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Human Motion Prediction via
Continual Prior Compensation

Jianwei Tang, Jian-Fang Hu, Tianming Liang, Xiaotong Lin, Jiangxin Sun, Wei-Shi Zheng, Jianhuang Lai

Abstract—Human Motion Prediction (HMP) aims to predict
future human poses at different moments according to observed
past motion sequences. Previous approaches mainly treated the
prediction of different temporal moments as a single prediction
task and learned the predictions of varied moments simultaneously,
which would encounter a main limitation: the learning of short-
term predictions (referring to “near-future” prediction) could
be hindered by the predictions of long-term (referring to “far-
future” prediction) motions. In this paper, we develop a novel
temporal continual learning framework called Continual Prior
Compensation (CPC) to progressively train HMP models, in
which we divide the prediction task of motions corresponding
to varied temporal moments into several subtasks and train the
model in a multi-stage manner. To mitigate the prior information
forgetting in the progressive training, we further introduce a
learnable random variable Prior Compensation Factor (PCF)
to explicitly measure the prior knowledge loss. We theoretically
show that the PCF can be efficiently learned together with the
model parameters by minimizing a reasonable upper bound of
the objective function. The proposed CPC is further enhanced
to estimate the prior information loss for each subtask and a
new framework called Continual Prior Compensation++ (CPC++)
with Fine-Grained Prior Compensation Factor (FGPCF) is finally
developed. Our CPC and CPC++ frameworks are quite flexible
and can be easily integrated with different HMP backbone models
and adapted to various datasets and applications. Extensive
experiments on three HMP benchmark datasets using multiple
SOTA HMP backbones (PGBIG, siMLPe, MotionMixer, and LTD)
demonstrate the effectiveness and flexibility of our frameworks.

Index Terms—Human Motion Prediction, Continual Learning,
Continual Prior Compensation.

I. INTRODUCTION

HUMAN Motion Prediction (HMP) aims to predict future
poses at varied temporal moments based on the observed

motion sequences. The accurate prediction of human motion
plays a vital role in many applications, such as autonomous
driving, human-robot interaction, and security monitoring,
enabling the anticipation and mitigation of risks. This task
is challenging due to its requirement for predicting multiple
moments, including short-term predictions for the “near-future”
and long-term predictions for the “far-future”.

Previous approaches addressed this task by autoregressively
forecasting using recurrent neural networks (RNNs) and
transformer architectures [1]–[13], or parallelly generating all
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frames with graph convolution networks (GCNs) [14]–[21].
These methods employed the one-stage training strategy to
acquire the model to learn both short and long-term prediction
simultaneously. However, the long-term motion prediction is
more challenging since the future motion can vary greatly
(i.e., the prediction space is large), which would increase the
uncertainty and ambiguity of future prediction. If we train short-
term and long-term predictions together, the fitting of high-
uncertainty long-term prediction will dominate the learning
process, which hinders the learning of short-term predictions.

This motivates us to exploit proper training strategies to better
learn the prediction for both short and long-term prediction.
To this end, we conduct preliminary experiments with three
settings: short+long, short only and short then short+long, as
illustrated in Figure 1(a). We first observe that “short only”
outperforms “short+long” on short-term prediction (Figure
1(b)), which implies that the joint learning of all timestamps
is harmful to short-term prediction due to the fitting of high-
uncertainty long-term prediction. This is intuitive and thus we
can use a progressive learning approach, where the model is
trained to predict increasing numbers of frames over multiple
training stages, e.g., starting with 5 frames in the first stage
and 10 frames in the second stage, and so on. However, we
also observe that “short then short+long” performs worse than
“short only” by a considerable margin for short-term prediction
(Figure 1(b)), which demonstrates the joint learning of short-
term and long-term prediction in subsequent stages results in
knowledge forgetting for short-term prediction. At the same
time, we observe that “short then short+long” outperforms
“short+long” on long-term prediction in Figure 1(c), which
implies the knowledge learned in short-term prediction can
serve as prior facilitating the learning of “far-future” prediction.

Inspired by the above analysis, we propose the Continual
Prior Compensation (CPC) framework, which is a multi-stage
training framework that alleviates constraints posed by long-
term prediction on short-term prediction and effectively utilizes
prior information from short-term prediction. Specifically, we
divide the future unobserved sequence into several segments
and regard the prediction of each segment as a subtask. We
define the training process as multiple stages and progressively
increase the number of prediction segments across the stages.
This allows the model to leverage the prior knowledge acquired
from earlier stages for predicting the subsequent ones. Upon
completion of each stage’s training, the learned prior knowledge
is saved in the model parameters. However, in this process,
the learning in subsequent stages could gradually eliminate
the prior knowledge learned from former stages. To overcome
the prior forgetting problem, we further introduce the Prior
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Fig. 1: Preliminary experiment results of three different prediction settings (lower values indicate better performance). (a)
represents the experimental settings. (b) shows the short-term prediction results (predicting the 2-nd frame), while (c) illustrates
the long-term prediction results (predicting the 25-th frame).

Compensation Factor (PCF), which is a learnable random
variable that encodes the prior forgetting for all of the previous
subtasks. However, directly learning the PCF and model
parameters together is challenging. To this end, we further
derive a reasonable upper bound of the objective function,
which can be efficiently optimized.

In this work, we further introduce the Fine-Grained Prior
Compensation Factor (FGPCF) and propose the Continual
Prior Compensation++ (CPC++) framework to address the
prior information forgetting problem more effectively. The
FGPCF is defined to measure the prior information loss for each
individual subtask. Similar to CPC, the enhanced CPC++ is also
a multi-stage training approach, which intends to optimize the
FGPCF and model parameters simultaneously. Our theoretical
derivation shows that the CPC++ can be efficiently optimized
by minimizing a reasonable upper bound function.

We evaluate our method by conducting experiments on three
popular HMP benchmarks (Human3.6M [22], CMU-MoCap
and 3DPW Dataset [23]) by integrating CPC and CPC++ with
several HMP backbones (LTD [20], MotionMixer(MM) [24],
siMLPe [25] and PGBIG [21]). Our results demonstrate that
the proposed CPC and CPC++ training frameworks are flexible
and can be easily integrated with various HMP backbones or
adapted to different datasets. Additionally, the experimental
results also indicate that the proposed PCF and FGPCF
effectively mitigate the loss of prior knowledge, leading to
improved performance in the HMP backbones.

In summary, our main contributions are threefold: 1) We
identify certain limitations in existing HMP models and propose
two novel multi-stage training strategies called Continual Prior
Compensation and Continual Prior Compensation++ to enhance
the training of the human motion prediction model. To the
best of our knowledge, we are the first to develop such multi-
stage training framework to progressively train human motion
prediction models in a temporal continual learning manner. 2)
We introduce the Prior Compensation Factor and Fine-Grained
Prior Compensation Factor to tackle the forgetting problem
of prior knowledge, which can be learned jointly with the

prediction model parameters. 3) We theoretically derive an
easily optimized and reasonable objective function for effective
optimization. We also present an extensive experimental
analysis of four backbone HMP models and three benchmark
datasets to illustrate the effectiveness of the proposed approach.

A preliminary version of the current work was reported in
[42], which uses a learnable random variable (PCF) to encode
the prior forgetting for all of the previous subtasks. In this
work, we have significantly extended our framework in the
following three aspects. First, we introduce the Fine-Grained
Prior Compensation Factor (FGPCF) containing multiple
learnable random variables, each of which measures the prior
information loss for the corresponding prediction subtask.
Second, we propose the Continual Prior Compensation++
(CPC++) framework, which intends to optimize the FGPCF and
model parameters simultaneously. And an efficient optimization
algorithm is obtained through theoretical derivation. Third,
we conduct a more comprehensive comparative analysis of
our framework to demonstrate the advantages of utilizing the
FGPCF for prior loss estimation and report improved results
on three datasets.

