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Abstract—Epilepsy is one of the most common neurological
diseases in humans, and electroencephalography (EEG) is the
most widely used method for clinicians to detect epileptic seizures.
However, it is error-prone to detect epileptic seizures by manually
observing EEG, and labeling epilepsy data is an expensive and
time-consuming process. In this study, without requiring any
epileptic EEG data and only based on normal EEGs, a new self-
supervised learning method is proposed for anomaly detection
on EEG signals. In particular, a series of scaling transformations
are performed on the original EEG data to generated self-labeled
scaled EEG data, where different labels correspond to different
scaling transformations. Then using the self-labeled normal EEG
dataset, a multi-class classifier can be trained to accurately
predict the scaling transformations on new normal EEG data, but
not accurately on abnormal (epileptic) EEGs. The inconsistency
between the predicted scaling transformations and the ground-
truth scaling transformations can then be used to measure the
degree of abnormality in a new EEG data. Comprehensive experi-
mental evaluations demonstrate that the proposed self-supervised
method outperforms classic anomaly detection methods including
one-class support vector machine (SVM) and autoencoders. The
robustness of the proposed method also has been empirically
proved with different classifier structures and by varying relevant
hyper-parameters.

Index Terms—Anomaly detection, Self-supervised learning,
Epilepsy detection, Electroencephalography.

I. INTRODUCTION

Epilepsy is a common neurological disorder characterised
by recurring epileptic seizures [1], and it is reported that
globally 50 million people are suffered from epilepsy [2]. The
seizure symptoms include convulsions, loss of consciousness
and disturbances in perception, sensation, mood, or other
cognitive functions, depending on the regions and the extent
of the affected brain. Patients with epilepsy are often more
likely to suffer from mental illness, and the risk of premature
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death in epilepsy patients is three times higher than healthy
people. Thus, it is of practical significance to improve the
level of epilepsy diagnosis and treatment. As one convenient
way to record brain activities, electroencephalography (EEG)
has been commonly used to monitor and diagnose epileptic
seizures, because epilepsy often cause abnormal brain activi-
ties [3]. However, since epilepsy is spasmodic and it is difficult
to predict the recurrence of epileptic seizures in advance,
clinicians are often required to observe the EEG signals of
patients through the whole day, and even the most professional
clinicians could make mistakes in the long-term monitoring
process. Therefore, it would be much helpful if epileptic
seizures can be automatically and accurately detected.

Fig. 1. Two exemplar EGG data. Each EEG consists of multiple sequences.
Left: one normal EEG data; Right: one abnormal (epileptic) EEG data.

As for automatic analysis of other medical data, the tech-
niques for automatic detection of epileptic seizure detection
with EEG has also been shifted from traditional machine
learning approaches to the deep learning approaches. Tradi-
tionally, the feature extraction process is manually designed
by researchers, and then the hand-crafted features are used
to train certain classifiers to determine whether a patient is
in the state of epilepsy or not based on EEG signals [4].
Fourier transform and wavelet transform have been widely



used to extract frequency features from EEG [5], and nonlinear
dynamics of the EEG signals in the time domain has also
been shown helpful in differentiating the epilepsy state from
the healthy one [6]. As it is well-known, hand-crafted feature
extraction could omit potentially discriminative features for the
task of interest. In contrast, deep learning approaches can learn
to features directly from the EEG data, without requiring any
manual design of feature extraction. It is mainly the feature
learning process that enables deep learning models to outper-
form traditional approaches. As the most well-developed deep
learning approach, convolutional neural networks (CNNs) have
shown their superior performance in epilepsy detection, either
using the general multiple convolutional layers or pyramidal
one-dimensional convolutional layers to extract features [7],
[8]. Recently, CNN is further combined with recurrent neural
networks (RNNs) for epilepsy detection [9], [10], where RNN
is used to learn to extract temporal features from the EEG
signals. Although deep learning approaches have shown its
potential in accurate detection of epilepsy, the time-consuming
labeling of EEG signals as the state of epileptic seizures and
others have become one bottleneck in successfully applying
deep learning approaches. In addition, patients suffering from
epilepsy may show individual differences in brain activities
and patients suffering from other brain diseases may also
show certain abnormal brain activities, in which cases the deep
learning model trained with limited amount of epilepsy EEG
data may not be well generalized.

