
High-Entropy Layouts for Content-based
Browsing and Retrieval

Ruixuan Wang Stephen J. McKenna Junwei Han
School of Computing, University of Dundee, UK

{ruixuanwang,stephen,jeffhan}@computing.dundee.ac.uk

ABSTRACT
Multimedia browsing and retrieval systems can use dimen-
sionality reduction methods to map from high-dimensional
content-based feature distributions to low-dimensional lay-
out spaces for visualization. However, this often results in
displays in which many items are occluded whilst large re-
gions are empty or only sparsely populated with items. Fur-
thermore, such methods do not take into account the shape
of the region of layout space to be populated. This paper
proposes a layout method that addresses these limitations.
Layout distributions with low Renyi quadratic entropy are
penalized since these result in displays in which some re-
gions are over-populated (i.e. many images are occluded),
sparsely populated or empty. Experiments using two image
datasets and a comparison with two related methods show
the effectiveness of the proposed method.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Theory and methods; H.4.3 [Information Sys-
tems Applications]: Communications Applications —In-
formation browsers

General Terms
Algorithms, Theory

Keywords
Image layouts, Renyi entropy, manifold learning, content-
based browsing and retrieval.

1. INTRODUCTION
Image or multimedia browsing and retrieval systems need

to enable users to visualize collections of multimedia items
(or their thumbnails or icons) by laying them out appro-
priately for display. This paper proposes a method for ar-
ranging such items, especially images, in a lower-dimensional
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(e.g., 2D in [7] or 3D in [8, 10]) layout space. Image data
are used to illustrate and evaluate the method although in
principle it could be applied to other media such as video.

Browsing systems often categorize items (e.g., images)
into different classes and simply lay them out on a 2D display
as lists of thumbnails for each class of items [5]. Similarly,
retrieval systems often lay out items as lists of thumbnails
ordered by similarity to a query (e.g. VisualSEEk [13]).
Such 1D lists do not portray the mutual relationships be-
tween items well. Alternatively, 2D map-based visualiza-
tions [4, 8, 10, 12] lay out items such that similar items
appear close to one another on the 2D display while very
different items will be further apart. These 2D layout tech-
niques differ in how they extract high-dimensional feature
vectors from items, measure pairwise item similarity, and
perform dimensionality reduction to map the distribution of
items from the high-dimensional space to a 2D space [11].
For example, Rubner et al. [12] used Earth Mover’s Distance
to measure pair-wise dissimilarity based on color and texture
features, and multi-dimensional scaling (MDS) [3] to map to
a 2D space. The dimensionality reduction methods that are
used in these visualization techniques were formulated with
the goal of approximating the distribution of items in the
chosen high-dimensional feature space. While this provides
useful visualization of this distribution, there may be more
appropriate ways of laying out items as images for browsing.
Firstly, such methods often result in displays in which many
images occlude other images whilst large available areas of
the layout space are empty or only sparsely populated with
images. Secondly, such methods do not take into account
the shape of the region in the layout space that is available
to be populated.

The goal of the research described in this paper is to ad-
dress these shortcomings. A method is proposed that gen-
erates layouts which conform to a pre-specified shape, ap-
proximate the feature space distribution, and result in ren-
dered displays that are populated more uniformly with im-
ages. The shape of the layout region to be populated by the
method can be specified to be annular (Figure 3(a) and (c)),
rectangular (Figure 4(c)), or elliptical, for example. The rel-
ative sizes and the aspect ratios of the images are taken into
account by the method. The images are taken to form a dis-
tribution in the low-dimensional layout space. Layout distri-
butions with low entropy are penalized since these result in
displays in which some regions are over-populated (i.e. many
images are occluded) and other regions are sparsely popu-
lated or empty. High entropy layouts, on the other hand,
arrange images more uniformly over the layout region.



The contributions of this paper are (i) a novel formula-
tion for content-based visualization of multimedia collections
based on combining existing manifold learning methods with
entropy, (ii) more specifically, the use of Renyi quadratic
entropy in this context based on pairwise measures between
Gaussians, (iii) the use of a penalty term to obtain image
layouts in a layout region with pre-specified shape, (iv) em-
pirical evaluation using gradient-based optimization on two
datasets of images, and (v) empirical comparison with two
previously proposed methods for image overlap reduction.