II. RELATED WORK

Our work is closely related to one-stage training and multi-
stage training approaches for human motion prediction, and
continual learning, which have been extensively investigated
in the community. In the following, we will provide a brief
review of these works.
One-stage training approaches for HMP. Motivated by
natural language processing, many researchers have adopted
autoregressive models to process temporal sequences of human
poses, which include RNNs, Long Short-Term Memory Net-
works (LSTMs) [26] and Transformer [27]. For instance, ERD
[28] combined LSTMs with an encoder-decoder to model the
temporal aspect, while Jain et al. [29] proposed Structural-RNN
to capture spatiotemporal features of human motion. Martinez
et al. [30] applied a sequence-to-sequence architecture for
modeling the human motion structure. Aksan et al. [1] used
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Transformer to predict future poses autoregressively. Sun et al.
[12] designed a query-read process to retrieve motion dynamics
from the memory bank. Lucas et al. [31] proposed a GPT-like
[32] autoregressive method to generate human poses. However,
autoregressive methods are difficult to train and suffer from
error accumulation.

Some researchers employed parallel prediction methods to
address HMP problem [14]–[21]. Many works ( [17], [33],
[34]) used GCN to encode feature or to decode it, which
associates different joints’ information. Mao et al. [20] viewed
a pose as a fully connected graph and used GCN to extract
hidden information between any pair of joints. Martinez et al.
[35] devised a transformer-based network to predict human
poses. Sofianos et al. [36] proposed a method to extract
spatiotemporal features using GCNs. And Ma et al. [21]
tried to achieve better prediction results by progressively
generating better initial guesses. Xu et al. [37] used multi-
level spatial-temporal anchors to achieve diverse predictions.
Wan et al. [38] proposed GGMotion to model human topology
in groups which better leverages dynamics and kinematics
priors. Ding et al. [39] proposed to capture temporal and spatial
dependencies via a kinematic temporal convolutional network
and spatial graph convolutional networks, respectively. Li et
al. [40] constructed adaptive graph scattering across various
body parts to capture motion dynamics. These work intended
to facilitate motion prediction by developing stronger motion
representations, which differs significantly from our objective.
Multi-stage training approaches for HMP. Some researchers
proposed multi-stage prediction methods to handle this task.
Yuan et al. [41] utilized a two-stage conditional Variational
Autoencoder (cVAE) [42] model for diverse human motion
prediction. Barquero et al. [43] introduced the BeLFusion
model, a two-stage latent diffusion model for the diverse HMP
task. They utilized a two-stage learning process, where the first
stage learns the VAE generation process, and the second stage
focuses on enhancing the diversity of sampling. However, it is
worth noting that these models were all acquired to learn both
short-term and long-term prediction simultaneously during the
training process. It is significantly different from our multi-stage
training framework which progressively trains the short-term
and long-term predictions in different stages.
Continual learning. Although Deep Neural Networks (DNNs)
have demonstrated impressive performance on specific tasks,
their limitations in handling diverse tasks hinder their broader
applicability. The most severe problem is the catastrophic
forgetting problem when simply applying the DNNs to multiple
tasks. Therefore, some researchers introduced the concept of
Continual Learning (CL) [44] to DNNs to ensure that models
retain the knowledge of previous tasks while learning new
tasks. Kirkpatrick et al. [45] proposed the Elastic Weight
Consolidation (EWC) method to overcome the catastrophic
forgetting problem and improve the performance of multi-task
problems. Shin et al. [46] introduced a method that addresses
catastrophic forgetting in sequential learning scenarios by using
a generative model to replay data from past tasks during the
training of new tasks. It is important to note that the traditional
CL approaches do not account for temporal correlation and
cannot leverage data from previous tasks.

III. CONTINUAL PRIOR COMPENSATION

In this part, we introduce the details of the proposed
Continual Prior Compensation (CPC) framework. We first
provide a problem formulation in Section III-A. Section III-B
introduces the formal modeling and derivation. Finally, the
optimization strategy is presented in Section III-C.

A. Problem Formulation

Human motion prediction aims to predict future motion
sequences conditioned on the previously observed motion
sequences. Formally, let us use X1:Th

= [X1,X2, · · · ,XTh
] ∈

RJ×D×Th to denote the observed motion sequence of
length Th where Xi indicates motion at temporal location
i. Note that J is the number of joints for each pose,
and D is the dimension of coordinates. XTh+1:Th+Tp

=
[XTh+1,XTh+2, · · · ,XTh+Tp

] ∈ RJ×D×Tp represents the
motion sequence to be predicted. Tp is the length of the
predicted sequence. It can be regarded as a composition
of multiple sequential prediction subtasks, which involves
predicting motions at varied future moments.

With the above denotations, the multiple timestamp pre-
diction problem (i.e., HMP prediction) can be formulated as
solving the following optimization problem:

θ∗ =argmax
θ

P (XTh+1:Th+Tp
|X1:Th

;θ), (1)

which means that our target is to find the optimal model that
maximizes Equation (1). Here, θ is the model parameters to
be learned.

Previous approaches mainly formulated models to learn both
short and long-term prediction simultaneously in a one-stage
manner during the training process. However, one-stage training
methods would encounter a main limitation: the learning of
short-term predictions (referring to “near-future” prediction)
could be hindered by the predictions of long-term (referring to
“far-future” prediction) motions. In this work, we propose to
conduct the model training in a multi-stage learning manner,
in which the model is progressively trained by fitting ongoing
prediction motion sequences. To this end, we partition the
entire prediction interval into several consecutive segments and
progressively tune the model to additionally fit new motion
segments, which have been pre-trained with previous segments.

Specifically, we initially split the future sequence into K
segments with temporal boundaries T1, T2, · · · , TK , where
TK = Th + Tp. And we denote the prediction of segment
k as task Zk, which can be expressed as follows:

• Task Z1 : X1:Th
→ XTh+1:T1

• Task Z2 : X1:Th
→ XT1+1:T2

· · ·
• Task ZK : X1:Th

→ XTK−1+1:TK

To be specific, the target of task Z1 is to predict XTh+1:T1

conditioned on X1:Th
, and task Zk aims to predict XTk−1+1:Tk

with X1:Th
as condition. Therefore, based on the Bayesian

formulation, Equation (1) can be expressed as:

P (Z1Z2 · · ·ZK ;θ) = P (ZK |Z1Z2 · · ·ZK−1;θ)

P (ZK−1|Z1Z2 · · ·ZK−2;θ) · · ·P (Z1;θ).
(2)
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Our target is to maximize the probability defined in Equation
(2) which means finding an optimal model to accomplish all
tasks. In the following, we denote “Z1Z2 · · ·Zk” as “Z1:k” for
simplicity.

In this way, we can train the model in a multi-stage manner,
which facilitates the utilization of prior information from
the previous tasks for predicting the subsequent tasks. Since
the model is trained to optimize the prediction tasks Z1:k−1

in training stage Sk−1, the knowledge of tasks Z1:k−1 can
be implicitly involved in its well-trained parameters θ∗

k−1.
Initializing θk as θ∗

k−1 can exploit the prior knowledge learned
in previous tasks to assist the prediction of the next task.
However, the change of the optimization objective in different
training stages could also bring about the knowledge-forgetting
problem due to the changing of parameters θk.

B. Objective of Continual Prior Compensation

Here, we introduce the Prior Compensation Factor (PCF),
which explicitly measures the knowledge forgotten in the multi-
stage training.

