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APANet: Auto-Path Aggregation for
Future Instance Segmentation Prediction

Jian-Fang Hu*, Jiangxin Sun*, Zihang Lin, Jianhuang Lai, Wenjun Zeng, and Wei-Shi Zheng

Abstract—Despite the remarkable progress achieved in conventional instance segmentation, the problem of predicting instance
segmentation results for unobserved future frames remains challenging due to the unobservability of future data. Existing methods
mainly address this challenge by forecasting features of future frames. However, these methods always treat features of multiple levels
(e.g. coarse-to-fine pyramid features) independently and do not exploit them collaboratively, which results in inaccurate prediction for
future frames; and moreover, such a weakness can partially hinder self-adaption of a future segmentation prediction model for different
input samples. To solve this problem, we propose an adaptive aggregation approach called Auto-Path Aggregation Network (APANet),
where the spatio-temporal contextual information obtained in the features of each individual level is selectively aggregated using the
developed “auto-path”. The “auto-path” connects each pair of features extracted at different pyramid levels for task-specific hierarchical
contextual information aggregation, which enables selective and adaptive aggregation of pyramid features in accordance with different
videos/frames. Our APANet can be further optimized jointly with the Mask R-CNN head as a feature decoder and a Feature Pyramid
Network (FPN) feature encoder, forming a joint learning system for future instance segmentation prediction. We experimentally show
that the proposed method can achieve state-of-the-art performance on three video-based instance segmentation benchmarks for
future instance segmentation prediction.

Index Terms—Future prediction, Future instance segmentation prediction, Instance segmentation, auto-path aggregation.
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1 INTRODUCTION

INSTANCE segmentation, which requires segmentation of
all object instances that appear in given images/videos,

has received increasing attention over the past few years.
Recently, the deep learning-based approaches have achieved
remarkable success in instance segmentation. Most existing
methods have been developed for after-the-fact instance
segmentation, in which the images/frames to be segmented
are accessible to the system. However, in many practical
cases, instance segmentation must be performed before the
corresponding images/frames are observed; see Figure 1 for
details. The problem of predicting instance segmentation
results for unobserved future frames, i.e. future instance
segmentation prediction, is considerably more important
than after-the-fact instance segmentation in certain real-
world applications, such as human-machine interaction and
autonomous driving etc. For example, in the case of au-
tonomous driving, many accidents could be avoided if the
system was able to predict possible collisions with other cars
or pedestrians.

Predicting future instance segmentation from observed
past frames is very challenging due to the uncertainty
associated with the appearance variations caused by object
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Fig. 1. Video-based instance segmentation vs. future instance segmen-
tation prediction. (a) presents the process of instance segmentation,
in which instance segmentation results are generated for the observed
frames. (b) shows the process of future instance segmentation predic-
tion, the goal of which is to produce instance segmentation results for
unobserved future frames based on the observed past frames.

movement, occlusion between objects, and changes of view-
point. For example, for the video shown in Figure 1, the car
that appears in the first T frames has almost disappeared
in later frames (e.g., the (T +1)-th frame). Existing methods
[1], [2] mainly rely on developing models to capture the
appearance variations in the spatial and temporal dimen-
sions. More specifically, the work in [2] attempts to forecast
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the convolutional pyramid features of future frames based
on the pyramid features extracted from the observed past
frames. However, in this model, the pyramid features at
each individual level are predicted independently without
collaboration, which means that the intrinsic relationships
among the features at different pyramid levels are ignored.

In fact, collaboratively rather than separately predicting
the multi-level pyramid features at different temporal loca-
tions helps to identify the intrinsic cues that are effective
for the future prediction task. It is probably that features of
different levels (such as pyramid features) serve differently
at different time steps for the future instance segmentation
prediction task. Not all of them are sensitive or effective
for predicting the segmentation results of different object
instances. This could demand selecting rather than equally
making use of all levels of features for the future predic-
tion task. However, this is not a simple selection work,
because the object instances to be segmented could vary
greatly in different videos and frames, which requires that
the selection among the features of different levels could
adaptively change for different inputs and different time
steps. Unfortunately, previous methods are universal mod-
els without multi-level feature selection for predicting the
future instance segmentation of different inputs.

In this work, for the future instance segmentation predic-
tion, we propose a novel adaptive aggregation framework
called Auto-Path Aggregation Network (APANet), which
aims to model the future instance segmentation prediction
by collaboratively predicting multi-level pyramid features.
Our APANet builds on a set of convolutional long short-
term memory (ConvLSTM) units, each of which is employed
to capture the intra-level spatio-temporal contexts depicted
in the features of a certain pyramid level with different
temporal locations. We design auto-path connections be-
tween each pair of ConvLSTM units to ensure that the
contextual information extracted by the ConvLSTM at a
certain level can be aggregated to other ConvLSTMs, thus
allowing the inter-level spatio-temporal dependencies to be
further modeled to capture cross-level contexts. Our method
allows the interaction between intra-level and inter-level
spatio-temporal contexts to predict the features of different
pyramid levels collaboratively, and thus more task-specific
hierarchical contextual information can be embedded into
the predicted multi-level pyramid features, which leads to a
better system performance on future instance segmentation
prediction.

In order to adaptively aggregate the information ob-
tained on each individual ConvLSTM for each video sam-
ple, we formulate our auto-path connection in the frame-
work of neural architecture search (NAS) [3], so that the
architectures of the auto-path connections can change for
different input videos and frames at varied time steps.
Therefore, our method has the evolutionary capability to
adapt the network architecture to each individual video to
better capture the relevant appearance variations. This is
beneficial for segmentation prediction because videos with
different object instances are expected to contain different
kinds of appearance variations, and thus the optimal net-
work architectures should differ for different videos and
time steps to better capture these diverse appearance varia-
tions.

To efficiently optimize the proposed APANet framework
with auto-path architecture search, we make a continu-
ous relaxation on the search space and formulate it as a
linear combination of candidate operations, thus allowing
the efficient search of the architectures by learning a set
of continuous variables. Based on the continuous relax-
ation, a three-stage optimization approach is proposed to
efficiently train the APANet from scratch, with gradient
descent. We further illustrate that the proposed APANet
can be optimized jointly with the mask region-convolution
neural network (Mask R-CNN) head and a Feature Pyramid
Network (FPN) feature extractor to form a joint learning
system, which can be optimized jointly in order to aggregate
more discriminative spatio-temporal pyramid contexts for
the future prediction.

We evaluate our method using three benchmark dataset-
s: the Cityscapes Dataset [4], the Inria 3DMovie Dataset v2
[5], and the BDD100K Dataset [6]. Our results demonstrate
that collaboratively and adaptively learning the task-specific
hierarchical contextual structures among pyramid features
with different resolutions using proposed auto-path connec-
tions is beneficial for future feature forecasting, and enables
our model to substantially outperform the state-of-the-art
models for both short-term and mid-term future instance
segmentation prediction.

In summary, our main contributions are threefold: 1) a
flexible auto-path aggregation network (APANet) for col-
laboratively predicting multi-level pyramid features, which
can selectively and adaptively aggregate the task-specific hi-
erarchical spatio-temporal contextual information obtained
on the features of each individual level; 2) a three-stage
optimization approach to train the proposed APANet; and
3) a joint learning system that consists of feature extraction,
feature prediction and segmentation generation for adap-
tively predicting future instance segmentation results from
observed past frames. We also present an extensive experi-
mental analysis of three benchmark datasets to illustrate the
effectiveness of the proposed approach.

2 RELATED WORK

Our work is closely related to context aggregation for
segmentation, instance segmentation, video prediction and
neural architecture search, which have been extensively
investigated in the community. In the following sections,
we will provide a brief review of these works.

2.1 Context Aggregation for Segmentation

Context is essential for segmentation because it provides
rich information about the objects and their surroundings.
Recent studies [7], [8], [9] show that properly aggregating
context is of great importance for robust video-based or
image-based based segmentation.

For image-based segmentation, explicitly modelling the
relations among the representations of different pixels in a
single-level feature map can aggregate useful spatial con-
texts [9], [10], [11], [12], [13]. The spatial context can also be
aggregated using convolutions of different scales [7], [14],
[15], [16], [17]. Recently, [8], [18], [19], [20], [21], [22], [23],
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[24] intend to aggregate the information captured in multi-
level features. For example, [8] aggregates information ob-
tained in paths of different network layers by enhancing the
feature hierarchy. Among these methods, [24] is the most
related to our work, which also intends to automatically
select paths for aggregating contexts captured in feature
maps with different scales (resolutions). However, in [24],
the operations for transmitting information between differ-
ent feature maps are manually designed without adaptive
learning.