The next Section formulates the problem as an optimiza-
tion problem. Section 3 describes how this optimization
can be performed using gradient-based methods. Section 4
briefly discusses the methods in the literature whose aims
are closest to those of this paper. Section 5 presents exper-
iments including comparisons with these previous methods.

2. FORMULATION
Given a set of images {Ii}, i = 1, . . . , N , with extracted

high-dimensional feature vectors {xi} and image (or thumb-
nail) sizes {si}, the problem of interest is to arrange the
images on a (virtual) layout region R with predetermined
shape by trading off two requirements: (1) the distance be-
tween images in the layout space should depend on the sim-
ilarity of their content, and (2) images should spread out so
as to make good use of the layout region. Note that the lay-
out region is a bounded region of the layout space. It is not
limited to be rectangular and can be annular (Figure 3(a))
for example.

The first requirement can be met by manifold learning
techniques. By assuming that the images are distributed on
a low-dimensional nonlinear manifold embedded in the high-
dimensional space, manifold learning techniques can be ap-
plied to discover the structure of the data manifold and un-
fold the manifold into a vector space. Once the original high-
dimensional data points can be faithfully embedded into the
lower-dimensional vector space, the relative proximity of im-
ages in the database will be approximately preserved in the
lower-dimensional (e.g., 2D or 3D) space. This is referred
to as content structure preservation. Based on the mani-
fold learning result, a large collection of high-dimensional
images can be visualized in the 2D or 3D space. Accord-
ing to criteria for manifold structure and structure preser-
vation when unfolding the manifold, many different manifold
learning techniques have been proposed, e.g., Isomap [14],
Laplacian eigenmaps [2], diffusion maps [9], and maximum
variance unfolding [16]. In principle, any manifold learning
technique can be used.

Here Isomap is used as an example for empirical compari-
son. Isomap first constructs a sparse graph based on {xi} in
which there is a one-to-one correspondence between images
and vertices in the graph. Edges are constructed between
similar images by the K-nearest neighbor (KNN) method.
Each edge is assigned a weight wij which is the dissimilar-
ity between the two neighboring images. An approximation,
Dij , to the geodesic distance between any two images is then
obtained as the shortest path between their corresponding
vertices in the graph. Without loss of generality, {Dij} are
normalized such that the maximum Dij is limited by the
layout region size. Isomap can determine image positions
{yi} in the lower-dimensional (e.g., 2D or 3D) vector space

by minimizing Es:

Es =
1

N

N∑
i=1

N∑
j=1

(dij −Dij)
2 , (1)

where dij is the Euclidean distance between yi and yj . Note
that when two images Ii and Ij are similar in content, the
distance Dij between them will be small and accordingly
the two images in the lower-dimensional space will probably
appear close to each other.

For the second requirement, we propose that layouts with
high entropy are preferable. Given an image position yi in
the lower-dimensional layout space, a Gaussian distribution
G(yi,Σi) is used to approximate the spatial distribution of
this image in the space, where Σi is determined by image
size and shape, the number of images, and the size of the
layout region. Then, the Gaussian distributions of all the
images can be combined to obtain a Gaussian mixture with
equal weight for each Gaussian component, i.e.,

p(y) =
1

N

N∑
i=1

G(y − yi,Σi) . (2)

Instead of Shannon entropy, the use of Renyi’s quadratic en-
tropy measure is proposed here. This is because the quadratic
Renyi entropy, H, of a Gaussian mixture can be efficiently
estimated as a sum of pair-wise measures between Gaussian
components [15], i.e.,

H = − log

∫

y

p(y)2dy

= − log{ 1

N2

N∑
i=1

N∑
j=1

G(yi − yj ,Σi + Σj)} . (3)

Maximizing H (or minimizing −H) would have the effect
of arranging images so that their distribution is close to uni-
form. This means that large areas of empty space in the
layout region are avoided and that the extent to which im-
ages overlap each other is kept small. This has to be traded-
off against content structure preservation, so the goal is to
minimize Eλ,

Eλ = (1− λ)Es − λH , (4)

subject to the constraint that each image should stay within
the region R, where λ ∈ [0, 1] is a trade-off parameter. The
value of λ should be determined in an application-dependent
way. When λ is close to 0, preservation of manifold structure
is emphasized. When λ is close to 1, spreading the images
to maximize entropy is emphasized.