1) Prior Compensation Factor: We define the Prior Com-
pensation Factor (PCF) as a random variable αZ1:k−1→Zk

,
which estimates the extent of forgotten knowledge when
utilizing prior knowledge from tasks Z1:k−1 to predict task Zk.
Specifically, the PCF can be formulated as:

αZ1:k−1→Zk
= P (Zk|Z1:k−1;θ)− P (Zk|Ẑ1:k−1;θ),

k ∈ {2, 3, · · · ,K}.
(3)

Here, Ẑ1:k−1 is regarded as the prior knowledge that is
reserved and can be still provided for predicting task Zk. So
Ẑ1:k−1 initially represents the prior knowledge reserved in
θ∗
k−1 in every stage Sk and would get corrupted gradually

during training. Therefore, P (Zk|Ẑ1:k−1;θ) indicates the
learning prediction ability of a new task using corrupted prior
knowledge. While P (Zk|Z1:k−1;θ) represents the most ideal
case, where the current prediction task Zk can fully leverage
the prior information provided by previous prediction tasks
Z1:k−1. Consequently, the loss of the prior knowledge is non-
negative, implying that 0 ≤ αZ1:k−1→Zk

≤ P (Zk|Z1:k−1;θ)−
P (Zk|Ẑ1:k−1;θ) ≤ 1−P (Zk|Ẑ1:k−1;θ). The larger the value
of αZ1:k−1→Zk

is, the more prior knowledge is forgotten.
Specifically, we can observe that αZ1:k−1→Zk

= 0 when
P (Zk|Z1:k−1;θ) = P (Zk|Ẑ1:k−1;θ), which implies that all
the prior knowledge of previous tasks is completely exploited
although the θ changes. It is worth noting that the value of
αZ1:k−1→Zk

could be varied for different training samples.
2) Optimization Objective: By substituting Equation (3)

into Equation (2) and taking the negative logarithm, we can
obtain:

− lnP (Z1:k;θ) = − lnP (Z1;θ)

−
k∑

i=2

ln(P (Zi|Ẑ1:i−1;θ) + αZ1:i−1→Zi
).

(4)

Our target turns to minimize − lnP (Z1:k;θ) with respect
to the model parameter θ and prior compensation factors

{αZ1:i−1→Zi
, i = 2, 3, · · · , k}. Optimizing Equation (4) di-

rectly is challenging due to the difficulty of determining the
value of PCF during training. However, by applying Lemma
3.1 (details provided in the following), we can obtain an upper
bound for − lnP (Z1:k;θ), which can be expressed as:

UB =

k∑
i=2

((1− αZ1:i−1→Zi)(− lnP (Zi|Ẑ1:i−1;θ))

+ (1− αZ1:i−1→Zi) ln(1− αZ1:i−1→Zi)

+ ln(1 + αZ1:i−1→Zi))− lnP (Z1;θ).

(5)

Hence, we can turn to minimize the upper bound indicated
by Equation (5). It is worth noting that in the optimization
objective, αZ1:i−1→Zi

serves as a factor to control the weights
of different tasks. When the prior knowledge loss of previous
tasks becomes severe, the weight of the current task’s loss will
be smaller, which mitigates the prior knowledge loss of previous
tasks and thus compensates for the lost prior knowledge. We
would like to point out that the largest difference between
− lnP (Z1:k;θ) and the upper bound UB would not exceed
ln(3/2) ∗ (k − 1) in the case of P (Zi|Ẑ1:i−1;θ) ≥ 1/2, i ∈
{2, 3, · · · , k}, which would be demonstrated in Lemma 3.2.

Lemma 3.1. For 0 ≤ a ≤ 1−b and 0 < b ≤ 1, the inequality
− ln(a+ b) ≤ (1− a)(− ln b) + (1− a) ln(1− a) + ln(1 + a)
holds. The equality holds if and only if a = 0.

Proof: Let’s consider the following function:

G(a) = ln(a+ b)− (1− a) ln b

+ (1− a) ln(1− a) + ln(1 + a).
(6)

By defining G1(a) = ln(a + b) − (1 − a) ln b and G2(a) =
(1 − a) ln(1 − a) + ln(1 + a), we can observe that G(a) =
G1(a) +G2(a).

Regarding G1(a), its derivative and second derivative can
be computed as follows:

Ġ1(a) =
1

a+ b
+ ln b

G̈1(a) = −
1

(a+ b)2
.

(7)

For the case of b ≥ 1/e, since G̈1(a) < 0 and 0 ≤ a ≤ 1−b, we
can obtain that Ġ1(a) ≥ Ġ1(1− b) = 1 + ln b ≥ 0. Therefore,
G1(a) ≥ G1(0) = 0. For the case of 0 < b < 1/e, we can easily
obtain that Ġ1(1−b) = 1+ln b < 0 and Ġ1(0) = 1/b+ln b > 0.
Hence, by considering the monotonicity of Ġ1(a), we can
conclude that there exists an a0 ∈ (0, 1−b) such that Ġ1(a) ≥ 0
for a ∈ [0, a0] and Ġ1(a) < 0 for a ∈ (a0, 1− b]. As a result,
we can get G1(a) ≥ min(G1(0), G1(1− b)). Since G1(0) = 0
and G1(1− b) = −b ln b ≥ 0, we can finally have G1(a) ≥ 0,
the equality holds if only if a = 0.

In the following, we show that G2(a) ≥ 0 holds. The first
derivative Ġ2(a) and second derivative G̈2(a) are given by:

Ġ2(a) = − ln(1− a)− 1 +
1

1 + a

G̈2(a) =
1

1− a
− 1

(1 + a)2
.

(8)

Since G̈2(a) ≥ 0 for any a ∈ [0, 1− b], we can get Ġ2(a) ≥
Ġ2(0) = 0 and thus G2(a) ≥ G2(0) = 0.
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With G1(a) ≥ 0 and G2(a) ≥ 0, we can obtain G(a) =
G1(a) + G2(a) ≥ 0 and conclude that − ln(a + b) ≤ (1 −
a)(− ln b) + (1− a) ln(1− a) + ln(1 + a). Moreover, we can
observe that equality holds if and only if a = 0.

Lemma 3.2. The absolute difference between the tar-
get objective (Equation (4)) and the upper bound (Equa-
tion (5)) is not larger than ln(3/2) ∗ (k − 1) when
P (Zi|Ẑ1:i−1;θ) ≥ 1/2, i ∈ {2, 3, · · · , k}. This bound is
achieved when P (Zk|Ẑ1:k−1;θ) = 1/2 and αZ1:i−1→Zi =
1/2, i ∈ {2, 3, · · · , k}.

Proof: For simplicity, let’s denote αi = αZ1:i−1→Zi
and

pi = P (Zi|Ẑ1:i−1;θ), where pi ∈ [1/2, 1], αi ∈ [0, 1− pi], i ∈
{2, 3, · · · , k}. Then the difference between the upper bound
(Equation (5)) and the target objective (Equation (4)) can be
calculated as:

τ =UB − (− lnP (Z1:k;θ))

=

k∑
i=2

(ln(αi + pi)− (1− αi) ln pi

+ (1− αi) ln(1− αi) + ln(1 + αi))).

(9)

Note that each term in the summation of Equation (9) has the
same form, we denote it as T (α), where

T (α) = ln(α+ p)− (1− α) ln p

+ (1− α) ln(1− α) + ln(1 + α).
(10)

Then, we can turn to maximize T (α) in order to obtain the
largest difference between the target objective and its upper
bound.

The first derivative of T (α) can be calculated as:

Ṫ (α) =
1

α+ p
+ ln p− ln(1− α)− 1 +

1

1 + α
. (11)

By defining T1(α) = 1/(α+p) + ln p and T2(α) = − ln(1 −
α)− 1+ 1/(1+α), we can observe that Ṫ (α) = T1(α) + T2(α).
The first derivative of T2(α) is:

Ṫ2(α) =
1

1− α
− 1

(1 + α)2
. (12)

Since Ṫ2(α) ≥ 0 for any α ∈ [0, 1 − p], we get T2(α) ≥
T2(0) = 0. Furthermore, when p ≥ 1/2, T1(α) > 0. Therefore,
Ṫ (α) = T1(α)+T2(α) > 0, which means the maximum value
of T (α) is:

T (1− p) = −p ln p+ p ln p+ ln(2− p)

= ln(2− p).
(13)

Since p ≥ 1/2 and ln(2−p) decreases with p, T (1−p) will not
larger than ln(2 − 1/2) = ln(3/2). Particularly, when p = 1/2
and α = 1 − p = 1/2, this largest bound will be achieved.
Hence, we can conclude that T (α) ≤ ln(3/2), and the equality
holds when p = α = 1/2.