Recent studies [25], [26], [27], [28], [29] show that fur-
ther aggregating temporal context can also improve video-
based segmentation. For instance, Fayyaz et al. employ a
context module to aggregate the information embedded
in the extracted spatio-temporal features [25]. Wang et al.
employ ConvLSTM to aggregate contexts from both spatial
and temporal directions [26]. Lin et al. formulate a spatio-
temporal RNN to aggregate spatio-temporal contexts for
video object segmentation [27]. However, the above ap-
proaches are developed to aggregate contexts from a single-
level feature rather than features of different pyramid levels
and temporal locations.

2.2 Instance Segmentation

The goal of instance segmentation is to detect and segment
each distinct object of interest. Numerous methods have
been proposed to address this problem in recent years [8],
[30], [31], [32]. There are two mainstreams in this research
field. The first one is built on semantic segmentation. These
methods [33], [34], [35], [36], [37], [38], [39] firstly employ
a semantic segmentation model to obtain pixel-wise clas-
sification results and then cluster the pixels to different
object instances. The second one is related to object detec-
tion. In this line of works, early methods mainly perform
instance segmentation in a two-stage pipeline, i.e., detect
then segment [8], [30], [40], [41], [42], [43]. For example,
Mask R-CNN [30] added a segmentation branch into the
Faster R-CNN [44] for generating instance masks according
to the detection results. Another pipeline for the object de-
tection related approaches is to develop a one-stage instance
segmentation system. These methods simultaneously detect
object locations and predict mask representations [32], [45],
[46], [47], [48], [49], [50], [51], [52], [53], [54]. In addition to
the segmentation-based and detection-related approaches,
some methods intend to address instance segmentation by
classifying mask proposals [55] or developing dense sliding
window methods [31], [56], [57], [58]. These works are
specially developed for segmenting instances from observed
images. In this work, we focus on predicting future instance
segmentation for future unobserved images/frames.

2.3 Video Prediction

Predicting future information is very important in many
real-world applications. Most existing approaches [59], [60],
[61], [62], [63], [64], [65] intend to generate future RGB
frames based on deep learning models such as convolution-
al neural networks (CNNs) and recurrent neural networks
(RNNs). For example, Mathieu et al. propose a CNN model

for predicting one or several future frames from concatenat-
ed multi-scale input frames [59]. Oh et al. apply encoding-
transformation-decoding network architectures constructed
from CNNs and RNNs to directly generate the RGB values
of pixels in future video frames [63]. Wang et al. derive
a spatio-temporal LSTM (ST-LSTM) unit for the prediction
of future frames [64]. Chen et al. propose an object-centric
video prediction model that learns local motion transforma-
tions for key objects to improve the performance of RGB
frame prediction [65]. These approaches mainly predict the
values of the pixels in each video frame.

The prediction of more abstract representations, such as
object trajectories and human actions, has been investigated
in the community as well. For instance, Morris et al. propose
the use of Gaussian mixture modeling, hidden Markov
models and maximum likelihood regression for trajectory
learning and activity understanding in live videos [66].
Bhattacharyya et al. propose a new model to jointly predict
future ego-motion and person trajectories over long-term
on-board horizons [67]. Shi et al. use a radial basis function
(RBF) kernelized feature mapping RNN to predict future
human actions [68]. Vondrick et al. attempt to anticipate the
visual features of future video frames to predict actions in
observed partial videos [69]. Xie et al. propose an intelligent
agent-based method of localizing objects for predicting hu-
man intentions and trajectories in surveillance videos [70].
These approaches are developed for the prediction of high-
level abstract representations of future frames rather than
pixel-wise segmentation.

The prediction of future semantic segmentation and
future instance segmentation has also gained increasing
attention recently [1], [2], [71], [72], [73]. Most methods per-
form future segmentation prediction in videos by predicting
features for future unobserved frames from the observed
past frames. The feature prediction is explicitly modeled
in the framework of CNN [1], [2], [72], [73] or ConvLSTM
[71]. For instance, [2] proposes a framework containing four
resolution-preserving CNN sub-networks. It is worth noting
that F2F [2] and [71] intend to predict pyramid features
at each individual level independently. In contrast, our ap-
proach aims to predict the pyramid features collaboratively
by uniquely exploring the interaction among the features
of different pyramid levels and temporal locations. More
importantly, in our approach, more task-specific hierarchical
contextual information can be embedded into the predicted
multi-level pyramid features, which leads to better perfor-
mance for future instance segmentation prediction.

2.4 Neural Architecture Search

Recent studies show that automatically learning network
architectures can obtain more powerful image/video repre-
sentations than manually designed architectures, and thus
lead to a better performance in practice [74], [75], [76], [77].
Early researches intend to directly search architecture for the
entire network [78], [79], [80], [81], [82], [83], [84], which is
quite time-consuming and space-consuming. Recent studies
show that designing the network as a stack of repeated
cells and searching architectures for the cells can reduce
the search cost [74], [85], [86]. Most existing approaches
mainly search the architecture in a pre-defined discrete
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Fig. 2. An overview of the proposed framework for future instance segmentation prediction. Our framework consists of three blocks: a pyramid
feature encoder, a future feature prediction block, and a pyramid feature decoder. We use gray dash lines to indicate the auto-path connections. The
operations employed in each auto-path connection will be automatically determined by neural architecture search (NAS) [3]. The sets of possible
operations for the auto-path connections in top-down and bottom-up directions are different, as shown at the bottom of the figure. Different candidate
operations are indicated by different colors.

space using different search strategies, including random
search [76], [87], bayesian optimization [88], [89], [90], rein-
forcement learning [74], [85], [86], evolutionary algorithms
[75], [91], [92], etc. The researches in [3], [77], [93] show
that the network architecture can be efficiently obtained
with a gradient-descent based approach. In these methods,
the discrete space is mathematically modeled with binary
variables, which can be relaxed to continuous ones. Our
work follows the gradient-descent based neural architecture
search (NAS) formulation and develops a video-adaptive
network, in order to adaptively change the network archi-
tecture to capture the complex appearance variations in each
individual video.

A preliminary version of the current work was reported
in [94], in which the paths for the information aggregation
were manually designed. In this work, we have significantly
extended our framework in the following three aspects.
Firstly, a more advanced future instance segmentation pre-
diction method is formulated by using the NAS mecha-
nism to automatically design the network architecture for
information aggregation, which enables the network to 1)
selectively aggregate the information obtained on each Con-
vLSTM, and 2) automatically adapt its architecture to each
individual video to better capture the complex appearance
variations contained in different videos. Secondly, we have
reported a more extensive comparative analysis of our
approach to show the additional benefits of automatically
determining the architectures of auto-path connections via
the NAS mechanism. Thirdly, we have conducted further
experiments and reported better experimental results on the
Cityscapes and Inria 3DMovie datasets, where the perfor-
mance improvements are greater than 1.8% AP50 for short-
term prediction and 3.6% AP50 for mid-term prediction on

the Cityscapes set. We also report extensive comparisons for
one additional dataset (BDD100K).

3 OUR APPROACH

In this work, we address the future instance segmentation
prediction problem by collaboratively predicting the pyra-
mid features of future unobserved frames. More specifically,
we formulate a novel network called Auto-Path Aggre-
gation Network (APANet) to selectively and adaptively
aggregate the spatio-temporal information embedded in the
pyramid features of varied temporal locations. Our APANet
is quite flexible and can automatically change the network
architecture to adapt to different input videos. A graphic
illustration of our system is presented in Figure 2. The
proposed APANet is modeled as a set of ConvLSTMs dense-
ly connected by auto-path connections. Each ConvLSTM
predicts the features of a particular pyramid level. The
auto-path connections among each pair of ConvLSTMs are
employed to exploit the inter-level spatio-temporal contexts.
The operations employed in each auto-path connection will
be automatically determined in a data-driven manner, in
order to selectively and adaptively aggregate hierarchical
spatio-temporal contextual information.

Before delving deeper into the proposed framework, we
first briefly describe the problem of future feature predic-
tion. Then, we introduce our framework for multi-level
feature prediction with auto-path aggregation. With the
proposed APANet, we ultimately propose a joint learning
system for the segmentation prediction, which consists of
three parts: the Feature Pyramid Network (FPN) [21] as a
pyramid feature encoder to represent the observed video
frames as pyramid features, a future feature prediction
block to predict pyramid features for future frames (i.e. our
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APANet), and the Mask R-CNN head [30] as a pyramid
feature decoder to generate segmentation results.