3. OPTIMIZATION
The constrained optimization problem in Equation (4)

could be solved using various well-known optimization meth-
ods. Here we use a penalty function method to penalize
image positions outside R. Intuitively, the larger the Eu-
clidean distance from the image position yi to the layout
region R, the worse the image is positioned, and therefore
the higher the penalty. Denote by Eb the mean penalty cost
of all image positions, i.e.,

Eb =
1

N

N∑
i=1

f(yi) , (5)



where f(yi) is a monotonically increasing non-negative func-
tion of the Euclidean distance from yi to the layout region
R (i.e., miny∈R ‖y−yi‖). Then, the problem can be finally
transformed to that of minimising E, where

E = Eλ + γEb , (6)

and γ is a constant to balance Eλ and Eb.
Gradient-based methods can be used to find a local min-

imum of E. From Equation (6),

∂E

∂yj
= (1− λ)

∂Es

∂yj
− λ

∂H

∂yj
+ γ

∂Eb

∂yj
. (7)

The gradient of Es with respect to yj has been derived by
Kruskal [3]:

∂Es

∂yj
= −2

∑

i6=j

(dij −Dij)

dij
· (yi − yj) , (8)

From Equation (3), we can derive the gradient of H with
respect to yj :

∂H

∂yj
= − 1

α

∑
i

{G(yi − yj ,Σi + Σj)(Σi + Σj)
−1

·(yi − yj)} , (9)

where α =
∑

i

∑
j G(yi − yj ,Σi + Σj).

For the gradient of Eb with respect to yj , a discrete ap-
proximation is adopted because, in general, it is difficult
to parametrically represent the function f(yi) due to the
freeform shape of the layout region. In the approximation,
the k-th component of the gradient of Eb with respect to yj

is computed by

∂Eb

∂yjk
≈ 1

N

N∑
i=1

f(yj + δuk)− f(yj)

δ
, (10)

where δ is the discrete unit scale and uk is the basis vector
for the k-th dimension of the layout space.

For optimization, good initial positions {yi} can be ob-
tained by minimizing Es using the Isomap method.

4. RELATED WORK
Methods have been proposed previously for reducing im-

age overlap when visualizing small collections of images.
Moghaddam et al. [8] and Nguyen et al. [10] used gradient
descent methods to move overlapped images towards unoc-
cupied layout space without constraining image positions to
be within a layout region. Basalaj [1] and Liu et al. [6] used
an analogue of MDS in a discrete domain to display each
image within a single cell of a grid. While these approaches
can help to reduce image overlap, they mainly deal with
small numbers of images (about 20 ∼ 200).

5. EMPIRICAL EVALUATION
The method is not limited by the dimensionality of the

layout space, nor by the shapes of the images. However,
in order to experimentally evaluate it, in the following, we
consider a 2D display and each image Ii is assumed to be
aligned with the axes of the layout space. In this case, the
covariance matrix Σi is diagonal, i.e.,

Σi =

(
σ2

i1 0
0 σ2

i2

)

Note that σi1 and σi2 should be neither very small nor very
large because in both cases, H (Equation (3)) will converge
to a constant function and therefore the image layout cannot
be effectively spread. Here we propose a method to auto-
matically determine suitable values of σi1 and σi2 based on
image sizes, layout region size, and the number of images,
i.e.,

σi1 = wi
2

√
|R|

N w h
, σi2 = hi

2

√
|R|

N w h
,

where |R| is the area of the layout region, hi and wi are
the height and width of the ith image, and w and h are

the average width and height of the images.
√

|R|
N w h

is a

global scale for each image such that the combination p(y)
(Equation (2)) of all images’ spatial distributions can effec-
tively cover the layout region. For a fixed layout region R,
the greater the number of images and the larger the mean
image size, the smaller the global scale. For a fixed set of im-
ages, the larger the layout region, the larger the global scale.
Every pair (σi1, σi2) is linearly related to the corresponding
image size and the global scale.

The method was evaluated using two image databases:
1000 images of textile designs from a commercial archive
and 1000 art images from a public museum collection. Two
kinds of features were used to represent images. Color his-
tograms with 512 bins were extracted by regularly quantiz-
ing hue into 32 values and saturation into 16 values in the
HSV color space. Texture features were extracted by per-
forming multi-scale Gabor filtering and then computing the
means and variances of the normalised magnitude responses
at each scale and orientation, giving 108 texture features.
For both kinds of features, Euclidean distance was used to
determine the nearest neighbors for constructing the man-
ifold structure (see Section 2). In the tests, each image Ii

was resized such that the maximum of its height and width
was 0.08

√
|R|. All the tests were performed using a Matlab

R2007a implementation running on an Intel Core 2 Quad
2.4 GHz PC with 3.5GB RAM.