Thus, as τ =
∑k

i=2 T (αi) in Equation (9), we obtain τ ≤∑k
i=2 ln(

3/2) = ln(3/2) ∗ (k − 1), which means the absolute
difference between Equation (5) and Equation (4) will not be
greater than ln(3/2) ∗ (k − 1). The equality holds if and only
if pi = αi = 1/2, i ∈ {2, 3, · · · , k}.

C. Optimization Strategy

We train the model in a temporal continual learning (multi-
stage) manner, in which a total of K CPC stages are involved. In
the first stage S1, we aim to train the model for forecasting the
motion in the foremost segment without estimating PCF. While
for the stage Sk, k ∈ {2, 3, · · · ,K}, we update our model for
predicting motion segments of tasks Z1:k and measuring the
PCF αZ1:k−1→Zk

. Once the model is completely trained, we
turn to estimate the factors α̂Z1:k−1→Zk

for subsequent stages.
This process is repeated until the final stage SK is finished. The
algorithm flow is summarized in Algorithm 1. In the following,
we elaborate on the learning process.
Learning of initial stage S1. Following the implementations
of previous methods [47], we can train the initial stage S1 with
mean suqared error (MSE) loss:

L1 =

T1∑
i=Th+1

∥∥∥Xi − X̂i

∥∥∥2, (14)

where Xi and X̂i represent the ground truth and predicted
motion of the i-th frames respectively.
Learning of stage Sk. In stage Sk (k ≥ 2), we need to update
the model parameters θ corresponding to tasks Z1:k and the
PCF αZ1:k−1→Zk

. In practice, PCF can be calculated by adding
an MLP head to the backbone model. According to Equation
(5), the loss function in this stage can be calculated as follows:

Lk = (1− αZ1:k−1→Zk
)

Tk∑
i=Tk−1+1

∥∥∥Xi − X̂i

∥∥∥2
+ (1− αZ1:k−1→Zk

) ln(1− αZ1:k−1→Zk
)

+ ln(1 + αZ1:k−1→Zk
)

+

k−1∑
j=2

(1− α̂Z1:j−1→Zj )

Tj∑
i=Tj−1+1

∥∥∥Xi − X̂i

∥∥∥2 + L1,

(15)

where the parameters α̂Z1→Z2 , · · · , α̂Z1:k−2→Zk−1
are derter-

mined in the learning of previous stages. Once the model
parameters for stage Sk are determined, we then calculate
α̂Z1:k−1→Zk

as:

α̂Z1:k−1→Zk
=

1

M

M∑
m=1

α̂m
Z1:k−1→Zk

, (16)

where M represents number of samples and α̂m
Z1:k−1→Zk

is
PCF estimated for the m-th sample.

We continue the CPC training process by progressively
predicting tasks Z1:k+1 and updating the model parameter
θ as well as the PCF αZ1:k→Zk+1

. We repeat this CPC process
until the final stage SK is achieved.

IV. CONTINUAL PRIOR COMPENSATION++

The Prior Compensation Factor in the CPC framework
intends to encode the prior knowledge loss for all of the
previous subtasks using a single random variable, which only
provides a rough estimation of the prior knowledge loss. For
example, when considering three tasks Z1, Z2, and Z3, if task
Z1 experiences significant prior information loss while task
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Algorithm 1 Training procedure of proposed CPC framework.

Require: observed sequences X1:Th
, ground truth future

sequences XTh+1:Th+Tp
, model parameters θ, stage number

K, training epoch for k-th stage Ek, learning rate λ, training
sample number M .
for i = 1 to E1 do
X̂Th+1:T1

= fθ(X1:Th
)

θ ← θ − λ ∗ ∇θL1(XTh+1:T1
, X̂Th+1:T1

)
end for
B = ∅
for k = 2 to K do

for i = 1 to Ek do
X̂Th+1:Tk

, αZ1:k−1→Zk
= fθ(X1:Th

)

θ ← θ − λ ∗ ∇θLk(XTh+1:Tk
, X̂Th+1:Tk

,
αZ1:k−1→Zk

,B)
end for
α̂Z1:k−1→Zk

= 0
for m = 1 to M do
αm
Z1:k−1→Zk

= fθ(X
m
1:Th

)
α̂Z1:k−1→Zk

= α̂Z1:k−1→Zk
+ αm

Z1:k−1→Zk

end for
α̂Z1:k−1→Zk

= 1
M α̂Z1:k−1→Zk

B = B ∪ {α̂Z1:k−1→Zk
}

end for

Z2 does not, the PCF αZ1:2→Z3 remains small due to the
influence of task Z2. Consequently, the 1 − αZ1:2→Z3

will
be large, preventing the model from effectively mitigating
the prior forgetting problem of task Z1. To handle this
problem, we define the Fine-Grain Prior Compensation Factor
(FGPCF), which contains multiple learnable random variables,
each of which measures the prior information loss for the
corresponding subtask. Based on the FGPCF, we formulate
our Continual Prior Compensation++ (CPC++) framework,
which intends to optimize the FGPCF and model parameters
simultaneously in a multi-stage progressive training manner.
We further derive a reasonable upper bound of the objective
function for CPC++ through theoretical derivation, which can
be efficiently optimized. In the following, we first provide
a formal modeling and derivation of FGPCF as well as the
optimization objective of CPC++ in Section IV-A. Section
IV-B introduces the estimation of FGPCF. In Section IV-C, the
optimization strategy is elaborated.

A. Objective of Continual Prior Compensation++

1) Fine-Grained Prior Compensation Factor: To estimate
the prior information loss for each task, we propose the Fine-
Grain Prior Compensation Factor (FGPCF), which is defined
as follows:

α
(k)
i =


P (Z2:k|Z1;θ)− P (Z2:k|Ẑ1;θ), i = 1,

P (Zi+1:k|Ẑ1:i−1Zi;θ)− P (Zi+1:k|Ẑ1:i;θ),

i ∈ {2, 3, · · · , k − 1},
(17)

where k ∈ {2, 3, · · · ,K}. P (Zi+1:k|Ẑ1:i−1Zi;θ) indicates
completing tasks Zi+1:k using corrupted prior information
of tasks Z1:i−1 and complete prior knowledge of task Zi. And

P (Zi+1:k|Ẑ1:i;θ) represents completing tasks Zi+1:k with lost
prior knowledge learned from tasks Z1:i. Since the impact of
prior information loss in previous tasks Z1:i−1 is excluded
using conditional probability, we can effectively measure the
prior loss for the current task Zi. Therefore, this approach
enables a fine-grained assessment of information loss for each
individual task, which leads to a more specific estimation of
prior information loss and control of the training process.

2) Optimization Objective: Since the optimization function
− lnP (Z1:k;θ) is challenging to optimize directly, based on
Lemma 3.3, we theoretically show that we can turn to minimize
an upper bound of our optimization objective instead, which
can be optimized easily. The upper bound is given as follows:

UB(k) =

k∑
i=2

(

i−1∏
j=1

A
(k)
j )(− lnP (Zi|Ẑ1:i−1;θ))

+

k−1∑
i=2

(

i−1∏
j=1

A
(k)
j )∆

(k)
i − lnP (Z1;θ) + ∆

(k)
1 ,

(18)

where A
(k)
i = 1 − α

(k)
i , ∆

(k)
i = (1 − α

(k)
i ) ln(1 − α

(k)
i ) +

ln(1 + α
(k)
i ), i ∈ {1, 2, · · · , k − 1}. In the following, we

provide the description and proof of Lemma 3.3 in detail.
Lemma 3.3. The inequality

− lnP (Z1:k;θ) ≤
k∑

i=2

(

i−1∏
j=1

A
(k)
j )(− lnP (Zi|Ẑ1:i−1;θ))

+

k−1∑
i=2

(

i−1∏
j=1

A
(k)
j )∆

(k)
i − lnP (Z1;θ) + ∆

(k)
1

holds. The equality holds if and only if A(k)
i = 1 and ∆

(k)
i = 0,

i ∈ {1, 2, · · · , k − 1}.
Proof: We can rewrite − lnP (Z1:k;θ) using conditional

formular:

− lnP (Z1:k;θ) = − lnP (Z2:k|Z1;θ)− lnP (Z1;θ). (19)

Using the definition from Equation (17) and Lemma 3.1, we
can obtain:

− lnP (Z1:k;θ) = − ln(P (Z2:k|Ẑ1;θ) + α
(k)
1 )− lnP (Z1;θ)

≤ − lnP (Z1;θ) + (1− α
(k)
1 )(− ln(P (Z2:k|Ẑ1;θ))

+ (1− α
(k)
1 ) ln(1− α

(k)
1 ) + ln(1 + α

(k)
1 ).

