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Abstract—In this paper, we focus on heterogeneous features learning for RGB-D activity recognition.We find that features from different

channels (RGB, depth ) could share some similar hidden structures, and then propose a joint learningmodel to simultaneously explore

the shared and feature-specific components as an instance of heterogeneousmulti-task learning. The proposedmodel formed in a

unified framework is capable of: 1) jointly mining a set of subspaceswith the same dimensionality to exploit latent shared features across

different feature channels, 2) meanwhile, quantifying the shared and feature-specific components of features in the subspaces, and 3)

transferring feature-specific intermediate transforms (i-transforms) for learning fusion of heterogeneous features across datasets. To

efficiently train the joint model, a three-step iterative optimization algorithm is proposed, followed by a simple inferencemodel. Extensive

experimental results on four activity datasets have demonstrated the efficacy of the proposedmethod. A newRGB-D activity dataset

focusing on human-object interaction is further contributed, which presentsmore challenges for RGB-D activity benchmarking.

Index Terms—Heterogeneous features learning, RGB-D activity recognition, action recognition

Ç

1 INTRODUCTION

THE emergence of low-cost depth sensors (e.g., the Micro-
soft Kinect) opens a new dimension to address the chal-

lenges of human activity recognition. Compared to the
conventional use of RGB videos, the information from depth
channel is insensitive to illumination variations, invariant to
color and texture changes, and more importantly reliable for
body silhouette and skeleton (human posture) extraction [31].
Bearing on these merits, it is believed that the introduced
depth information can greatly light up the research of human
activity analysis [12], [24], [36].

Nevertheless, using depth alone has limitations in distin-
guishing human activities and object context in challenging
cases [39], [55]. Depth information (e.g., captured by exist-
ing Kinect device) often suffers from low spatial resolution
and low depth precision. Moreover, the depth information
is usually weak in capturing the important appearance
information, such as object color and texture. These greatly
limit the application of depth cameras on recognizing

complex human activities with object and interactions, such
as human-object interactions [10], [50] and fine grained
activities [16], where the color appearance is also important.

In fact, there indeed exists a connection between the infor-
mation from RGB and depth channel, which could be
unveiled after certain transformation. In Fig. 1, we show
some visualization results of the HOG features extracted
from RGB image patches and the corresponding depth
patches. Albeit extracted from different channels, these HOG
features still look similar for each of the activities. This sug-
gests that depth channel is related to the RGB channels and
the heterogeneous features extracted from different channels
could share some (hidden) structures (e.g., the gist of looking
down in reading, and cup-to-mouth in drinking as shown in
Fig. 1). However, despite the similarities in the visualized
HOG features, there still exist differences between different
channels; for instance, the RGB channel mainly captures
the appearance (color) information, while the depth channel
describes the geometry (shape) cues in depth. This suggests
they indeed have their own characteristics in describing
objects. Hence, learning RGB and depth features together
should not only extract shared features that are robust and
collaborative across feature channels but also exploit features
complementary between different channels. However, the
majority of existing RGB-D action recognition methods [5],
[20], [30] neither seek to jointly learn the features extracted
from RGB and depth channels simultaneously nor model
their underlying connections.

In order to effectively capture the connections among
different heterogeneous features, we propose a joint hetero-
geneous feature learning model for RGB-D activity recog-
nition. In the proposed model, we learn a set of subspaces
(one subspace for each heterogeneous feature type) such
that features with different dimensionality can be com-
pared, and their shared and specific components can be
easily encoded. To achieve this, we introduce a linear
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projection matrix called the intermediate transform (i-trans-
form) for each feature type, with the ability to control the
dimensionality of each subspace. We then formulate our
subspaces mining, shared and feature-specific components
learning in the framework of multi-task learning. Therefore,
the optimal solution for the i-transforms and shared-specific
structures can be jointly derived, with the principles illus-
trated in Fig. 2. Modeling in such a way can significantly
improve the intrinsic structures learning among the features
of different types and transfer knowledge between them.
A three-step iterative optimization algorithm is proposed to
find the optimal solution with a guaranteed convergence.
We call the proposed model the joint heterogeneous fea-
tures learning (JOULE) model. Technically speaking,
although efforts of exploring both shared and specific struc-
tures for classification are attempted in some of the existing
multi-task learning methods [1], [2], [6], [54], our proposed
model differs in that these methods assume that the features
are homogeneous (the same type, e.g., word frequencies for
text categorization) with the same dimensionality, thus not
applicable for mining shared and feature-specific structures
among heterogeneous features.