In order to alleviate the above issues, we provide a differ-
ent solution to the automatic detection of epilepsy, without
requiring any epileptic EEG data but just based on the healthy
or normal EEG data for model training. Here we formulate
epilepsy detection as an anomaly detection problem. Anomaly
detection is to estimate how abnormal one data is compared
to the distribution or content of normal data. In this work,
inspired by the self-supervised learning for anomaly detection
on image data [11], [12], we propose a new self-supervised
learning method specifically for EEG data. The self-supervised
deep learning model is trained based only on the normal EEG
data and can help detect any potentially abnormal (including
epileptic) signals in new EEG data. The main contributions
are listed below.

• A new self-supervised learning method based on only
normal EEG data is proposed particularly for detection
of any abnormal signal in EEG data.

• A simple and effective method is proposed to generate
the self-labeled data for self-supervised learning, in which
different labels correspond to different scaling transfor-
mations on EEG data.

• Comprehensive experimental evaluations show that the
proposed self-supervised learning based anomaly de-
tection performs significantly better than existing well-
known anomaly detection approaches, and the proposed
method is robust to varying model structures and hyper-
parameters settings.

II. METHODOLOGY

In this paper, we try to solve the problem of anomaly
detection on EEGs, with only normal EEGs available during
model training. Since only one type of data is used to train the
abnormality detector, unlike the general binary classification
which aims to classify any data into one of two classes,
the anomaly detection often aims to learn a scoring function
which can predict the degree of abnormality for any new
data. Inspired by the self-supervised learning approach for
abnormality detection on image data, we proposed a new self-
supervised learning strategy specially for anomaly detection
on EEGs. With the observation that abnormal EEG data often
include wave signals of higher frequencies, we create multiple
pseudo-labels based on each EEG data by resizing the normal
sequence data at different scales along the time dimension,
and then train a classifier to identify each of the scaling
transformations on any EEG data. Since the classifier is trained
based on the normal EEGs, it is expected that the classifier
would be able to correctly identify the scaling transformation
for any new normal data, but may incorrectly identify the
scaling of abnormal EEGs due to possible differences in
frequency between normal and abnormal EEGs. Therefore, the
inconsistency between the predicted scalings by the classifier
and the real scalings of the data could be used as the degree
of the abnormality for any new EEG data.

A. Generation of self-labeled EEG data

In general, each EEG data consists of multiple synchronized
sequences of brain activity signals (Figure 2 left), with each
sequence collected by one electrode at one unique location on
a brain surface over a short period of time (e.g., one second
for the data used here). Although brain activity signals are
originally continuous, each collected sequence data is from the
regular sampling of the original continuous signal, resulting in
a limited number of brain activity values.

Based on each EEG data, multiple self-labeled EEG data
can be generated (Figure 2), with each pseudo-label corre-
sponding to one specific scaling transformation of the EEG
data along the time dimension. Suppose totally K scaling
transformations will be applied to each EEG data, and the k-
th scaling transformation Tk is associated with a unique scale
sk. For the k-th scaling transformation, given an EEG data
represented by a matrix Xi, each sequence of data (a row in
Xi) in the EEG is firstly interpolated to generate a generally
longer sequence of sk · d values (Figure 2 middle), where d
represents the number of values in the original sequence. Then,
the d values around the center (or even from the beginning)
of the longer sequence are selected to form a new sequence.
For each scale sk, all the formed new sequences are finally
collected to form a new scaled EEG data Tk(Xi) as the
result of the scaling transformation Tk on Xi (Figure 2 right).
Consequently, based on the original EEG dataset {Xi}Ni=1, a
labled dataset {(Tk(Xi), k)}N,K

i,k=1 is generated based on the
multiple scaling transformations, where k represents both the
indicator of the k-th scaling transformation and the pseudo-
label of the scaled EEG data Tk(Xi).