(20)

For simplicity, let’s denote A
(k)
i = 1 − α

(k)
i , ∆

(k)
i = (1 −

α
(k)
i ) ln(1−α

(k)
i ) + ln(1+α

(k)
i ), i ∈ {1, 2, · · · , k− 1}. By

repeatedly utilizing Equation (17) and Lemma 3.1, we can
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Fig. 2: Illustration of Prior Loss Estimation Module. InterFASS is the Inter-Task Forgetting Assessment module, and IntraFAGG
represents the Intra-Task Forgetting Aggregation module. MP denotes the max-pooling layer.

obtain:

A
(k)
1 (− lnP (Z2:k|Ẑ1;θ)) + ∆

(k)
1 − lnP (Z1;θ)

=A
(k)
1 (− lnP (Z3:k|Ẑ1Z2;θ)− lnP (Z2|Ẑ1;θ))

+ ∆
(k)
1 − lnP (Z1;θ)

=A
(k)
1 (− ln(P (Z3:k|Ẑ1:2;θ) + α

(k)
2 )) + ∆

(k)
1

+A
(k)
1 (− lnP (Z2|Ẑ1;θ))− lnP (Z1;θ)

≤A(k)
1 A

(k)
2 (− lnP (Z3:k|Ẑ1:2;θ)) +A

(k)
1 ∆

(k)
2 +∆

(k)
1

+A
(k)
1 (− lnP (Z2|Ẑ1;θ))− lnP (Z1;θ)

· · ·

≤
k∑

i=2

(

i−1∏
j=1

A
(k)
j )(− lnP (Zi|Ẑ1:i−1;θ))

+

k−1∑
i=2

(

i−1∏
j=1

A
(k)
j )∆

(k)
i − lnP (Z1;θ) + ∆

(k)
1 .

(21)

When A
(k)
i = 1 and ∆

(k)
i = 0, i ∈ {1, 2, · · · , k − 1}, the

equality holds.

B. Estimation of FGPCF

Here, we develop a Prior Loss Estimation Module (PLEM)
to explicitly estimate the prior information loss. The PLEM
consists of an Inter-Task Forgetting ASSessment (InterFASS)
module and an Intra-Task Forgetting AGGregation (IntraFAGG)
module, as illustrated in Figure 2. Specifically, consider a HMP
backbone model with an output of Mres ∈ RT×N×3, where
T and N denotes the motion length and the number of joints,
respectively. We extend the model output with an additional
dimension, generating an output of Mres ∈ RT×N×(3+1).
We then extract features of the last dimension, with a size
of Min ∈ RT×N×1, and feed it into the InterFASS and
IntraFAGG module, producing an output of Mα ∈ RK×1,
which forms the estimation for FGPCF. The details of each
module are elaborated in the following.
Inter-Task Forgetting Assessment Module. Firstly, the model
employs a pre-encoder to encode the input features into a high-
dimensional space, facilitating the subsequent estimation of the
forgetting extent of prior information for each task. Considering
that the FGPCF to be calculated is closely related to all the
earlier tasks, we employ a multi-head self-attention mechanism

(MHSA) to interact with the features of each task. To extract
the information forgotten at each time step, attention is applied
to each time step among all tasks. Subsequently, the output of
MHSA is fed into a linear mapping and batch normalization.
Intra-Task Forgetting Aggregation Module. With the features
after interaction through InterFASS provided, we then employ
intra-task max-pooling to combine the features at each time
step for various tasks. The combination features are then fed
into an estimation head which contains a multilayer perceptron
(MLP) and a sigmoid mapping. Finally, we can obtain an
estimate of prior information loss (i.e., FGPCF) for each task
on the given sample, which has a value from 0 to 1.

C. Optimization Strategy

Similar to the CPC framework, CPC++ follows a multi-
stage progressive training paradigm, in which a total of K
CPC++ stages are involved. In the first stage S1, we aim to
train the model for predicting the motion in the foremost
segment without estimating FGPCF. While for the stage
Sk, k ∈ {2, 3, · · · ,K}, we update our model to predict motion
segments for task Z1:k and simultaneously learn the FGPCF
α
(k)
i , i ∈ {1, 2, · · · , k − 1}. This process is repeated until the

final stage SK is achieved.
Learning of initial stage S1. We train the initial stage S1

with MSE loss:

L1 =

T1∑
i=Th+1

∥∥∥Xi − X̂i

∥∥∥2, (22)

where Xi and X̂i represent the ground truth and predicted
motion of the i-th frames respectively.
Learning of stage Sk. In stage Sk (k ≥ 2), we need to
update the model parameters θ corresponding to tasks Z1:k and
estimate the FGPCF α

(k)
i , i ∈ {1, 2, · · · , k − 1}. According to

Equation (18), the loss function in this stage can be calculated
as follows:

Lk =

k∑
i=2

(

i−1∏
j=1

A
(k)
j )

Ti∑
v=Ti−1+1

∥∥∥Xv − X̂v

∥∥∥2
+

k−1∑
i=2

(

i−1∏
j=1

A
(k)
j )∆

(k)
i + L1 +∆

(k)
1 .

(23)

We continue the CPC++ training process by completing tasks
Z1:k+1 and updating the model parameter θ as well as FGPCF
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TABLE I: Results on Human3.6M, CMU-MoCap and 3DPW using PGBIG as baseline. A lower value means better performance.

Dataset Method 80ms 160ms 320ms 400ms 560ms 1000ms

Human3.6M

PGBIG 10.3 22.7 47.4 58.5 76.9 110.3

PGBIG&CPC 9.4 (-0.9) 21.3 (-1.4) 45.7 (-1.7) 56.8 (-1.7) 75.4 (-1.5) 108.8 (-1.5)

PGBIG&CPC++ 9.1 (-1.2) 20.9 (-1.8) 45.5 (-1.9) 56.6 (-1.9) 75.4 (-1.5) 109.2 (-1.1)

CMU-MoCap

PGBIG 7.6 14.3 29.0 36.6 50.9 80.1

PGBIG&CPC 7.5 (-0.1) 14.3 (-0.0) 28.3 (-0.7) 35.4 (-1.2) 48.6 (-2.3) 78.4 (-1.7)

PGBIG&CPC++ 7.6 (-0.0) 14.2 (-0.1) 27.9 (-1.1) 34.9 (-1.7) 48.0 (-2.9) 76.8 (-3.3)

3DPW

PGBIG 13.7 23.2 47.3 58.3 76.1 104.1

PGBIG&CPC 7.2 (-6.6) 16.3 (-6.9) 37.3 (-10.0) 47.1 (-11.2) 64.1 (-12.0) 96.0 (-8.1)

PGBIG&CPC++ 7.1 (-6.7) 16.2 (-7.0) 37.1 (-10.2) 47.0 (-11.3) 64.5 (-11.6) 96.3 (-7.8)

α
(k+1)
i , i ∈ {1, 2, · · · , k}. The algorithm flow is summarized

in Algorithm 2, where the B(k) = {α(k)
1 , α

(k)
2 , · · · , α(k)

k−1}.