RGB-D training data in a target set are not always suffi-
cient, in which case an auxiliary set is usually beneficial. To
enable our model to handle this case, we further propose a
transfer version of our JOULE, which is capable of effec-
tively utilizing an auxiliary set. We assume that during
learning, features of the same type from the auxiliary set
and target set shares the same i-transform and can be jointly
learned. Therefore, the knowledge transfer from auxiliary
set to the target set could be achieved by the shared linear
i-transforms, and subsequently enhance the recognition per-
formance on the target set.

In addition to the aforementioned joint heterogeneous
learning model, we present a variant of temporal pyramid
Fourier features (TPF) developed in [39] so as to apply both
the original feature signal and its gradient to implicitly
encode human motions, which experimentally yield better
performance than TPF on original feature signal only. And,
in order to test the generalization performance of our
method on 3D human-object interactions more extensively,
we also contribute a new RGB-D activity dataset called
SYSU 3D HOI activity set, which consists of 12 activity clas-
ses from 40 participants. Both this dataset and our codes
will be available in http://isee.sysu.edu.cn/�hujianfang/
ProjectJOULE.html.

In summary, the main contributions of our work are
three-fold: 1) a novel joint heterogeneous feature learning
framework for RGB-D activity recognition, which is capable
of learning hidden connections among heterogeneous fea-
tures extracted from sequences of different channels; 2) a
transfer RGB-D feature learning framework leveraging
auxiliary datasets; 3) a new dataset collected for RGB-D
human-object interaction recognition.

2 RELATED WORK

Recently, recognizing human activities from low cost depth
cameras has become a more and more important research
direction with many applications including digital surveil-
lance, virtual reality, human-computer interaction and Xbox
One games etc. There are two emerging branches in activity
recognition research: 1) depth-based representation, and 2)
RGB-D based development. In this section, in addition to
reviewing existing works of recognizing human activities
captured by depth cameras, we further briefly describe the lit-
erature of learning heterogeneous features for generic visual
recognition purpose, which is also relevant to ours.

Depth-Based Representation. On building depth-based
representation, a straightforward way is to generalize the
descriptors specially designed for RGB channel to depth
channel for describing the shape geometry [18], [59]. For
instance, Oreifej and Liu [28] extended the histogram of gra-
dient (HOG) descriptor by constructing a histogram to cap-
ture the distribution of surface normal orientation in 4D
space. Yang et al. [48] suggested that concatenating the nor-
mal vectors within a spatiotemporal depth sub-volume
together can capture more informative geometric cues.
Wang et al. [38] sought to explicitly encode the geometric

Fig. 2. A graphic illustration of our joint learning framework. In this framework, all the i-transforms (e.g., four i-transforms, fQigi¼1;2;3;4) shared
structures and specific structures are jointly learned for the purpose of recognition on RGB and Depth channels.

Fig. 1. Visualization of HOG features for two activity snapshots from
RGB (gray) channel and depth channel, respectively. As shown, the
HOG features from both channels of the same activity unveil similar
“gist” structure of that activity, e.g., the “gist” of looking down in reading,
and cup-to-mouth in drinking.
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cues by computing the number of points that follow in each
sampled sub-volume. Lu et al. [21] directly investigated the
relationship between sampled pixels in both actor and back-
ground regions. Most of these methods attempted to mine
some discriminative local patterns for representing human
activities without considering the holistic human poses,
which has been demonstrated to be critical for describing
complex human activities involving human-object interac-
tions [10], [41], [50]. Due to the development of realtime
human skeleton (3D posture) tracker from single depth
image [31], human motions can be effectively captured by
the positional dynamics of each individual skeletal joint [7],
[13], [23], [44] or the relationship of joint pairs [22], [27], [47]
or even their combination [19], [52], [58]. Vemulapalli et al.
[34] exploited 3D relative geometries among different body
parts in the Lie algebra. In addition to the skeleton motions,
local depth patterns are also found to be useful for discrimi-
nating complex activities with human-object interactions
[39], [41]. Specifically, Wei et al. [41] presented a model to
explicitly study the interactions of human and object.
Koppula et al. [15] simultaneously modeled the human
activities and object affordances in RGB-D videos with a
structural support vector machine.

RGB-D Based Development. Depth does not necessarily
mean discriminant. Albeit invariant to lighting changes, it
does lose some useful information such as texture context,
which is critical to distinguish some activities involving
human-object interactions. Recent works also showed that
the fusion of the RGB and depth sequences can largely
improve the recognition of activities with object interactions
[5], [15], [16], [20], [30], [41], [51], [55]. For instance, Zhao
et al. [55] combined interest point based descriptors
extracted from RGB and depth sequences together for recog-
nition. Liu and Shao [20] simultaneously fused the RGB and
depth information using a deep architecture; Zhu et al. [58]
employed a set of random forests to fuse spatiotemporal and
human key joints (skeleton); Shahroudy et al. [30] selected to
fuse the RGB information and skeleton cues using a struc-
tured sparsity method; [5] simply concatenated the skeleton
features and silhouette-based features together for classifica-
tion. However, these existing works treated the depth chan-
nel and RGB channel independently without considering
their underlying connections (structures). Thus their recog-
nition performance would often be hindered by the ignored
structure learning. In this context, our model aims to jointly
learn the hidden shared and specific structures among differ-
ent heterogeneous features extracted from depth and color
sensors, respectively. This leads to a better overall perfor-
mance in the RGB-D activity recognition.