3.1 Problem Statement
The goal of future pyramid feature prediction is to learn
a mapping Θ between the convolutional pyramid features
extracted from observed past video frames and the features
extracted from unobserved future frames. More specifically,
the future feature prediction can be formulated as

FT+4T = Θ(FT−N ,FT−N+1, ...,FT ), (1)

where the inputs to the mapping Θ are the multi-level
pyramid features {FT−N ,FT−N+1, ...,FT } extracted from
the observed past N +1 frames. Here, Ft denotes the multi-
level pyramid features

{
P1
t ,P

2
t , ...,P

L
t

}
for the t-th frame,

which has a total of L pyramid levels. Pl
t is the feature

of the t-th frame at the l-th pyramid level. The features
at different pyramid levels describe different aspects of
an observed frame with various resolutions and receptive
fields. In general, the features of higher pyramid levels have
lower resolution and larger receptive fields. The output of
Θ consists of the pyramid features FT+4T predicted for the
future frame.

Notably, the existing method F2F [2] intends to de-
compose mapping Θ into L independent sub-mappings
{Θl}l=1,2,...,L, each of which corresponds to the prediction
of features at a certain level. This means that F2F has to
train a total of L prediction networks independently and
does not make use of them collaboratively, which results in
inaccurate feature prediction. Moreover, the ignored feature
collaboration further partially hinders the self-adaption of
F2F for segmenting instances from different inputs. In the
following, we propose an adaptive approach to collabo-
ratively predict multi-level pyramid features, which could
explicitly exploit the task-specific hierarchical contextual
structures among the features of different pyramid levels
and time steps for prediction.

3.2 Model Architecture
We describe our method for predicting future pyramid fea-
tures FT+4T , which adaptively aggregates spatio-temporal
contextual information among the features of different pyra-
mid levels and time steps, {FT−N ,FT−N+1, ...,FT }. The
spatio-temporal information is adaptively aggregated along
the auto-path across different pyramid levels and time steps,
which is automatically determined using NAS in a data-
driven manner. Thus, we name our network the Auto-Path
Aggregation Network (APANet).

To model the spatio-temporal dependencies among the
features of each level, we formulate our APANet based on
the ConvLSTM [95], which has shown good performance in
capturing spatio-temporal contexts among different tempo-
ral features in recent studies [95], [96]. For each individual
pyramid level, we employ a ConvLSTM to capture the intra-
level spatio-temporal information among the features.

In addition to the intra-level spatio-temporal pyramid
contexts, we also explore the inter-level spatio-temporal
pyramid information among the ConvLSTMs of varied
pyramid levels, by selectively connecting the cells (hidden
states) of different ConvLSTMs. In this way, the L connected

ConvLSTMs form our mapping Θ for collaboratively pre-
dicting future pyramid features.

Now, we combine the modeling of both intra-level and
inter-level spatio-temporal pyramid contexts by the follow-
ing proposed “auto-path” connection. As shown in the
illustration of one cell in our framework (the left of Figure 3),
the hidden state Cl

t of the l-th ConvLSTM at time step t can
selectively aggregate the contextual information embedded
in the hidden states {Cv

t−1}v=1,2,...,L of the ConvLSTMs at
the previous time step. More specifically, the information
aggregated at Cl

t can be formulated as

APA({Cv
t−1}v=1,2,...,L, l) = Wl

APA ∗
L∑
v=1

AP (Cv
t−1, l), (2)

where ∗ is the convolution operation and AP (Cv
t−1, l) en-

codes the spatio-temporal pyramid contextual information
propagated from hidden state Cv

t−1 to Cl
t, which is referred

to as an auto-path connection. Wl
APA is the convolution ker-

nel used to control the information aggregation. The auto-
path connections are employed to adaptively aggregate
spatio-temporal contextual information obtained on each
ConvLSTM, which is expressed as

AP (Cv
t−1, l) =

{
Cv
t−1 if v = l,∑
ψ∈Ψv→l

αt,ψv→lψ(C
v
t−1) if v 6= l,

(3)

where ψ is an operation used to propagate information
from the hidden state Cv

t−1 to the hidden state of the l-
th ConvLSTM. The parameter αt,ψv→l is employed to con-
trol the information propagated by each operation ψ. It is
defined as a binary (0-1) variable under constraint αt,ψv→l:∑
ψ∈Ψv→l

αt,ψv→l = 1. When the value of αt,ψv→l is 0, the
corresponding operation ψ is not active for information
aggregation, i.e., the information from the v-th ConvLSTM
propagated by ψ is not aggregated to the l-th ConvLSTM
at the t-th time step. Otherwise, the operation ψ would be
active if αt,ψv→l is 1.

The auto-path connection is defined in such a way that
both the intra-level and inter-level spatio-temporal pyramid
information can be exploited for multi-level pyramid feature
prediction. The combination of intra-level and inter-level
spatio-temporal pyramid contexts allows more task-specific
hierarchical information to be embedded in the predicted
pyramid features. In general, the auto-path connections
propagate intra-level and inter-level spatio-temporal pyra-
mid information when v = l and v 6= l, respectively. For
the connection between hidden states of the same level
(i.e., v = l), we define it as the information transmission
operation widely used in ConvLSTM, whose effectiveness
for capturing intra-level spatio-temporal contextual infor-
mation has been demonstrated in the literature [95]. For the
connection between hidden states of different levels (i.e.,
v 6= l), we formulate our auto-path connection (i.e., Eq. (3))
in the mechanism of neural architecture search (NAS) and
attention, so that it can adaptively and selectively aggregate
multi-level contextual information from previous time steps.
Auto-path Architecture Search. Considering that the object
instances to be segmented could vary greatly in different
videos and frames, we seek to formulate our approach as
a video-adaptive network. To this end, we refer to some
ideas in NAS [3], [77] and treat αt,ψv→l as the architecture
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Fig. 3. Our proposed auto-path aggregation network (APANet) with one cell. The left of the figure shows a cell in our APANet and the right of the
figure represents the architecture of our auto-path connections (i.e. the AP block in the APANet cell). Plt, Q

l
t, and Clt denote the input feature, output

feature, and hidden state, respectively, for the l-th ConvLSTM at time step t. AP denotes an auto-path connection between two different ConvLSTM
cells (see Eq. (3)).

⊙
denotes element-wise multiplication, and + is the addition operation. The parameter α is determined according to the input

hidden state, which enables our method to adaptively adjust the architecture for aggregation in accordance with the observed videos/frames.

TABLE 1
Candidates of “Operation X” for different pathways.

Type Candidates

Top-down Pathways

3× 3 deconvolution 5× 5 deconvolution
3× 3 depthwise-separable deconvolution 5× 5 depthwise-separable deconvolution
3× 3 atrous deconvolution with rate 2 5× 5 atrous deconvolution with rate 2

bilinear interpolation no connection (zero)

Bottom-up Pathways

3× 3 convolution 5× 5 convolution
3× 3 depthwise-separable convolution 5× 5 depthwise-separable convolution
3× 3 atrous convolution with rate 2 5× 5 atrous convolution with rate 2

pooling no connection (zero)

parameter to be searched, which would be determined with
gradient descent algorithm [3]. A graphic illustration of it
is presented in Figure 2. Our approach would automatically
learn a proper operation from a set of possible operations
for each auto-path connection.

The set of possible operations Ψv→l differs for differ-
ent relations between v and l. Specifically, we define the
operation set Ψv→l in the form of “Operation X” and
“Operation X + Attention”. For the case of v > l, i.e., auto-
path connections along the top-down direction, which needs
to transmit information from lower-resolution feature map
to higher-resolution feature map. For the case of v < l,
i.e., the auto-path connections in the bottom-up direction,
which needs to transmit information from higher-resolution
feature map to lower-resolution feature map.