Algorithm 2 Training procedure of proposed CPC++ frame-
work.
Require: observed sequences X1:Th

, ground truth future
sequences XTh+1:Th+Tp

, model parameters θ, stage number
K, training epoch for k-th stage Ek, learning rate λ.
for i = 1 to E1 do
X̂Th+1:T1

= fθ(X1:Th
)

θ ← θ − λ ∗ ∇θL1(XTh+1:T1
, X̂Th+1:T1

)
end for
for k = 2 to K do

for i = 1 to Ek do
X̂Th+1:Tk

,B(k) = fθ(X1:Th
),

θ ← θ − λ ∗ ∇θLk(XTh+1:Tk
, X̂Th+1:Tk

,B(k))
end for

end for

V. EXPERIMENTS

A. Experimental Setup

Datasets. We validate our framework on three benchmark
datasets: Human3.6M [22], CMU-MoCap, 3DPW [23]. Hu-
man3.6M [22] is a large dataset containing 3.6 million 3D
human pose data. 15 types of actions performed by 7 actors
(S1, S5, S6, S7, S8, S9 and S11) are included in this dataset.
Each actor is represented by a skeleton of 32 joints. However,
following the data preprocessing method proposed in [20], [21],
we only use 22 joints in the experiments. The global rotations
and translations of poses are removed, and the frame rate is
downsampled from 50 fps to 25 fps. We use actors S5 and
S11 for testing and validation while conducting training on the
remaining sections of the dataset. CMU-MoCap is a smaller
dataset with 8 different action categories. The global rotations
and translations of the poses are also removed. Following the
data preprocessing methods in [20], [21], we use 25 joints to
indicate human poses. 3DPW [23] is a challenging dataset that

contains human motion data captured from both indoor and
outdoor scenes. Poses in this dataset are represented in 3D
space, with each pose containing 26 joints. However, only 23
of these joints are used, as the other three are redundant.

Evaluation Metrics. Following the benchmark protocols, we
use the Mean Per Joint Position Error (MPJPE) in millimeters
(ms) as our evaluation metric for 3D coordinate errors. We
follow [20], [21] to report both short-term (80, 160, 320 and
400ms) and long-term predictions (560 and 1000ms). The
performance is better if this metric is smaller.

Implementation Details. Following [20], [21], [24], we set
the input length to 10 frames and the predictive output to 25
frames for Human3.6M and CMU-Mocap datasets, respectively.
For the 3DPW dataset, we predict 30 frames conditioned
on the observation of the preceding 10 frames. We choose
PGBIG [21] as our baseline model by default. To learn the
PCF, we add an extra dimension to the output of the backbone
model and calculate PCF through an MLP network whose
hidden dimension is set to 512. For estimating the FGPCF,
we utilize the PLEM. The self-attention mechanism has four
heads, and the hidden dimension of PLEM is configured as 64.
We partitioned the future sequences into three segments with
lengths of 3, 9, and 13. The training process was conducted
on an NVIDIA RTX 3090 GPU for 120 epochs, allocating 50,
90, and 120 epochs for each stage. It should be noted that the
inference process is the same as that of the baseline models.

Backbones. We apply our method on the following backbone
approaches: LTD [20], MotionMixer (MM) [24], siMLPe [25]
and the current state-of-the-art PGBIG [21] and report the
experimental results on three benchmark datasets. LTD and
PGBIG are GCN-based models. MotionMixer and siMLPe
are MLP-based models. All these methods have released their
code publicly. We employ their pre-trained models or re-train
their models using the suggested hyper-parameters for a fair
comparison. And we also exactly follow the metric they used
to evaluate the results.
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B. Main Experimental Results

Quantitative results. Table I presents experimental results
of the baseline model PGBIG with and without our training
strategy (CPC and CPC++) on the Human3.6M, CMU-MoCap
and 3DPW datasets. As shown, our frameworks outperform
the corresponding baseline model by a considerable margin
across all three datasets. Specifically, we can observe that the
improvement in long-term prediction (e.g., 1000 ms) is greater
compared to short-term prediction (e.g., 80 ms), indicating that
the prior knowledge provided by short-term prediction is more
crucial for challenging long-term prediction tasks. The results
on the Human3.6M dataset show that our CPC framework
decreases the prediction error by an average of 1.5 (52.9 vs.
54.4). Additionally, we can obtain a 1.7 (52.7 vs 54.4) error
reduction using CPC++. When using our CPC strategy to
train the PGBIG [21], we obtain about a 1.0 (35.4 vs. 36.4 in
terms of average MPJPE) performance improvement on the
CMU-Mocap dataset. Furthermore, when the CPC++ strategy
is employed, we can achieve an additional improvement of 0.5.
It is worth noting that our framework outperforms PGBIG by
a margin of 9.1 (44.7 vs. 53.8 in terms of average MPJPE) on
the 3DPW dataset. We attribute this to our multi-stage training
framework, which effectively utilizes more comprehensive
prior knowledge for subsequent predictions in this challenging
dataset with smaller sizes and more complex motions. However,
it also makes the difficult for the model with more parameters
to learn the more specific FGPCF using this challenging dataset,
which leads to the comparable performance between CPC++
and CPC on the 3DPW dataset.
Qualitative results. Figure 3 provides some visualization
examples of predicted motions, qualitatively illustrating that
our framework achieves more accurate results than the baseline
model PGBIG. Specifically, in the “Directions” action, the
person maintains an upright position throughout the sequence.
In contrast, PGBIG exhibits a bent posture during long-term
predictions, while our method accurately predicts positions
closer to the ground truth. In the “Takingphoto” action,
the person initially bends and then stands upright. PGBIG
maintains the bent posture throughout long-term predictions,
whereas our method accurately predicts posture changes. In
the “Purchases” action, we observe that PGBIG’s predicted
results gradually bend, which differs from the ground truth.
Furthermore, PGBIG’s predicted results for the “Posing” action
show an unnatural posture, where the person stands upright but
with shoulders hunched forward and hands hanging vertically
downward. It is evident that our method demonstrates an
improvement in long-term prediction. This improvement is
attributed to our proposed framework’s ability to effectively
leverage prior knowledge from short-term predictions, which
provides long-term predictions with more comprehensive clues.

Visualization of PCF and FGPCF. In our CPC and CPC++
frameworks, we have employed the PCF and FGPCF to mitigate
the loss of prior knowledge. In Figure 4, we show the value
of them in different stages and different action types.

The PCF value progressively increases with each training
stage for all action types. However, the trends in change for

different actions are not uniform. For example, the value of
“greeting” is smaller than that of “walkingdog” at the first stage
but becomes larger at stage 5. This difference can be attributed
to the static nature of the “greeting” action in the short term,
where the action pattern undergoes minimal change. Conse-
quently, the forgetting problem of prior knowledge learned
in the initial stages is less severe, leading to a smaller PCF
value. Conversely, the “greeting” action manifests in various
forms over long-term sequences, resulting in different action
patterns and a more severe forgetting problem. Additionally,
we observe that the PCF value of “walking” is higher than that
of “waiting” at stage 1 but lower at stage 5. This suggests that
“walking” exhibits more movement in short-term sequences.
As a result, when the periodic action pattern is learned in the
earlier stages, the loss of prior knowledge is less pronounced
in stage 5. In contrast, “waiting” remains static initially but
undergoes posture changes in long-term sequences. By exactly
examining the PCF/FGPCF results in Figure 4, we find that
the learned FGPCF values increase with stage progresses for
all action types, which means that the prior-information loss
induced by multi-stage continual training becomes more severe.
These results confirm the effectiveness of our approach in
learning fine-grained prior compensation factors for mitigating
the prior information forgetting in the multi-stage continual
training. Furthermore, we can also observe that both the PCF
and FGPCF values vary across actions. In particular, low-
dynamic actions (e.g., sitting, smoking) exhibit consistently
smaller PCF/FGPCF values. In contrast, for the actions with
diverse and complex dynamics (e.g., walking dog and greeting),
we observe that the learned PCF/FGPCF values are much larger
in all stages. These observations suggest that exploring dynamic-
specific prior information compensation mechanisms for motion
prediction, by explicitly considering dynamic similarities across
actions, could be beneficial and promising.