Fig. 2. Generation of self-labeld scaled EEG data. Left: one EEG data
consisting of multiple sequences; Middle: each sequence is scaled (elongated)
along the time dimension with different scaling transformations; Right: part
of each sequence is selected (around the sequence center) and collected to
form multiple new self-labeled EEG data, with different labels corresponding
to different scaling transformations.

B. CNN classifier for prediction of scaling transformations

Using the self-labeled dataset {(Tk(Xi), k)} which is gen-
erated based on only the normal dataset {Xi}, a deep con-
volutional neural network (CNN) fθ(·) can be trained to
predict the scaling transformation for any scaled EEG data,
where θ represents the CNN parameters to be tuned during
model training. Any existing CNN backbone can be used for
the classifier, such as the well-known ResNet [13] or VGG-
Net [14]. Similar to popular CNNs for image classification,
the spatial size of convolutional kernels at each convolutional
layer is set 3 × 3 by default. It is arguable to use kernels of
size 1×3 considering there is no explicit spatial neighborhood
relationship between neighboring sequences in each EEG
data. However, experimental evidence suggests that kernels
of size 3 × 3 could be helpful to capture potential implicit
relationship across sequences. The final output of the CNN
classifier fθ(Tk(Xi)) consists of K values, each representing
the probability of one scaling transformation. As usual, the
cross-entropy loss is used to train the classifier by comparing
the difference between the classifier output and the ground-
truth scaling transformation (represented by one-hot vector)
over all training data {(Tk(Xi), k)}.

C. Anomaly detection

Once the CNN classifier is trained based on the self-labeled
normal EEG data, it is expected that the scaling of any
new normal EEG would be able to correctly identified by
the classifier. In contrast, the higher-frequency signals in an
abnormal EEG data would probably mislead the classifier
to predict an incorrect scaling transformation for the scaled
abnormal EEG data. Therefore, the difference or inconsistency
between the predicted scalings by the classifier and the ground-
truth scalings of the scaled EEG could be used to represent
the degree of abnormality for the new EEG. Formally, for any
new EEG data Xj , the K scaling transformations are applied
to the data to generate the K scaled EEG data {Tk(Xj)}Kk=1,
and the ground-truth scaling for Tk(Xj) is represented by

the corresponding one-hot vector yk whose k-th element is
1.0 and all others are 0’s. Then the inconsistency between
the classifier output fθ(Tk(Xj)) and the ground-truth scaling
yk for the scaled EEG Tk(Xj) can be calculated by certain
measurement g(fθ(Tk(Xj)),yk), where the measurement g
could be cross-entropy, L1 distance, or L2 distance between
fθ(Tk(Xj)) and yk. Over all the scaling transformations, the
degree of the abnormality for the new EEG data Xj can be
calculated by (also see Figure 3)

a(Xj) =
1

K

K∑
k=1

g(fθ(Tk(Xj)),yk) (1)

Fig. 3. Anomaly detection framework.

III. EXPERIMENTAL RESULTS

A. Experimental settings

Our method is evaluated based on the UPenn and Mayo
Clinic’s Seizure Detection Challenge dataset [15]. The original
dataset contains EEG data of 4 dogs and 8 human patients.
For each subject, multiple (segments of) EEG data were
recorded, with some in epileptic state and others in normal
state. Since the EEG recording equipment is identical and
well registered across all the 4 dogs, but varies in equipment
manufacturers and the number of recorded sequences for the
8 human patients, only the EEG data of 4 dogs were used in
the experimental evaluation. The EEG statistics of the 4 dogs
was summarized in Table I. Each (segment of) EEG data of
the dogs contains 16 sequences, and each sequence is from the
regular sampling of 400 values over a period of one second
by a unique electrode.

TABLE I
THE NUMBER OF DIFFERENT TYPES OF EGG DATA FOR EACH DOG.