The candidates of “Operation X” for the top-down and
bottom-up pathways are presented in Table 1. The opera-
tions are employed following the implementations of [3],
[74], [76], [77], [85], and all of them are widely used in the
modern CNN architectures to transmit information between
features of varied resolutions. Our approach could search
operations with different convolution kernel sizes (3×3 or
5×5) and types (i.e. traditional convolution, atrous convolu-
tion and depthwise-separable convolution). Ψv→l is defined
differently for different cases (top-down and bottom-up)
because the hidden states at different pyramid levels have
different resolutions. In general, the higher the pyramid
level is, the lower the feature resolution (see Figure 2 for
details) is contained. Thus, upsampling or downsampling
operations are required for scaling the information obtained
in the ConvLSTMs at different pyramid levels to allow
the information to be directly aggregated. Specifically, for
the case of v < l (bottom-up aggregation), downsampling
operations such as convolution and max pooling are em-

ployed to scale the input hidden state, while for the case
of v > l (top-down aggregation), upsampling operations
such as deconvolution and bilinear interpolation are used.
The operation “no connection (zero)” means that the corre-
sponding path for information propagation is blocked. Since
the “no connection (zero)” operation with attention and
without attention are the same in practice, the total number
of candidate operations for each auto-path connection is
K = 15.

The advantages of introducing NAS into our framework
are twofold. Firstly, the NAS mechanism enables our ap-
proach to learn a suitable combination of the operations for
aggregating spatio-temporal pyramid information in a data-
driven manner. Secondly, it introduces additional flexibility
into our prediction system and thus allows the system to
more easily adapt to newly observed data.

Attention mechanism. We employ an attention map in the
computation of some information propagation operations
(i.e., ψ(Cv

t−1) in Eq. (3)), such as “3 × 3 Deconvolution +
Attention” and “3 × 3 Convolution + Attention”, in order
to inhibit the information that is irrelevant to instances.
Specifically, the involved attention map Av→l is computed
from Cv

t−1 by applying a self-attention mechanism, which
can be formulated as

Cv→l = Av→l � C̄v
t−1,

Av→l = σ(Wv→l ∗ C̄v
t−1 + Bv→l), (4)

where � means element-wise product. C̄v
t−1 is obtained

by applying the corresponding “Operation X” to the hid-
den state Cv

t−1. Wv→l is a parameter used to encode the
information propagated from ConvLSTM-v to ConvLSTM-
l and Bv→l is a bias term, which will be learned in the
training stage. Cv→l means the selective information prop-
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agated from the v-th level to the l-th level by ψ(Cv
t−1).

The employed attention mechanism allows our method to
selectively aggregate the information that is closely related
to the instances of interest. The learned attention maps are
diverse for different samples and auto-path connections,
which will be discussed in detail in Section4.2.1.

Overall, the information propagation in the t-th ConvL-
STM cell for the features at the l-th pyramid level in our
APANet can be formulated as follows:

Cl
t = Flt � (APA({Cv

t−1}v=1,2,...,L, l)) + Ilt �Dl
t,

Ql
t = Ol

t � tanh(Cl
t), (5)

where Ql
t is the model output (i.e., predicted feature) for

the l-th level at the t-th time step. Ilt, Flt, Ol
t and Dl

t are the
input gates, forget gates, output gates, and the information
propagated from the inputs for the ConvLSTM at the t-th
time step, respectively. They are formulated as follows:

Ilt = σ(Wl
i ∗Pl

t + Hl
i ∗Ql

t−1 + Bl
i),

Flt = σ(Wl
f ∗Pl

t + Hl
f ∗Ql

t−1 + Bl
f ),

Ol
t = σ(Wl

o ∗Pl
t + Hl

o ∗Ql
t−1 + Bl

o), (6)

Dl
t = tanh(Wl

D ∗Pl
t + Hl

D ∗Ql
t−1 + Bl

d),

where ∗ denotes convolution operation. Wl
• ∈ Rk×k×c and

Hl
• ∈ Rk×k×c are convolution kernels that control the prop-

agation of information along the input-state direction and
output-state direction, respectively. Here, c is the number of
channels, and k represents the size of the kernel. The kernel
size k is a hyperparameter that needs to be tuned in prac-
tice. In general, more local spatial contextual information
can be taken into account by using a larger kernel. Bl

• is
the corresponding bias term. Wl

•, Hl
•, and Bl

• are model
parameters to be learned in the training stage. All these
parameters are shared across different time steps to form
a recurrent architecture. σ is the sigmoid operation. Note
that the resolution of output Ql

t is equal to the resolution of
the corresponding input feature Pl

t, which means that the
proposed APANet is a resolution-preserving mapping.

3.3 Model Learning
Objective function. Our objective in future feature predic-
tion is to learn both the model parameters and the archi-
tecture parameters such that the gap between the predicted
features and the ground-truth features is minimized. To this
end, we minimize the following prediction loss:

Lp =
1

T

T∑
t=1

L∑
l=1

1

nl

∥∥∥Ql
t −Pl

t+1

∥∥∥2
F
, (7)

where nl is the number of elements in Ql
t, which is the set of

convolutional pyramid features predicted for a future frame
(the (t + 1)-th frame) using our APANet from the observed
past t frames, and Pl

t+1 is the corresponding set of features
extracted from the ground-truth ((t+ 1)-th) video frame.
Continuous relaxation. Directly optimizing the proposed
APANet with a discrete NAS process is difficult. Most of
the existing methods mainly solve the NAS process by
reinforcement learning [74], [82], [85] or evolutionary al-
gorithms [75], [83], [91], which is computationally inten-
sive in practice. Here, we follow the main idea in DART-
S [3] and propose to solve the whole framework by an

efficient gradient-descent approach. Specifically, we intro-
duce a continuous relaxation of the discrete architecture
space and then discuss how to perform optimization via
gradient descent. Following [3], we relax the binary con-
straint

∑
ψ∈Ψv→l

αt,ψv→l = 1, αt,ψv→l ∈ {0, 1}, as follows:∑
ψ∈Ψv→l

αt,ψv→l = 1, 0 ≤ αt,ψv→l ≤ 1, which can be easily
implemented by the softmax function. The main advantage
of relaxing the constraint in this way is that the architecture
search space is now differentiable and can be embedded
into a differentiable computation graph for efficient op-
timization. Specifically, the α can be computed from the
hidden state of the corresponding ConvLSTM by a stack of a
convolutional layer, a global pooling layer, a fully connected
layer and a softmax layer, as illustrated in the right of Figure
3. We define α in such a way that it is a sample-dependent
parameter. Thus, our network can automatically adapt its
architecture to each individual video to better capture the
relevant appearance variations contained in different inputs.

Three-stage optimization. Even with the continuous re-
laxation, training the proposed APANet with L densely
connected ConvLSTMs is not easy. Here, we employ a three-
stage optimization approach to solve this problem. In the
first stage (see Figure4 (a)), we mainly pre-train the param-
eters of each ConvLSTM without considering the auto-path
connections among each pair of ConvLSTMs. In the second
stage (see Figure4 (b)), we turn on the influence of auto-
path connections and train the entire network with auto-
path connections using DARTS [3]. Here, each individual
ConvLSTM is initialized with the parameters determined in
the first step. In the third stage (see Figure4 (c)), we perform
network architecture decoding. Specifically, we decode the
dense network architecture learned in the second stage and
finetune the network for future pyramid feature prediction.
ConvLSTM pre-train (first stage). In the first stage, we turn
off the influence of the inter-level spatio-temporal pyramid
contexts by blocking all corresponding auto-path connec-
tions and training each ConvLSTM independently, which
means that only the intra-level spatio-temporal contexts are
considered for the information propagation in this stage.
Auto-path search process (second stage). In the second
stage, we adopt the first-order approximation presented in
[3] to search a suitable dense network architecture for multi-
level feature prediction. Specifically, we divide the training
data into two disjoint sets trainA and trainB, then apply the
following bilevel optimization procedure:

1) Update the network parameters ωn based on set
trainA, denoted by 5ωnLp,trainA(ωn, ωα).

2) Update the architecture parameters ωα based on set
trainB, denoted by 5ωαLp,trainB(ωn, ωα).