Shared-Specific Structures Learning for Activity Recognition.
Learning shared-specific structures for activity recognition is
found to be beneficial. Shared-specific structures are defined
and mined from different perspectives and for different pur-
poses in the literature [8], [32], [37], [40], [45], [57]. For exam-
ple, some researchers intended to exploit their discriminative
shared-specific features by constructing shared and class-
specific dictionaries [8], [37] or learning local motion patterns
that are shared by different activities [57]; and recently, this
idea was also introduced for recognizing activities captured
from different views in [32], [45]. However, these methods
assume that they can directly align different feature channels

or extract shared and specific information without any pre-
learning. Our proposedmodel differs from themsignificantly,
since an i-transform is introduced for each feature channel in
order to make the shared-specific structures learning be per-
formed in a more suitable latent space. And this is highly
demanded when processing heterogeneous features with dif-
ferent number of dimensions. Although the CCA in [3] is
mostly close to ours, it is not for discriminative learning, and
moreover it assumes that the specific component for each fea-
ture channel is a Gaussian distribution (or Gaussian noise)
and this assumption may not hold and thus not be sufficient
to describe the specific information of each channel. Our
experimental results show that our JOULE model performs
better than an advanced variant of CCA (MPCCA) in [3].

Heterogeneous Feature Learning for Visual Recognition. Our
work is also relevant to heterogeneous features learning
methods [9], [46], [53], which were mainly developed for
fusing features in generic visual recognition tasks with dif-
ferent assumptions. Intuitively, one can develop a fusion
model by concatenating features together in a standard
multi-task framework without considering intrinsic connec-
tions (shared or specific structures) among features [4], [5],
[58]. For instance, Cao et al. [4] built a heterogeneous feature
machine (HFM) to integrate heterogeneous features with
different types and different metrics for visual recognition.
However, their performance is often limited by the ignored
hidden connections modeling. Alternatively, some methods
assume that different heterogeneous features share in the
primitive feature space, a common subspace or even a com-
mon subset of input primitive features (without explicitly
considering specific structures of each feature type) [9], [14],
[46], [53]. For example, the work of [46] assumes that differ-
ent tasks share a common set of input variables (i.e., a com-
mon set of input features). However, this is not the case for
our RGB-D based activity recognition, since our features are
of different types with different dimensionality. Among all
these heterogeneous feature learning methods, the multi-
task discriminant analysis (MTDA) [53] is the closest to
ours. However, our model is notably different from it, even
though both models unitize the concept of subspaces.
MTDA assumes that there is a shared common space after
projecting each type of features separately without explic-
itly considering the feature-specific structures. In contrast,
we relax this assumption and assume that heterogeneous fea-
tures are only partially related, which makes our method
more applicable for describing the complex connections
(shared and specific structures) among heterogeneous fea-
tures extracted from RGB, depth and skeleton channels with
large variations and thus obtain better recognition accuracy.
In this context, we cast ourmodel as a Frobenious-regularized
least-square problem, with both prediction and reconstruction
loss considered in a unified framework. This consequently
leads to a better overall performance of our model in the
experiments. It is worth noting that Wang et al. very recently
extended the idea of jointly learning and sharing heteroge-
neous features and obtained the state of the art results for
RGB-D object recognition [35].

A preliminary version of this work was reported in [11].
In this paper, we have significantly extended our jointly
learning framework in five aspects: 1) a new parameter was
introduced to explicitly control the tradeoff between the
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mined shared and specific structures in the JOULE model;
and more importantly 2) a new transfer learning based
joint learning model was proposed by employing an auxil-
iary set to facilitate the feature learning on the target set;
and 3) we have provided a rigorous and theoretical analy-
sis about the convergence of the developed three-step opti-
mization method in the supplementary file, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2016.2640292;
and 4) we conducted a new group of experiments and
added more comparisons on one additional dataset consist-
ing of a set of complex composed activities [19]; 5) we have
added extensive test and deeper analysis, including the
comparison with additional methods (e.g., the heteroge-
neous feature machine [4]), the effect of regularization
parameters, the influence of the newly introduced control
parameter and the evaluation of Transfer-JOULE.