Subject1 Subject2 Subject3 Subject4 Total
Normal 418 1148 4760 2790 9116

Abnormal 178 172 480 257 1087(Epilepsy)

Unless mentioned otherwise, the normal (non-epileptic)
EEG data were randomly split into the training set and test
set by a 4:1 ratio, and all the epileptic EEG data were used as



another part of the test set. Each value in EEGs was normalized
into the range [−1, 1] based on the minimum and maxmum
values in the training EEG dataset. By default, three scaling
transformations were adopted for the self-supervised model
training, with the scales s1 = 1.0, s2 = 2.0, and s3 = 3.0. The
Resnet34 was used as the default CNN backbone. Each CNN
model was trained by the Adam optimizer, with the learning
rate 0.00001 and the batch size 32. In all experiments, CNN
training was observed convergent within 200 epochs. During
testing, the cross-entropy loss was used as the measurement
function g to calculate the difference between predicted scal-
ing transformation and the ground-truth scaling. L1 and L2

distance led to similar results and therefore not reported. The
Receiver Operating Characteristic (ROC) curve and the area
under the ROC curve (AUC) were reported for performance
evaluation.

B. Comparisons with baselines

The proposed self-supervised anomaly detection was com-
pared with several well-known anomaly detection methods,
including the one-class support vector machine (OC-SVM)
[16], the statistical kernel density estimation (KDE) method,
the autoencoder (AE) [17] and the variational autoencoder
(VAE) [18]. OC-SVM learns a decision boundary between dis-
tribution of normal data and the origin in a higher-dimensional
space, and then uses this boundary to determine how far a
new data is from the normal training data. KDE naturally
construct the statistical distribution of the normal data, which
can then be used to estimate the probability of any new data
belonging to normal data distribution. Both AE and VAE use
the reconstruction error between the original input and the
reconstruction to measure the degree of abnormality for the
new input data. For all the baseline methods, similar efforts
were taken to tune relevant hyper-parameters. In particular, for
OC-SVM and KDE, the dimension of each sequence of data
was reduced from 400 to 64 by principal component analysis
(PCA) based on all the training set, and then the 16 dimension-
reduced sequences from each EEG data were reorganized to
get a vector for the model input. For AE and VAE, three
convolutional layers followed by one fully connected layer
were chosen for the encoder, and symmetrically one fully
connected layer followed by three deconvolutional layers were
chosen for the decoder. Figure 4 shows that our method
clearly outperform all the baseline methods. Compared to the
performance of the second best method (AE, AUC=0.866), our
method improved the anomaly detection by a large margin
(AUC=0.941). To more realistically simulate the epilepsy
detection scenario, we also evaluate our method at the subject
level, i.e., using three subjects’ normal EEG data for model
training and using the remaining subject’s normal EEG data
and all subjects epilepsy data for testing. As expected, our
method still works best compared to the baselines (Figure 5).
Furthermore, our method works more stably than the others,
with much smaller variance in detection performance for
the 4-fold cross-validation test. All the results support that
the scaling transformation is effective to help train a self-

Fig. 4. Comparison of different approaches for anomaly detection.

Fig. 5. Comparison of different approaches for anomaly detection at the
subject level. Each vertical line represents the standard deviation of the AUCs
over the 4-fold cross validations by the corresponding method.

supervised CNN model for anomaly detection, via which the
characteristics of normal EEG data can be well implicitly
learned and represented in the CNN model.

C. Robustness of the self-supervised anomaly detection

To show the robustness of the proposed method, we tested
the effect of the CNN structures, number of scaling transfor-
mations and scaling ranges, and the selected positions from
scaled (elongated) EEG sequences on the performance of
anomaly detection.
Classifier structures. To check whether the proposed method
is robust to CNN structures, different CNN backbones were
adopted for the classification of scaling transformations,
including the well-known VGG19, ResNet18, ResNet34,
ResNet50, and DenseNet121. As Figure 6 shows, while the
performance varies a bit across these backbones, the differ-
ences in performance are relatively small and all the perfor-
mances are clearly higher than that (dashed line in figure) of
the strongest baseline method. This suggests that the proposed
self-supervised anomaly detection works stably with varying
structures of classifiers.