Here, the architecture parameters ωα and net-
work parameters ωn refer to {αt,ψv→l} and
{Wl

•,H
l
•,B

l
•,W

v→l,Bv→l,Wl
APA}, respectively. Once

the convergence is reached after several iterations, we
can obtain a dense network architecture, in which all the
candidate operations Ψv→l in each auto-path connection
are associated with a set of learned weights.
Network architecture decoding (third stage). Following
[3], we decode the dense network architecture by choosing
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(a) ConvLSTM pre-train (first stage) (b) Auto-path search process (second stage) (c) Architecture decoding (third stage)

𝐿𝑖 𝐿𝑖 𝐿𝑖 𝐿𝑖 𝐿𝑖 𝐿𝑖 𝐿𝑖 𝐿𝑖 𝐿𝑖 𝐿𝑖 𝐿𝑖 𝐿𝑖 𝐿𝑖 𝐿𝑖 𝐿𝑖 𝐿𝑖

𝐿𝑗 𝐿𝑗 𝐿𝑗 𝐿𝑗𝐿𝑗 𝐿𝑗 𝐿𝑗 𝐿𝑗𝐿𝑗 𝐿𝑗 𝐿𝑗 𝐿𝑗𝐿𝑗 𝐿𝑗 𝐿𝑗 𝐿𝑗

Fig. 4. A graphic illustration of the employed 3-stage training strategy. In this figure, different operations are marked with different colors. For better
illustration, we only present the aggregation of 2-level features. Best viewed in color.

the most likely operations, i.e., the operations with the
maximum connection strengths. The decoded architecture
is determined as follows:

ψ?(v, l, t) = argmaxψ αt,ψv→l. (8)

After this step, we can obtain a sparse network architecture
that specifies the auto-path connections for the various
ConvLSTMs and time steps (v, l, t). Then, we finetune the
obtained sparse network on the training set to obtain an
improved model for future feature prediction. Note that
the architecture parameters are determined by the hidden
states of the corresponding ConvLSTMs, which means that
the architectures of the auto-path connections can differ for
different video samples and time steps. Thus, our APANet
framework is quite flexible, and the architecture can be
adapted to suit the needs of different input videos.

3.4 Joint learning system for future instance segmen-
tation prediction
Our APANet collaboratively predicts pyramid features for
unobserved future frames, which are then fed into the Mask
R-CNN head [30] to generate instance segmentation results
for future unobserved frames. Accordingly, we implement
a joint learning framework consisting of our APANet, a
feature encoding block (FPN [21]) and a feature decoding
block (the Mask R-CNN head [30]) and train the whole
system in the joint learning manner. In this implementation,
the parameters for future feature prediction are pre-trained
using the three-stage optimization method described above.
We minimize the following loss:

L = Lp + λLMaskR−CNN , (9)

where Lp is the feature prediction loss defined in Eq. 9 and
LMaskR−CNN consists of a classification loss, a bounding
box regression loss and a segmentation loss as defined in
Mask R-CNN [30]. λ is a parameter used to control the
balance between the losses for feature prediction and in-
stance segmentation prediction. Its influence will be studied
in Section 4.3.7.

Overall, our system for future instance segmentation
prediction consists of three parts: the Feature Pyramid
Network (FPN) [21] as a feature encoder to represent the
observed video frames as pyramid features, a future fea-
ture prediction block to predict pyramid features for future
frames (i.e. our APANet), and the Mask R-CNN head [30]
as a feature decoder to generate segmentation results. Our
proposed adaptive aggregation framework called Auto-Path
Aggregation Network (APANet) predicts the multi-level
pyramid features collaboratively by explicitly exploiting the
hierarchical contextual interactions among the features of

different resolutions and time steps, which enables our sys-
tem to adaptively aggregate pyramid features in accordance
with different videos/frames.

4 EXPERIMENTS

We evaluate our method on three video-based instance
segmentation datasets: the Cityscapes dataset [4], Inria 3D-
Movie Dataset v2 [5] and BDD100K dataset [6].

4.1 Experimental Settings

Evaluation Metrics. We use the metrics AP50 and AP de-
fined in [4] to measure the performance of instance segmen-
tation prediction. For the AP50 metric, segmentation for a
given instance is considered correct if it has an intersection
over union (IoU) of at least 50% with the corresponding
ground-truth instance. The AP metric is defined as the mean
of the average precision values obtained for ten equally
spaced IoU thresholds from 50% to 95%. On the Cityscapes
and BDD100K datasets, the performance is measured across
the eight object classes with available ground-truth an-
notations: person, rider, car, truck, bus, train, motorcycle,
and bicycle. On the Inria 3DMovie Dataset v2, the per-
formance is measured only on the person class. Follow-
ing the implementation in [2], each video is temporally
subsampled by a factor of three, and the clips with four
frames {Xt−9, Xt−6, Xt−3, Xt} are employed as the input
to our model. Both short-term and mid-term predictions
are considered in our experiments, where the instance seg-
mentation for the future frames Xt+3 (approximately 0.17
seconds later) and Xt+9 (approximately 0.5 seconds later)
are predicted, respectively.

Implementation Details. Following [2], we employ the
Mask R-CNN model with a ResNet-50-FPN backbone,
which has been pre-trained on the MS-COCO dataset [97]
and then fine-tuned on the corresponding training sets, for
the extraction of pyramid features. The pyramid features ex-
tracted from the observed past frames are then fed into our
APANet to predict corresponding future features, which are
subsequently processed by the Mask R-CNN head to gen-
erate instance segmentation results. Four levels of pyramid
features are obtained from the FPN feature extractor, with
resolutions of 256×512 (L1), 128×256 (L2), 64×128 (L3) and
32×64 (L4). These features correspond to P2, P3, P4, and P5,
respectively, in the FPN. For the first stage of the training
process, in which the auto-path connections are blocked,
the ConvLSTM for each pyramid level is trained separately
using the stochastic gradient descent (SGD) algorithm with
a Nesterov momentum of 0.9. The batch size is set to 4.
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TABLE 2
Comparison results on the Cityscapes validation set.

Short-term Mid-term
AP50 AP AP50 AP

Mask R-CNN oracle 65.8 37.3 65.8 37.3
Copy-last segmentation 24.1 10.1 6.6 1.8
Optical flow - shift [2] 37.0 16.0 9.7 2.9
Optical flow - warp [2] 36.8 16.5 11.1 4.1

Mask H2F [2] 25.5 11.8 14.2 5.1
F2F [2] 39.9 19.4 19.4 7.7
Ours 46.1 23.2 29.2 12.9

The learning rate is initialized at 0.01 and is decreased to
0.001. For the second stage of training, we randomly select
half of the training samples to form trainA and used the
rest as trainB. Then we perform bilevel optimization as
previously discussed. In each iteration, we load a batch of
samples from set trainA to optimize ωn and then load a
batch of samples from trainB to optimize ωα. The learning
rate is set to 0.001 for ωn and 0.01 for ωα. For the third
stage of training, the learning rate of 0.001 is used, and
the weight decay is set to 0.0005. For the joint training of
the whole system, different learning rates are employed for
different blocks. APANet is trained with a learning rate of
0.001, while the segmentation blocks (i.e., the FPN feature
extractor and Mask R-CNN head) are trained with a lower
learning rate (0.0001). The size of the convolution kernel
is 3×3. We apply depthwise-separable convolutions on the
auto-path. The weight λ for controlling the balance between
the future prediction loss and Mask R-CNN loss is set to 0.1.
Its influence is investigated in Section 4.3.7. It took about 10
days to train our system on the Cityscapes dataset using 4
GPUs.

4.2 Comparison with previous state-of-the-art

Here, we compare the results of our method with those of
other state-of-the-art approaches on the Cityscapes dataset,
the Inria 3DMovie Dataset v2 and the BDD100K dataset.

4.2.1 Results on the Cityscapes Dataset
We use the Cityscapes dataset [4] to evaluate our approach.
It is a large-scale dataset for video-based instance seg-
mentation containing 2,975 training videos, 500 validation
samples and 1,525 test sequences. All sequences in this set
were recorded on urban streets in 50 different cities. Each
sequence in this set consists of 30 image frames with a
resolution of 1024×2048. Ground-truth segmentation anno-
tations are provided for the 20-th frame in each video.
Compared Methods. In this experiment, we compare our
method with the following existing models: optical flow
- shift, optical flow - warp, Mask H2F and F2F [2]. Both
the optical flow - shift and optical flow - warp models use
optical flow for future instance segmentation prediction. In
the shift approach, each mask is shifted by the average flow
vector computed across the mask. In the warp approach, the
mask of each instance is independently warped using the
flow field inside the mask. Mask H2F is a variant of Mask
R-CNN that accepts four successive RGB frames as input

and generates instance segmentation results for the future
frame. F2F is a CNN-based feature prediction network that
achieved state-of-the-art performance on this dataset. In
addition to the results of these methods, we also report
the accuracy of the Mask R-CNN oracle, which corresponds
to simply feeding the ground-truth future RGB frames into
Mask R-CNN. This accuracy can be regarded as an upper
bound for the performance of our system. We also report the
accuracy achieved by directly using the pyramid features
extracted from the last observed frame (denoted by Copy-
last segmentation), which serves as a lower bound for the
performance of our approach.