C. Ablation Studies
We conduct several ablation experiments to further verify

the effectiveness of our proposed framework.
Integration with different baseline models. We first study
the flexibility by applying the CPC and CPC++ frameworks
to progressively train different baseline models. Table II
shows the quantitative comparisons of prediction results of
different baseline models on the Human3.6M dataset. As
shown, the performance of both short-term and long-term
prediction improves when employing CPC and CPC++ in
these baseline models. To be specific, we achieve a 3.6
performance improvement on average by applying CPC to
LTD and a 4.1 performance improvement when using CPC++.
Likewise, for the baseline models MM, CPC leads to a
1.1 performance enhancement, while CPC++ leads to a 1.6
performance enhancement. As for siMLPe, CPC also enhances
prediction accuracy by approximately 1.2 and CPC++ improves
the system performance by 1.5. These experimental results
demonstrate that our proposed frameworks can effectively
leverage prior knowledge to enhance the performance of both
short and long-term prediction. Furthermore, these also validate
the flexibility of applying CPC and CPC++ to various HMP
baseline models, enhancing their performance.
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TABLE II: Results of other baseline models on Human3.6M. A lower value means better performance.

Method Framework 80ms 160ms 320ms 400ms 560ms 1000ms

LTD

baseline 12.7 26.1 52.3 63.5 81.6 114.3

CPC 10.8 (-1.9) 23.0 (-3.1) 48.2 (-4.1) 59.3 (-4.2) 77.5 (-4.1) 111.2 (-3.1)

CPC++ 10.2 (-2.5) 22.3 (-3.8) 47.3 (-5.0) 58.5 (-5.0) 77.2 (-4.4) 111.0 (-3.3)

MM

baseline 12.7 26.4 53.4 65.0 83.6 117.6

CPC 11.5 (-1.2) 25.0 (-1.4) 52.0 (-1.4) 63.7 (-1.3) 82.8 (-0.8) 117.1 (-0.5)

CPC++ 10.8 (-1.9) 24.3 (-2.1) 51.4 (-2.0) 63.1 (-1.9) 82.4 (-1.2) 117.0 (-0.6)

siMLPe

baseline 10.7 23.9 50.7 62.6 82.0 116.0

CPC 10.0 (-0.7) 22.9 (-1.0) 49.4 (-1.3) 61.2 (-1.4) 80.6 (-1.4) 114.6 (-1.4)

CPC++ 10.0 (-0.7) 22.8 (-1.1) 48.9 (-1.8) 60.6 (-2.0) 80.2 (-1.8) 114.2 (-1.8)

Effect of PCF and FGPCF. In this paper, we have introduced
the prior compensation factor and fine-grained prior compensa-
tion factor to mitigate the prior forgetting problem during the
multi-stage training process. Here, we investigate the benefits
of them. In our experiments, we first report the results of the
baseline “Without PCF”, which trains in a multi-stage manner
without using the PCF. We also report the results of using PCF
“With PCF” and using FGPCF “With FGPCF”.

The results presented in Figure 5 show that introducing the
PCF alleviates the performance degradation from stage S1 to
stage S3 of task Z1’s predictions. Specifically, without PCF,
the prediction error of task Z1 increases by 0.83, whereas
with PCF, it only increases by 0.27. This result suggests that
PCF can effectively alleviate the prior forgetting issue. As a
result, task Z1 can offer more comprehensive priors for tasks
Z2 and Z3, leading to better prediction performance. To be
specific, the prediction error for task Z2 at the end of stage
S2 is 45.33 without PCF, but it reduces to 44.43 when PCF
is used. Similarly, for task Z3 in stage S3, the error decreases
from 92.80 to 91.37 by using PCF. Furthermore, the results
in Figure 5 demonstrate that FGPCF further mitigates the
loss of prior knowledge. The prediction error of task Z1 only
increases by 0.14, significantly smaller than that of the baseline
model. Therefore, we obtain better performance of tasks Z2 and
Z3 by utilizing more comprehensive prior knowledge. These
promising experimental results confirm that the proposed PCF
and FGPCF help mitigate the prior forgetting problem.
Evaluation on Prior Loss Estimation Module. In our CPC++
framework, we have proposed the prior loss estimation module
to better estimate the FGPCF, which contains the inter-task
forgetting assessment and intra-task forgetting aggregation mod-
ules. Here, we conduct experiments to validate the effectiveness
of these modules. In our experiments, we first remove both
modules and obtain the baseline, “w/o both”. Then, the result of
adding InterFASS is reported as “with InterFASS”. Furthermore,
we test the result by only adding IntraFAGG, labeled as “with
IntraFAGG”. Finally, we use both modules, which is referred
to as “with both”.

The results are presented in Table III. We can observe that
without the InterFASS and IntraFAGG, the prediction error

TABLE III: Results of our method with/without InterFASS and
IntraFAGG modules.

Method InterFASS IntraFAGG Avg↓
w/o both 65.7

with InterFASS ✓ 65.0
with IntraFAGG ✓ 65.5

with both ✓ ✓ 64.9

is 65.7. When InterFASS is employed, the error decreases to
65.0, demonstrating the importance of accurately estimating the
extent of prior knowledge loss. The prediction error is reduced
to 65.5 by using IntraFAGG, which indicates that IntraFAGG
is beneficial for the estimation of prior knowledge loss. With
both modules added, the error further drops to 64.9.
Evaluation on different implementations. In our CPC
framework, we introduce the prior compensation factor to
address the issue of prior forgetting. This factor is adaptively
determined based on the backbone output. To demonstrate
the importance of incorporating PCF, learned during the
training process, we have conducted a series of experiments.
In our experiments, we compare the results of four different
implementations. PGBIG is the baseline model. “w/o α” means
that we only divide the training process into several stages to
train each task without using the PCF. “HC” represents using
a hand-crafted coefficient that changes its values similar to our
PCF at each epoch. Specifically, in stage S1, the value of α
is set to 1. In stage S2, α is initially set to 0.1 and increased
by 0.05 at each epoch until reaching 0.5, where it remains
constant. The same pattern applies to stage S3.

The results are presented in Figure 6. In each subfigure,
we show the results of task Zk on the validation set which is
obtained at stage Sk. In stage S1, where no prior information
is available, the results of ”w/o α”, ”HC”, and ”Ours” are
identical, but superior to the baseline. This validates the
effectiveness of decomposing multiple-moment predictions,
as it alleviates the constraint of long-term predictions on short-
term predictions and enhances the model’s ability to learn
short-term predictions. In the following stages, the performance
of “w/o α” is worse than “Ours”, which indicates that the prior
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Fig. 3: Some visualized results from the Human3.6M dataset are presented. We display four action categories: “Directions”,
“Takingphoto”, “Purchases”, and “Posing”. The observed frames are shown in black, while the colorful motion sequences
represent the prediction results. “GT” denotes the ground truth results and “PGBIG” is the baseline. “+Ours” represents the
results of using the proposed CPC framework. As demonstrated, our method produces the best future motion sequences. And
we highlight the different parts in PGBIG’s results with red dashed circles.
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Fig. 4: Visualized results of PCF and FGPCF. Each subplot is represented in polar coordinates, where the angular coordinate
represents different action categories, and the radial distance represents values. The drawn circular area represents the results of
a certain stage.

Method z1 z2 z3

Without

PCF

s1 9.03

s2 9.44 45.33

s3 9.86 45.70 92.80

With

PCF

s1 9.03

s2 9.10 44.43

s3 9.30 44.62 91.37

With

FGPCF

s1 9.03

s2 9.10 44.43

s3 9.17 44.51 91.35

Stage
Task

Fig. 5: The average error of different tasks at the end of each
stage. A lower value means better performance.

knowledge exploited by our framework benefits the prediction
model training. Moreover, as the training period progressed,
the performance gap became larger. However, the method
without PCF can still achieve better performance than “PGBIG”,
indicating that the training model in a multi-stage manner can
also exploit some useful prior information for prediction. We

also note that the performance of “Ours” is much better than
“HC”, which conducts temporal continual learning with fixed
and manually defined PCF. It demonstrates that joint training
PCF and model parameters is beneficial.
Evaluation on the number of tasks. In most of our imple-
mentations, our CPC framework divides the future prediction
into three tasks. Here, we study the influence of the number
of tasks. Specifically, 1 task represents the training of short
and long-term prediction together. In the 2 tasks setting, we
partition the future sequences into two segments with lengths
of 3 and 22. As for 5 tasks, we design prediction lengths of 3,
4, 5, 6 and 7 for each task. We split the future sequences into
eight segments with lengths of 3, 3, 3, 3, 3, 3, 3 and 4 for
the 8-tasks setting. The detailed comparison results are shown
in Table IV. As shown, the model’s performance improves as
the number of tasks gets larger from 1 to 3, and it remains
stable when the number of tasks becomes larger than 3. It
demonstrates that the proposed framework for task division is
beneficial for human motion prediction.