Fig. 6. Robustness to model structures. Dashed line represents the perfor-
mance of the strongest baseline (AE).

Scaling numbers. With the same scaling range [1, 3], different
numbers of scaling transformations were respectively adopted
for the self-supervised anomaly detection, i.e., by varying
K from 2 to 5. In this case, the scales {sk} are respec-
tively {1, 3}, {1, 2, 3}, {1, 1.67, 2.33, 3}, {1, 1.5, 2, 2.5, 3}.
Figure 7 (Left) shows that the performance of the self-
supervised anomaly detection method varies relatively small
when changing the number of scaling transformations and all
outperform the strong baseline (blue dash line), supporting that
the proposed self-supervised method is robust to the number
of scaling transformations.
Scaling range. With fixed number of 3 scales, five scaling
ranges were tried from [1, 2] to [1, 4]. In this case, the scales
{sk} are respectively {1, 1.5, 2}, {1, 1.75, 2.5}, {1, 2, 3},
{1, 2.25, 3.5}, and {1, 2, 4}. Figure 7 (Right) shows that the
performance of the self-supervised anomaly detection method
changes little with varying ranges of scaling transformations,
suggesting that the proposed method works stably within
different ranges of scaling transformations.

Fig. 7. Performance of the self-supervised anomaly detection with different
numbers of scaling transformations (Left) and varying ranges of scales (Right).
Blue dashed line represents the performance of the strongest baseline (AE).

Sampling position. When selecting part of the scaled (elon-
gated) sequences to form new scaled EEG Tk(X) for each
scale sk, the selection could start from the beginning po-
sition, the one-third position, or around the center of the
scaled sequences etc. With such different sampling positions,
the proposed self-supervised method work relatively stable
(Figure 8), suggesting that different local windows in the
sequences may be equivalently important for the prediction
of scaling transformation and subsequent anomaly detection.

The relatively small variance in performance again proves the
robustness of the anomaly detection method.

Fig. 8. Performance of the self-supervised anomaly detection with different
sampling positions from scaled EEG sequences. Dashed line represents the
performance of the strongest baseline (AE).

D. Ablation study

Here we evaluate the effect of kernel shape on anomaly
detection. Table II shows that when replacing the shape of ker-
nels by 1×3, the performance of the anomaly detector clearly
decreased compared to the setting of 3 × 3 kernels. Kernels
of size 3× 3 may help capture potential relationship between
different sequences, considering brain activities captured by
these multiple sequences show strong correlations between
different brain regions. This suggests that, although the two
dimensions (brain location vs. time) in the EEG signals are
quite different, the implicit relationships in recorded signals
across the dimensions may still be well captured by the two-
dimensional convolutional kernels.

TABLE II
EFFECT OF KERNEL SHAPE. 1× 3 AND 3× 3 REPRESENT DIFFERENT

KERNEL SHAPES.

Backbone 1× 3 3× 3 (ours)
ResNet34 0.934 0.943
VGG19 0.947 0.960

IV. CONCLUSION

In this study, we provide a new self-supervised learning
based anomaly detection specifically for epilepsy detection
on EEG data. Considering the temporal property of the EEG
data, scaling transformations along the time dimension are
applied to EEG sequences to create self-labeled data. With
the self-labeled normal data, a CNN classifier can be trained
to accurately predict the scaling transformations on any new
normal EEG data, but not accurately on abnormal (epileptic)
data. With such inconsistency between predicted scaling trans-
formation and the created ground-truth scaling transforma-
tion, epilepsy can be well detected. Comparisons with strong
anomaly detection baselines supports the effectiveness of the
proposed method. In addition, the robustness of the proposed
method has also been empirically proved from various aspects.



Future work includes the evaluation of the method on human
patient data and its application to the real clinical support.
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