Comparison results. The detailed comparison results are
presented in Table 2. As shown, our system achieves the
best performance for both short-term and mid-term instance
segmentation prediction. Specifically, for short-term predic-
tion, our model achieves a performance of 46.1% in terms of
AP50, representing a clear improvement by a large margin
of 6.2% over the state-of-the-art model F2F [2]. With respect
to the AP metric, our model also clearly outperforms the F2F
model, by a margin of 3.8%. The performance improvement
demonstrates that our approach performs better than all
the competitors in capturing the spatio-temporal contextual
information contained in the observed frames for future
instance segmentation prediction. Regarding the mid-term
prediction results, similar observations can be obtained: our
approach again has a clear advantage over its competitors,
with performance results of 29.2% and 12.9% in terms of
AP50 and AP, respectively. The results demonstrate that
collaboratively predicting multi-level pyramid features with
the proposed APANet benefits clearly for future instance
segmentation prediction. We can also observe that the im-
provement of our system over F2F is much larger for mid-
term prediction than that for short-term prediction. We at-
tribute this to the ability of our model to capture cross-level
spatio-temporal contexts, which plays a more important role
in predicting segmentation with longer time steps.

Visualization results for the learned auto-path. In our
APANet model, we have employed auto-path connections
to explicitly aggregate information among the temporal fea-
tures of different pyramid levels. The architectures of auto-
path connections are learned adaptively according to the
observed videos and frames in the neural architecture search
framework. By exactly examining the learned architecture
structures in Figure 5, we can conclude two interesting
observations. Firstly, the auto-path connections learned for
the same video differ slightly at different time steps. This is
as expected, as the dependencies among consecutive video
frames could slightly change over time due to the limited
variety of object motion, illumination, visual angle, etc.
Secondly, the learned architecture could be vastly different
for different video samples. For the video with large objects
such as cars, our network tends to use more top-down
auto-path connections for the context aggregation. While
for the video containing many small, densely distributed
and deformed objects like pedestrians, our network is more
likely to select bottom-up auto-path connections for aggre-
gation. The reason could be that the higher-level features
with lower resolution contain more abstract information
about the image, which is quite useful for large object
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Fig. 5. Some visualization results of the learned auto-path architectures. The left of the figure presents the architecture for the same video at varied
time steps and the right gives the architecture for different samples at the same time step. As shown, the architecture of the learned auto-path
connections differs slightly for the same sample with different time steps. In contrast, it differs significantly for different samples. Different operations
are marked with different colors for better visualization. When zero operation is selected, we do not present any connection between the two
ConvLSTMs in the figure. Best viewed in color.
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Fig. 6. The statistical information for the operations selected in our APANet on the Cityscapes set. Figure (a) and (b) provide the top 4 operations
that have been selected in our top-down and bottom-up auto-path connections, respectively. (c) shows the statistics for with/without attention for
non-zero operations. (d) presents the statistics for zero/non-zero operations. Best viewed in color.

segmentation. While for the small objects, some details such
as object boundaries become excessively blurred when the
resolution is small.

We also summarize the statistical information of the
operations selected in our APANet after the auto-path archi-
tecture search. The detailed results are presented in Figure
6. From this figure, we can draw three notable observations.
Firstly, the operations with attention mechanism are more
likely to be used (see Figure 6 (c)). Secondly, the depthwise-
separable convolution/deconvolution operations are more
likely to be employed as compared with the conventional
convolution/deconvolution operations (see Figure 6 (a) and
(b)). We attribute this to the fact that the conventional con-
volution operations with more parameters could introduce
more uncertainty to the model learning, which makes it
easier to fall into local minima. Lastly, we can observe
that most of the auto-path connections between layers are
preserved after neural architecture search, i.e., only a small
set of connections select zero operations (Figure 6 (d)). This
observation demonstrates that selectively and adaptively
learning the task-specific hierarchical connections among
the features of varied pyramid levels is beneficial for pre-
dicting future instance segmentation.
Visualization results for the segmentation prediction. We
further visualize some instance segmentation prediction
results in Figure 7, where predictions with confidence scores
greater than 0.9 are visualized. We can observe that our

approach achieves a substantial improvement over the other
methods for predicting the segmentation of overlapping and
deformed objects. As shown, our approach makes great
progress on instance segmentation prediction with better
boundaries and more clear contours. These results demon-
strate that the proposed method for collaboratively predict-
ing multi-level pyramid features can successfully learn more
spatio-temporal task-specific hierarchical contexts from ob-
served past frames for predicting the segmentation of mov-
ing objects.
Visualization results for the learned attention map. Figure
8 presents some visualization results about the learned
attention maps. We can observe that the attention weight-
s are much larger in the regions containing instances to
be segmented. However, the regions with large attention
weights differ for different auto-path connections. Also,
we can observe that the undeformed objects like cars can
obtain relatively high responses, while the deformed and
occluded moving objects such as pedestrians are likely to
obtain relatively low responses. The results indicate that
the employed attention mechanism allows the auto-path
connections to selectively aggregate contexts that are closely
related to the instances of interest.

4.2.2 Results on the Inria 3DMovie Dataset
To evaluate the generalizability of our approach, we further
conduct experiments on the Inria 3DMovie Dataset v2 [5],
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Our Preliminary Work Ours (Journal Version)Ground-truth Frame F2F

Fig. 7. Some visualized results for the mid-term future instance segmentation prediction. From left to right: the ground-truth frames, the prediction
results for the regions indicated by red-dashed boxes obtained by the F2F [2], our preliminary work [94] and our method, respectively. As shown, our
method produces the best future instance segmentation prediction results for deformed and occluded moving objects, some of which are highlighted
with red dashed boxes in ground-truth frames. The results illustrate that collaboratively predicting multi-level pyramid features with selective and
adaptive information aggregation is beneficial for future instance segmentation prediction. Best viewed in color.

Fig. 8. Qualitative results for the learned attention maps Av→l, as expressed in Eq. (4). The colors used to visualize the attention values range from
red to blue in rainbow order, where red color indicates a high attention value and blue color indicates a low attention value. Best viewed in color.

which was specifically collected for research on instance-
level video segmentation. This set consists of 27 video clips,
corresponding to a total of 2476 frames, for which masks
for 632 person instances are provided. All video clips are
obtained from the 3D feature film StreetDance 3D. This
dataset is an improved version of the Inria 3D Movie Dataset
[98] and is challenging for future instance segmentation
prediction for the following reasons: 1) the people depicted
in some videos appear in very complicated poses (such as
dancing and jumping), and 2) self-occlusions often occur in
the video clips. Following [2], [5], we split the dataset into a
set of 7 clips for training and a set of 20 clips for evaluation.
All video sequences are subsampled by a factor of three.

The detailed comparison results are presented in Table
3. Our system again achieves the best performance for both
short-term and mid-term instance segmentation prediction.
Specifically, for short-term prediction, our model achieves
an excellent performance of 52.0% in terms of AP50, which
represents an improvement by a large margin of 8.1% over
the state-of-the-art model F2F [2]. In terms of the AP metric,
our model also clearly outperforms the F2F model, by a
margin of 5.0%. This performance improvement demon-
strates that our approach performs better than F2F in cap-
turing the spatio-temporal contextual information contained
in the observed frames for future instance segmentation
prediction. Regarding mid-term future prediction, the table
shows similar results: our approach again has an obvious
advantage over F2F, with performance results of 35.5% and

TABLE 3
Comparison results on the Inria 3DMovie Dataset v2.

Short-term Mid-term
Method AP50 AP AP50 AP

Mask R-CNN oracle 74.2 30.9 74.2 30.9
Copy-last segmentation 30.5 16.1 17.3 7.6

F2F [2] 43.9 20.7 25.8 12.1
Ours 52.0 25.7 35.5 18.1

18.1% in terms of AP50 and AP, respectively, representing
improvements by a margin of 9.7% for AP50 and a margin of
6.0% for AP. A close examination of the mid-term prediction
results supports the previous assertion, namely, that our
model can capture cross-level spatio-temporal contexts by
aggregating spatio-temporal contextual information gained
in the multi-level pyramid features with both selection and
adaption considered. These promising results confirm that
collaboratively predicting multi-level pyramid features with
the proposed approach is very helpful for future instance
segmentation prediction.

Interestingly, we can observe that each model achieves
higher performance on the Inria 3DMovie Dataset than that
on the Cityscapes dataset. We attribute this to the fact that
the Cityscapes dataset contains many small instances, which
complicates the prediction. Additionally, some classes in
the Cityscapes dataset contain few samples, which is not
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TABLE 4
Comparison results on the BDD100K dataset.