5.1 Overlap versus Structure Preservation
The method was compared to the methods of Moghad-

dam et al. [8] and Nguyen et al. [10]. Since the stated aim of
these methods was overlap reduction, the proposed method
was compared to these previous methods using a measure of
overlap similar to that used by those authors. Specifically,
overall image overlap eo, was measured as the sum of all
pair-wise image overlaps

√
zij in the layout space, i.e.,

eo =

N∑
i=1

N∑
j=1

√
zij , (11)

where the area zij of the overlap region can be directly com-
puted from the image positions, yi and yj , and the image
sizes, (wi, hi) and (wj , hj). Note that before computing im-
age overlap eo, all yi’s and yj ’s have to be normalized such
that all images are positioned in the default layout region.

In order to compare these methods with the proposed
method, γ = 0 in Equation (6) because Eb was not used in
the previous methods. In this case, for each Σi, σi1 = wi/2
and σi2 = hi/2 without global scaling.

In the evaluation, structure preservation error, es, was



measured as

es = min
β
{ 1

N

N∑
i=1

N∑
j=1

(β · dij −Dij)
2} , (12)

where the value of the normalization factor β at this mini-
mum can be analytically computed as:

β∗ =

∑N
i=1

∑N
j=1 dij ·Dij∑N

i=1

∑N
j=1 d2

ij

. (13)

β is necessary to compute es because, intuitively, the struc-
ture of the image distribution should be the same if all dij

are scaled by the same amount.
For fair comparison and consistent notation, the same Es

was used for structure preservation in Nguyen’s method such
that their cost function (Equation (9) in [10]) is written E =
(1−λ)Es +λ ·EV . The cost function (Equation (1) in [8]) of
Moghaddam’s method was reformulated as E = (1− λ) · S ·
G + λ ·F . Please refer to [8] and [10] for explanation of EV ,
G, S and F . In both these previous methods, each image
was approximated by a circular image with radius smax/2.

In this test, 100 images were uniformly sampled from the
set of textile images, and each image was represented by the
Gabor features. The trade-off parameter λ was gradually
varied from 0 to 1. For every λ value, the structure error
es and overlap eo were measured based on the convergent
result of each method. In implementation, stochastic gradi-
ent descent was adopted since it helped escape local minima
and reduced the number of iterations compared to a non-
stochastic gradient descent. For each of the three methods,
it took between 20 and 100 iterations to obtain convergent
results, with each iteration taking about 30 milliseconds.
From the relationships between structure preservation and
overlap (Figure 1), it can be seen that for any given structure
error, the proposed method can always obtain equivalent or
lower image overlap than the other two methods. In addi-
tion, the minimum image overlap (i.e., ∼ 2) obtained by the
proposed method is much less than those (i.e., ∼ 4.5 and
∼ 4 respectively) obtained by the other two methods. This
can be perceptually verified from the corresponding visual-
izations of the image collection (Figure 2). Compared to
the initial visualization obtained by Isomap (Figure 2(a)),
there was much less image overlap in the visualizations ob-
tained by Moghaddam’s method and Nguyen’s method (Fig-
ure 2(b)(c)). However, the smallest image overlap appears
in the visualization obtained by the proposed method (Fig-
ure 2(d)). In Figure 2(d), almost every image is clearly
visualized with very small overlap by other images. The
proposed method performs better probably for two reasons.
Firstly, both width and height of each image are embedded
in the cost function, by which the pair-wise image overlap
can be more effectively approximated. In the two previous
methods, each image was approximated by a circular image.
Secondly, in the proposed cost function (Equation (4)), the
cost term −H that penalizes overlap is smoother and has a
larger region of effect on the pair-wise distance, which indi-
cates that a good minimum of the cost function can be more
easily found. In comparison, the cost terms for image over-
lap in both previous methods are piecewise smooth functions
with no effect on pair-wise distance when there is no image
overlap between two images, making it more difficult to find
a good minimum.
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Figure 1: The relationships between structure
error and image overlap obtained by Moghad-
dam’s method, Nguyen’s method, and the proposed
method.