TABLE IV: The average error of different numbers of tasks.

number of tasks 1 2 3 5 8

avg error↓ 66.95 66.02 65.00 65.05 65.03

Effect of the overlapping vs. non-overlapping segments.
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Fig. 6: Comparison of different approaches. PGBIG is a baseline model that is trained without multi-stage. “w/o α” represents
training multi-stage process without PCF. “HC” means using a manually designed coefficient. “Ours” is a multi-stage training
process with PCF. A lower value means better performance.

TABLE V: Comparison results (MPJPE) of our method with
different overlaps. X-overlap denotes the X-frame overlap
between adjacent segments.

Method 80ms 160ms 320ms 400ms 560ms 1000ms

PGBIG (Baseline) 10.3 22.7 47.4 58.5 76.9 110.3

6-overlap 9.9 21.9 46.5 57.6 76.5 110.4

3-overlap 9.8 21.8 46.5 57.6 76.3 110.3

no-overlap 9.1 20.9 45.5 56.6 75.4 109.2

In our progressive training framework, we split motions into
non-overlapping segments and perform temporal continual
learning across segments with prior compensation. To verify
the effect of this design, we also implemented our approach
using overlapping segments. The detailed results are presented
in Table V. As expected, non-overlapping training yields the
best performance, significantly outperforming implementations
with overlapping segments, demonstrating the effectiveness
of our proposed continual learning framework with prior
compensation.

Evalution on the single PCF/FGPCF prediction head
across stages. In our framework, we develop a single shared
head to predict PCF/FGPCF across stages. Note that employing
K output heads to generate K sub-predictions is also a feasible
way to implement multi-stage training, in which each head
mainly handles the prediction of a certain stage. However,
this design faces scalability issues in long-term motion pre-
diction since the number of head would grow with the total
motion length T (e.g., K=[T/∆], where ∆ represents length
of motion predicted by each head), causing parameter bloat,
higher memory/compute, and training instability. Moreover, the
predictions outputted by multi-head decoder could encounter
a termporal consistency issue, especially when the snippts
are not overlapped. To emprically verify the effectivess of
our single shared head, we also implement our multi-stage
training with multi-head decoders and combined it with SOTA
model PGBIG. The detailed results on Human3.6M dataset are
presented in Table VI. As shown, our method with single shared-
head obtains the best prediction performances and outperforms
the multi-head variant in both short-term and long-term motion
prediction, demonstrating the effectiveness of our approach
in leveraging short-term priors to progressively train models
across stages. We can also observe that performing multi-

TABLE VI: Comparison results (MPJPE) of implementing
multi-stage training with different strategies (single head vs.
multi-head).

Method 80ms 160ms 320ms 400ms 560ms 1000ms

PGBIG 10.3 22.7 47.4 58.5 76.9 110.3

+multi-head 10.0 22.0 47.0 58.0 77.1 111.1

+single shared-head 9.4 21.3 45.7 56.8 75.4 108.8

stage training with multi-head decoder improves short-term
prediction (80–400ms) over PGBIG but slightly degrades long-
term prediction (500–1000ms) accuracy, indicating that short-
term priors are not effectively exploited for long-term motion
prediction in this design.

Analysis on the training time. In Table VII, we provide the
detailed training time of different methods with our progressive
training strategy. As shown, our three-stage training strategy
only slightly increases the total training time (e.g., from 16.3h to
19.5h for the PGBIG backbone) while significantly improving
the overall performance from 64.9 to 67.0. The slight increase
in training time can be attributed to the fact that learning the
short-term prediction is much easier than optimizing over the
entire sequence (8.1h vs. 16.3h), while the training in the
subsequent stages can converge faster by leveraging the prior
knowledge pretrained in previous stages. It is worth noting that
our method is only used in the training stage, the inference
time remains identical to that of the baseline model.

TABLE VII: Total training time comparison. The training
procedure is stopped when the loss variation remains below
1e-5 within 5 epochs.

Method Avg. err. stage 1 stage 2 stage 3 total

PGBIG 67.0 16.3 h - - 16.3 h

PGBIG+Ours 64.9 8.1 h 6.0 h 5.4 h 19.5 h

LTD 70.2 8.4 h - - 8.4 h

LTD+Ours 67.3 5.3 h 3.0 h 3.1 h 11.4 h

Discussion on the assumption P (Zi|Ẑ1:i−1; θ) ≥ 1/2.
In Lemma 3.2, we have derived the maximum difference
between target objective and the upper bound (UB) under the
assumption P (Zi|Ẑ1:i−1; θ) ≥ 1/2. To validate the plausibility
of this assumption, we have carefully examined the samples
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Fig. 7: The ratio of samples and the upper bound of maximun
gap between UB and target objective when the confidence
value is larger than a certain level.

in our experiments on the Human3.6M dataset with PGBIG
as baseline, and present Figure 7 to demonstrate the ratio of
samples and maximum gap between UB and target objective
when the confidence value is larger than a certain level. We
empirically find that a relatively large number of samples
can satisfy the condition/assumption. For instance, 97.8% of
the samples satisfy the condition P (Zi|Ẑ1:i−1; θ) >= 1/2.
When the confidence level decreases, the number of samples
meeting the condition increases, while the maximum gap
between UB and target objective becomes larger accordingly.
For non-satisfying cases, we cannot mathematically derive
an exact formulation for the maximum gap between UB and
target objective, but we empirically examine the non-satisfying
samples and find that their gaps are still in a reasonable range
(from 0.64 to 2.29). And more importantly, such samples
account for only 2.2% of the total.

Discussion on the training strategy of our method
and Transformer. Both our method and the Transformer
involve processing sequences of varying lengths during training.
Specifically, transformer processes all the sequences of varied
lengths simultaneously in a single stage. In contrast, our method
follows multi-stage training strategy, which processes the
sequences of a certain length in each training stage. Here, we
conduct experiments on the Human3.6M dataset and compare
our results with POTR [48], which is trained following the
standard Transformer paradigm. To ensure a fair comparison,
we use the same EAE metric (in radians, ranging from 0 to
π) as POTR for evaluation. The detailed results are presented
in Table VIII. As shown, applying our temporal continual
training strategy to POTR achieves better performance than
the standard Transformer paradigm and the performance gain
is much larger for long-term motion prediction (e.g., 400ms-
1000ms) than short-term motion prediction (e.g., 80ms-160ms),
demonstrating the effectiveness of our progressive multi-stage
training paradigm to explore prior knowledge for facilitating
human motion prediction.

VI. CONCLUSION

In this work, we proposed to progressively train the human
motion prediction model in the temporal continual learning

TABLE VIII: Experimental results on Transformer-based model
POTR with different training strategies.

Method 80ms 160ms 320ms 400ms 560ms 1000ms

Transformer 0.235 0.581 0.990 1.143 1.362 1.826

Ours 0.230 0.553 0.921 1.051 1.266 1.729

Gain 0.005 0.028 0.069 0.092 0.096 0.097

framework. Specifically, two different multi-stage training
approaches (i.e., continual prior compensation and continual
prior compensation++) are developed to progressively train
the human motion prediction model. We introduce the prior
compensation factor and fine-grained prior compensation
factor to explicitly mitigate the information-forgetting problem
that occurs in multi-stage model training. Furthermore, we
theoretically show that the PCF and FGPCF can be efficiently
learned together with the model parameters by minimizing a
reasonable upper bound of the objective function. Extensive
experiments demonstrated our framework’s effectiveness and
flexibility. We believe our work has value for not only human
motion prediction but also for more general prediction tasks
and backbone models [49]–[52], which forms one of our future
work.
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