Short-term Mid-term
Method AP50 AP AP50 AP

Mask R-CNN oracle 53.2 29.1 53.2 29.1
Copy-last segmentation 15.3 6.4 4.5 0.7

F2F [2] 28.6 10.3 11.2 4.8
Ours 32.8 13.5 16.2 8.7

sufficient for training the APANet. In contrast, the Inria
3DMovie Dataset only requires the segmentation of the
human class, which is large and occupies many pixels in the
video. Thus, our approach achieves better performance on
the Inria 3DMovie Dataset than on the Cityscapes dataset.

4.2.3 Results on the BDD100K Dataset
We also conduct experiments on the BDD100K dataset [6].
This dataset contains 100k raw video sequences with a
resolution of 1280×720 and a frame rate of 30 fps, which
represents more than 1000 hours of driving and corresponds
to more than 100 million images. Like that in the Cityscapes
dataset, one image is selected from each video clip for
manual annotation. Therefore, a total of 100k images are
annotated at the bounding box level, and 10k images are
annotated at the pixel level. The videos in this set were
captured under various weather conditions (including sun,
rain, snow and fog) and different times (including daytime,
dawn and night), which makes it much challenging for the
future instance segmentation prediction task.

We compare the performance of our method to that of
the state-of-the-art future instance segmentation prediction
model F2F. The results are presented in Table 4. As shown,
our model still achieves the best performance for both
short-term and mid-term instance segmentation prediction
tasks. Specifically, for the short-term prediction, our model
achieves a performance of 32.8% in terms of AP50, with
an improvement of 4.2% over the state-of-the-art model
F2F. In terms of the AP metric, our model also obviously
outperforms the F2F model, by a margin of 3.2%. This
indicates that our APANet performs better in capturing the
spatio-temporal contextual information among features at
different pyramid levels than F2F. For mid-term prediction,
our approach has a clear advantage over F2F, with per-
formances of 16.2% and 8.7% in terms of the AP50 and
AP metrics, respectively, representing improvements by a
margin of 5.0% for AP50 and a margin of 3.9% for AP.
These results demonstrate that selectively and adaptively
propagating information among features at different pyra-
mid levels and temporal locations with our APANet is
substantially beneficial for the future instance segmentation
prediction. The employed auto-path aggregation can reduce
the domain inconsistencies caused by the captured weather
conditions and times among varied samples, by adaptively
adjusting the learned auto-path architectures based on the
observed video frames. We also note that all the models
obtain worse results on the BDD100K dataset than that on
the other benchmarks. This somehow indicates that this
dataset is more challenging for future instance segmentation
prediction.

4.3 Ablation Results

Here, we present extensive ablation studies of the proposed
approach on the Cityscapes validation set [4], which is
widely used in the literature for the evaluation of instance
segmentation-based methods.

4.3.1 Effect of auto-path connections
In this paper, we have introduced auto-path connections
among the ConvLSTMs for the features of different pyramid
levels to collaboratively predict multi-level pyramid fea-
tures, which can selectively and adaptively aggregate more
task-specific hierarchical spatio-temporal contextual infor-
mation in videos. Here, we study the benefits of introducing
auto-path for future instance segmentation prediction. In
our experiments, we first report the results of the base-
line “Ours (w/o Path)”, which blocks all the connections
among the ConvLSTMs in our APANet. Furthermore, we
test four different basic settings for the connections, in
which the architecture is manually designed rather than
automatically learned. i) A network with top-down connec-
tions between neighboring pyramid levels, named “Ours
(with TD-path)”. This network contains three connections,
{Ll+1 → Ll}l=1,2,3. ii) A network with bottom-up connec-
tions between neighboring pyramid levels, named “Ours
(with BU-path)”. This network contains three connections,
{Ll → Ll+1}l=1,2,3. iii) A dense extension of “Ours (with
TD-path)” that consists of top-down connections among all
pyramid levels, named “Ours (with DTD-path)”. This net-
work contains 6 top-down connections, {Ll → Lk}1≤k<l≤4.
iv) A dense extension of “Ours (with BU-path)” that consists
of bottom-up connections among all pyramid levels, named
“Ours (with DBU-path)”. This network contains 6 bottom-
up connections, {Ll → Lk}1≤l<k≤4.

The results presented in Table 5 show that explicitly
aggregating information among the features of different
pyramid levels substantially improves the prediction per-
formance for both short-term prediction and mid-term pre-
diction. As expected, our APANet (i.e., “Ours (with Auto-
path)”) performs better than all the competitors, including
the method “Ours (with DTDBU-path)” with manually de-
signed dense connections in both top-down and bottom-up
directions, for both short-term prediction (1.2% AP50 im-
provement) and mid-term prediction (2.9% AP50 improve-
ment). This finding indicates that the architecture defined
based on human experience is not the best for aggregat-
ing spatio-temporal pyramid contexts. The proposed auto-
path connections for selectively and adaptively aggregating
information among features of varied pyramid levels can
explore more task-specific hierarchical contexts, which is
beneficial for predicting future instance segmentation.

4.3.2 Evaluation on the adaptive learning
In our APANet, we have employed a set of parameters
αt,ψv→l to quantify the architectures for auto-path connection,
which are adaptively determined according to the hidden
states of the ConvLSTMs. Specifically, we have defined the
parameters αt,ψv→l in Eq. (8) as αt,ψv→l = f(Xn, C

v
t ), where

Cvt denotes the hidden state for the v-th layer at the t-
th time step for the n-th sample Xn, which is adaptive
to the input sample and time steps. Indeed, we can also



13

TABLE 5
The benefits of introducing connections. Please refer to Section 4.3.1 for more details about the denotations in the table.

Connection Short-term Mid-term
Method Top-down Bottom-up Dense Auto AP50 AP AP50 AP

Ours (w/o Path) × × × × 41.9 20.8 22.7 9.2
Ours (with TD-path) X × × × 43.1 21.7 24.2 10.3
Ours (with BU-path) × X × × 42.3 21.3 23.0 9.7

Ours (with DTD-path) X × X × 44.3 22.1 25.6 11.2
Ours (with DBU-path) × X X × 43.6 21.8 24.7 10.5

Ours (with DTDBU-path) X X X × 44.9 22.4 26.3 11.7
Ours (with Auto-path) X X X X 46.1 23.2 29.2 12.9

TABLE 6
Evaluation on the influence of adaptive learning. Please refer to
Section 4.3.2 for more details about the denotations in the table.

Short-term Mid-term
Method AP50 AP AP50 AP

Ours (w/o Path) 41.9 20.8 22.7 9.2
Ours (w/o sample & time adaption) 44.8 22.5 26.5 11.7

Ours (w/o sample adaption) 45.6 22.7 27.1 12.3
Ours (w/o time adaption) 45.8 22.9 28.4 12.6

Ours 46.1 23.2 29.2 12.9

implement the architecture parameters in other ways. First,
we can learn a common architecture parameter α to seg-
ment all the samples and time steps, which is a common
setting in the existing neural architecture search methods
[3], [77]. Here, we define the architecture parameter as
αt,ψv→l =

1
N

∑N
n=1 f(Xn, C

v
1 ), where N denotes the number

of samples. This is a setting without both sample adaption
and time adaption and we denote it as “Ours (w/o sample
& time adaption)”. Secondly, we can also define the param-
eters as αt,ψv→l =

1
N

∑N
n=1 f(Xn, C

v
t ), which means that the

model architectures can differ for different time steps but
remain the same for different samples (denoted by “Ours
(w/o sample adaption)”). Finally, we can also set the pa-
rameters varying across different samples while remaining
the same for various time steps, e.g., αt,ψv→l = f(Xn, C

v
1 ) .

Thus, we denote this setting as “Ours (w/o time adaption)”.
The comparison results are presented in Table 6. As

shown, the model “Ours (w/o sample & time adaption)”
using a single common architecture across different sam-
ples and different time steps performs the worst in our
experiments, with only a 2.9% AP50 improvement for short-
term prediction and a 3.8% AP50 improvement for mid-term
prediction with respect to the baseline “Ours (w/o Path)”.
The model “Ours (w/o sample adaption)”, which shares
auto-path connections among different samples while varies
across different time steps, achieves slightly better perfor-
mance, with a 3.7% AP50 gain for short-term prediction
and a 4.4% AP50 gain for mid-term prediction compared
to the baseline “Ours (w/o Path)”. The performance would
be further improved by varying the auto-path connections
across different samples but remaining the same at all the
time steps (i.e., “Ours (w/o time adaption)”). The proposed
APANet, in which the auto-path connections differ for d-
ifferent samples and different time steps, achieves the best

Prediction With AdaptionPrediction Without Adaption

Fig. 9. Visualization results of our approaches with/without adaption.

