values)
    c_val, grad_x_val, grad_y_val, grad_z_val = out
```

PyTorch

```python
import torch
def seed(0):
    from torch.autograd import Variable

N, D = 3, 4

x = Variable(torch.randn(N, D),
              requires_grad=True)

y = Variable(torch.randn(N, D),
              requires_grad=True)

z = Variable(torch.randn(N, D),
              requires_grad=True)

a = x * y
b = a + z

x = torch.sum(b)

x.backward()

print(x.grad.data)
print(y.grad.data)
print(z.grad.data)
```

code from Stanford CS231n Lecture 8
It is simple to train a network

Construct a two-layer network and train it over 50 iterations

- Keras is as simple as PyTorch, but less flexible

Keras

```python
from keras.models import Sequential
from keras.layers.core import Dense, Activation
from keras.optimizers import SGD

N, D, H = 64, 1000, 100

model = Sequential()
model.add(Dense(input_dim=D, output_dim=H))
model.add(Activation('relu'))
model.add(Dense(input_dim=H, output_dim=D))

optimizer = SGD(lr=1e0)
model.compile(loss='mean_squared_error', optimizer=optimizer)

x = np.random.randn(N, D)
y = np.random.randn(N, D)
history = model.fit(x, y, nb_epoch=50,
                 batch_size=N, verbose=0)
```

PyTorch

```python
import torch
from torch.autograd import Variable

N, D_in, H, D_out = 64, 1000, 100, 10
x = Variable(torch.randn(N, D_in))
y = Variable(torch.randn(N, D_out), requires_grad=False)

model = torch.nn.Sequential(
    torch.nn.Linear(D_in, H),
    torch.nn.ReLU(),
    torch.nn.Linear(H, D_out))
loss_fn = torch.nn.MSELoss(size_average=False)

learning_rate = 1e-4
for t in range(500):
    y_pred = model(x)
    loss = loss_fn(y_pred, y)
    model.zero_grad()
    loss.backward()

    for param in model.parameters():
        param.data -= learning_rate * param.grad.data
```

code from Stanford CS231n Lecture 8
Computational graph - TensorFlow

Static computational graph
- define-then-run: define graph (function) once, then compute
- more efficient, e.g., save memory

code and figure from Stanford CS231n Lecture 8
Dynamic computational graph
- define-by-run: construct graph (function) when computing
- more flexible, e.g., handle flexible inputs and outputs
- easier to construct complex graph and debug code!

Computation Graph - PyTorch

Forward pass looks just like numpy

```
import torch
from torch.autograd import Variable

N, D = 3, 4

x = Variable(torch.randn(N, D), requires_grad=True)
y = Variable(torch.randn(N, D), requires_grad=True)
z = Variable(torch.randn(N, D), requires_grad=True)

a = x * y
b = a + z
c = torch.sum(b)
c.backward()
print(x.grad.data)
print(y.grad.data)
print(z.grad.data)
```
TensorFlow vs PyTorch: more

- Both provide gradient computation with auto-differentiation
- TensorFlow: easy product deployment; more online codes
- PyTorch: easy data loading, parallel processing

- For developing products: TensorFlow is winner!
- For doing research: PyTorch/Keras is winner

from https://awni.github.io/pytorch-tensorflow/
Both provide gradient computation with auto-differentiation
TensorFlow: easy product deployment; more online codes
PyTorch: easy data loading, parallel processing
For developing products: TensorFlow is winner!
For doing research: PyTorch/Keras is winner

from https://awni.github.io/pytorch-tensorflow/
Summary

- Backpropagation: gradient descent with chain rule
- Mini-batch gradient descent and variants
- Hyper-parameter tuning: validation, searching
- Deep learning frameworks: TensorFlow or PyTorch?

Further reading:

About paper summary

Where to find good papers:

- http://www.arxiv-sanity.com
- International Conference on Machine Learning (ICML)
- Neural Information Processing Systems (NIPS)
- International Conference on Learning Representations (ICLR)
- Association for the Advancement of Artificial Intelligence (AAAI)
- International Conference on Computer Vision and Pattern Recognition (CVPR)
- International Conference on Computer Vision (ICCV)
- European Conference on Computer Vision (ECCV)

Suggestion:
- Team members discuss together what to write
- One/two to write, the other two/one to criticize
About paper summary

Where to find good papers:

- http://www.arxiv-sanity.com
- International Conference on Machine Learning (ICML)
- Neural Information Processing Systems (NIPS)
- International Conference on Learning Representations (ICLR)
- Association for the Advancement of Artificial Intelligence (AAAI)
- International Conference on Computer Vision and Pattern Recognition (CVPR)
- International Conference on Computer Vision (ICCV)
- European Conference on Computer Vision (ECCV)

Suggestion:

- Team members discuss together what to write
- One/two to write, the other two/one to criticize
About the course project

Contests/challenges can be from:
- http://cvpr2019.thecvf.com/program/workshops
- https://www.kaggle.com/competitions
- http://rrc.cvc.uab.es/

Note:
- Choose those in 2018/2019
- Some deadlines are soon
- Need not choose active contests/challenges