5.2 Layout Region Shape
The proposed method can be applied to visualize collec-

tions of images on layout regions of various shapes. Here, an
annular layout region (Figure 3(a)) and a rectangular lay-
out region with a triangular hole (Figure 3(b)) were used
to visualize 200 images of textile designs. Each image was
represented by its color histogram. The function f(yi) in
Equation (5) was simply the square of the Euclidean dis-
tance from yi to the layout region R. The algorithm was
initialized using Isomap and then run with λ = 0.9 followed
by further iterations with λ = 1.0 in order to spread out im-
ages in each layout region. γ was experimentally set to 10
which was sufficient to constrain all image positions to lie in
the layout region. The method took approx 90 milliseconds
per iteration of the stochastic gradient-based optimization.
Figures 3(c) and (d) show that all images are spread out in
the layout region, while Figures 3(e) and (f) qualitatively
confirm that images similar in color are still positioned close
to one another.

5.3 Visualizations for Browsing
The performance of the method for larger collections of

images was tested using the two sets of 1000 images. Ga-
bor features were used to represent the textile images and
color histograms were used to represent the art images. γ
was set to 10 as in the previous test. The method took
about 1.5 seconds per iteration. Figure 4 illustrates the im-
age positions and the corresponding image visualizations in
the 2D display for the art image set. In the initial image
distribution obtained by Isomap (Figure 4(a)), most images
are clustered around the center of the rectangular layout re-
gion and a few images are irregularly distributed near the
boundaries. By trading off the structure preservation and
entropy, the images are more uniformly distributed with-
out strong clusters (Figure 4(b)). If entropy is emphasized
(i.e., λ = 1), the images are most uniformly separated from
their neighbors (Figure 4(c)). The corresponding image vi-
sualizations (Figures 4(d)(f)(h)) produced by rendering the
images to a display show that images similar in color are
still positioned close to one another when the requirement



(a) (b)

(c) (d)

Figure 2: Visualizations of 100 textile images. (a) Visualization based on the image positions obtained by
Isomap. (b–d) Visualizations with least image overlap (by setting λ = 1) obtained by Moghaddam’s method,
Nguyen’s method, and the proposed method.

of structure preservation is relaxed. Obviously, total image
overlap is always large when visualizing 1000 images on a
small 2D display. In order to better show the effect of the
method, the three distributions are zoomed in around one
image near the layout center and then the corresponding vi-
sualizations are shown in Figures 4(e)(g)(i). Note that the
image positions are scaled by the zoom operation but the
images themselves are not. Figures 4(e)(g)(i) clearly show
that the image overlap can be effectively reduced by the
proposed method. In image browsing, the proposed method
can provide an effective way for users to zoom in to a large
collection of images to view subsets of the images with less
occlusion.

Figure 5 illustrates the image positions and corresponding
image visualizations for the textile images, and the zoom-
in visualizations around an image near the layout center.
Similar observations can be made as above for the art im-
ages. Here the images are distributed according to texture
features instead of color features. In Figures 5(d)(f)(h), the
roughness of the image texture changes smoothly from top
to bottom in the display. The smooth change of texture can
help users to browse a large collection of images and find
images of interest with specific texture information.

6. CONCLUSION
A new problem formulation for arranging items for display

was developed by combining manifold learning with Renyi
entropy, subject to the constraint that each item should stay
within a specified layout region. The inclusion of the con-
straint into the cost function can ensure that all images are
positioned in the layout region. Renyi entropy can effectively
incorporate image size and aspect ratio information and be
applied to spread out the images in the layout region. Exper-
iments suggested that the proposed method performs better
than related methods, and it provides an effective way to ar-
range a large collection of images for content-based browsing
and retrieval applications.
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Figure 4: Visualization of 1000 art images by the proposed method using color features. Image positions
obtained using (a) Isomap, (b) a trade-off (λ = 0.8) between structure preservation and image overlap, and
(c) an emphasis on maximizing entropy. (d)(f)(h) The corresponding visualizations of the image collection.
(e)(g)(i) The corresponding visualizations after scaling the image positions around an image at the layout
center.
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Figure 5: Visualization of 1000 textile images by the proposed method using texture features. Image positions
obtained using (a) Isomap, (b) a trade-off (λ = 0.8) between structure preservation and image overlap, and
(c) an emphasis on maximizing entropy. (d)(f)(h) The corresponding visualizations of the image collection.
(e)(g)(i) The corresponding visualizations after scaling the image positions around an image at the layout
center.