TABLE 7
Comparison results with our preliminary work [94].

Short-term Mid-term
Dataset Method AP50 AP AP50 AP

Cityscapes
Preliminary Work 44.3 22.1 25.6 11.2

Ours 46.1 23.2 29.2 12.9
Inria 3d Preliminary Work 49.6 24.2 32.4 15.9

Movie v2 Ours 52.0 25.7 35.5 18.1

BDD100K
Preliminary Work 30.4 11.7 13.6 6.9

Ours 32.8 13.5 16.2 8.7

prediction performances, with gains of 4.2% AP50 for short-
term prediction and 6.5% AP50 for mid-term prediction
relative to the baseline “Ours (w/o Path)”. The visualization
results in Figure 9 also illustrate that adaptive learning
is necessary for segmenting video samples with different
appearance variations. We can also observe that adapting
the architecture parameter to different samples or different
time steps improves the system’s performance in practice.
The performance gap between sample-adaptive methods
and sample-inadaptive methods is substantially larger than
the time-adaptive and time-inadaptive ones. This is to be
expected, as some time-varying information has been en-
coded by the employed ConvLSTM, which renders it less
obvious for future segmentation prediction in the methods
using time-adaptive auto-path architectures.

4.3.3 Comparison with our preliminary work
Here, we provide the comparison results of our approach
and our preliminary work [94] in Table 7. As shown, our
APANet consistently outperforms the preliminary work on
all the datasets, with a margin of more than 1.8% and 2.6%
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TABLE 8
Comparison results on the Cityscapes validation set for semantic

segmentation prediction.

mIoU
Method Short-term Mid-term

Mask R-CNN oracle 73.3 73.3
Copy-last segmentation 45.7 29.1
Optical flow - shift [2] 56.7 36.7
Optical flow - warp [2] 58.8 41.4

Mask H2F [2] 46.2 30.5
S2S [1] 55.4 42.4
F2F [2] 61.2 41.2

DeformF2F [73] 63.8 49.9
Our Preliminary Work [94] 63.2 48.6

Ours 64.9 51.4

in the term of AP50 for short-term prediction and mid-
term prediction, respectively. The results indicate that se-
lectively and adaptively aggregating contextual information
embedded in the features is substantially beneficial for fu-
ture instance segmentation prediction. With the introduced
adaptive information aggregation, our extension model can
adaptively change the network architecture to capture the
appearance variations in each individual video.

4.3.4 Comparison results for semantic segmentation pre-
diction.
Besides instance segmentation prediction, our approach can
also be used to predict semantic segmentation results. For
direct comparison to the related work [1], [2], [73], we
followed the implementation of F2F [2] and converted our
predicted instance segmentation to semantic segmentation.
The mIoU metric is employed to evaluate the semantic
segmentation prediction results. The detailed results are
presented in Table 8. As shown, our approach can still obtain
the best performance for the future semantic segmentation
prediction task and outperform the competitors that are
specially designed for semantic segmentation prediction S2S
[1] and DeformF2F [73], with a margin of more than 1.1%.
The results indicate that collaboratively predicting multi-
level pyramid features with the proposed APANet can also
benefit the future semantic segmentation prediction task.

4.3.5 Influence of the number of pyramid feature levels
In most of our implementations, our APANet intends to pre-
dict the segmentation results by collaboratively forecasting
four-level pyramid features (i.e., {L1, L2, L3, L4} outputted
by FPN feature extractor [21] with a resolution from high
to low). Here, we study the influence of the number of
feature levels. The detailed comparison results are presented
in Table 9. As shown, aggregating contextual information
from more pyramid levels can produce better segmentation
results, which demonstrates that the proposed framework
for pyramid contextual information aggregation is beneficial
for future instance segmentation prediction.

4.3.6 More evaluations of the optimization
In this work, we have proposed a three-stage optimization
approach to pre-train the APANet and then optimize the

TABLE 9
Influence of the number of pyramid feature levels. Please refer to
Section 4.3.5 for more details about the denotations in the table.

Short-term Mid-term
Method AP50 AP AP50 AP
L1 36.9 17.3 18.5 6.8

L1 + L2 40.5 19.3 22.5 10.1
L1 + L2 + L3 42.9 21.4 26.1 11.7

L1 + L2 + L3 + L4 46.1 23.2 29.2 12.9

(a) AP50 metric for segmentation prediction (b) AP metric for segmentation prediction

Fig. 10. Evaluation on the optimization for our future instance segmen-
tation prediction system.

APANet, FPN, and Mask R-CNN head in a joint learning
manner. Here, we study the influence of each stage in the
three-stage optimization. The results are presented in Figure
10. As shown, each stage in our optimization contributes
clearly to the system performance. Jointly learning the pro-
posed APANet, feature encoder (FPN), and feature decoder
(Mask R-CNN head) obtains better results for the future
instance segmentation prediction.

4.3.7 Influence of λ

When training the proposed system for future instance
segmentation prediction, our objective is to simultaneously
minimize both the prediction loss and the segmentation loss
with a parameter λ to control the balance between them
(see Eq. (9) for details). Here, we investigate its influence by
setting it to different values (0.01, 0.1, 1, and 10). The results
are presented in Table 10. As shown, our system is quite
robust to different values of λ, although it achieves its best
performance when a proper λ is employed, e.g., λ = 0.1. We
experimentally find that in the case of λ = 0.1, the values of
the prediction loss and the segmentation loss are similar in
most of our experiments, which means that they contribute
almost equivalently to the loss. A larger or smaller λ forces
the system to focus more on either segmentation or feature
prediction, which yields inferior performance for future
instance segmentation prediction.

4.3.8 Prediction with single-frame vs. multi-frame annota-
tions

Since manually annotating the objects of interest with masks
is quite expensive, most existing video-based segmentation
datasets only provide a single mask annotation for each
video clip. Thus, we have to train our APANet based
on the single-frame annotation setting in our experiments.
However, we would like to point out that our method can
be easily extended to address the multi-frame annotation
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TABLE 10
Effects of the parameter λ(Eq. (9)), which is used to control the balance

between the prediction loss and the segmentation loss.

Short-term Mid-term
λ value AP50 AP AP50 AP

10 45.1 22.4 27.8 11.9
1 45.4 22.6 28.1 12.4

0.1 46.1 23.2 29.2 12.9
0.01 44.5 22.0 26.9 11.6

TABLE 11
Evaluation on the system performance based on single-frame vs.

multi-frame annotations.

Short-term Mid-term
Method AP50 AP AP50 AP

Single-frame Annotation 52.0 25.7 35.5 18.1
Multi-frame Annotation 52.9 26.4 37.2 18.9

setting. Specifically, we can just replace the feature predic-
tion loss for each time step with segmentation loss without
any other modifications. To obtain multi-frame annotation
with low cost, we just use the results of Mask R-CNN mod-
el, pre-trained on the MS-COCO dataset [97], to annotate
each frame. Here, we conduct experiments on the Inria 3D
Movie Dataset v21, as the pre-trained Mask R-CNN model
can produce precise segmentation results on this set. The
detailed results are presented in Table 11. As shown, the
use of additional annotations can improve the accuracy of
both short-term and mid-term predictions. These results
also imply that the system performance can be improved
using pre-trained instance segmentation models to annotate
multiple frames, without increasing the burden of manual
annotation.

5 CONCLUSION

In this paper, we have addressed the problem of future
instance segmentation prediction by collaboratively pre-
dicting multi-level pyramid features. Specifically, we have
proposed a novel adaptive framework called APANet to
selectively and adaptively aggregate the task-specific hier-
archical spatio-temporal information gained in the features
of different pyramid levels and different temporal locations.
Our framework is quite flexible and can adaptively change
its network architecture to predict future instance segmenta-
tion results for different input samples. We have evaluated
the effectiveness of our method on three video-based in-
stance segmentation benchmarks and obtained state-of-the-
art results for both the short-term and mid-term prediction.
An attempt of improving our method is to further consider
learning architecture inside ConvLSTM cells, which requires
an extra insight development of LSTM.
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