3 HETEROGENEOUS FEATURES CONSTRUCTION

We describe here in detail three descriptors utilized in our
model: dynamic skeleton (DS) features, dynamic color pattern
(DCP) and dynamic depth pattern (DDP). Each descriptor
consists of two components: temporal pyramid Fourier
features from: i) the original feature signal and ii) the corre-
sponding gradient signal, respectively. These six compo-
nents form our heterogeneous feature set.

The use of TPF features is motivated from the work of
Wang et al. [39]. Following their practice, we repeatedly
partition the feature signal (e.g., temporal skeleton features
in [39]) into 1, 2 and 4 sub-segments along the temporal
dimension, and then concatenate the low frequency Fourier
coefficients extracted from each segment.

In addition to computing TPF from the original feature
series as in [39], we also calculate TPF from the temporal
gradient signal of the original feature series. This proposed
extension is motivated from the following observations: 1)
the gradient could, to a certain extent, implicitly encode the
velocity change of the motion in activity; 2) it could also
capture the variation of pixel values, which helps to
describe the interactions between human and objects. For
instance, the rapid change of the pixel values near a mouth
may indicate that some objects are coming near and inter-
acting with the mouth (e.g., drinking). As illustrated in
Fig. 3, the temporal pyramid Fourier features of the gradient
signal may capture more discriminative cues.

Dynamic Skeleton. Human pose and its dynamics are one of
the key elements in activities [10], [49]. Here we extract the

pose dynamics using skeleton information from the depth
sequences for our activity modeling. Specifically, for each
video sequence, the real-time skeleton tracker [31] is used to
extract the trajectories of human key joints (skeleton). Follow-
ing the implementations in [39], we then compute the relative
positions between each pair of trajectories and concatenate
them together. The temporal pyramid Fourier features are
further extracted from the relative positions as well as its gra-
dient version to represent the dynamic pose information. It
was noted that the sequence length may vary from video to
video. Relative positions of each trajectory pair are interpo-
lated by cubic spine to have the same length before computing
the Fourier features, which ensures that the frequency loca-
tions of computed TPF features are properly calibrated and
aligned before comparison.

Dynamic Color and Depth Pattern. Using the 3D joint posi-
tions without local appearance is often insufficient to charac-
terize complex activities including human-object interactions.
To compensate this, the local appearance features (both in
RGB and depth) are extracted around each human joint,
which could capture characteristic shape, texture and manip-
ulated object’s appearance during interactions. Specifically,
for each joint in a trajectory, we first compute theHOG feature
in its local region for all the associated frames. All of the HOG
features of one joint trajectory constitute a temporal HOG
tube. Then for the trajectory of each bin of the vectorized
HOG feature along the time dimension, we extract the TPF
features including the original and gradient version, and then
concatenate them together to form our final descriptor. The
HOG-TPF extracted from RGB sequence and depth sequence
form our dynamic color pattern and dynamic depth pattern,
respectively.

4 HETEROGENEOUS FEATURE LEARNING

Different features may share some similar structural compo-
nents as illustrated in Fig. 1. To effectively quantify the
shared structures among different features with varied
dimensions, we introduce a set of subspaces to represent
these features so that they can be compared directly. These
subspaces are learned by balancing the trade-off between
the shared structures and feature-specific cues. In the fol-
lowing, we define our notations first, and then present a
detailed description of the proposed joint learning model.

4.1 The Joint Learning Model

Suppose there are S types of heterogeneous features to learn
together. For each feature type i ði ¼ 1; . . . ; SÞ, let
Xi 2 Rdi�ni denote the feature matrix of ni training instan-
ces, where di represents the feature dimensionality. We
attempt to learn a projection matrix Qi for each Xi to project
it into a subspace spanned by the columns of Qi. Here for
simplicity and clarity, we call this projection matrix Qi as
intermediate transform (i-transform).

In total, we have S subspaces, which are set to have the
same dimensionality such that both the shared and feature-
specific structures across different feature types can be eas-
ily quantified in the projected feature space by two weight
matrices W0;Wi 2 RM�L, where M is the dimensionality of
the subspace, and usually M < < di. L indicates the num-
ber of activity classes. We use Yi 2 f�1; L� 1gL�ni to

Fig. 3. Two signals (left) and their TPF features (middle and right). The
TPF features of the gradient signal (right) is more distinctive than the
TPF of the original signal (middle) when differentiating the input signals.
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represent the labels of all the training samples for the ith
feature. Each column of Yi is defined as a zero-mean vector
½�1; . . . ;�1; L� 1;�1 . . . ;�1�T . Note that all of the Yis are
label vectors and they are the same for different types of fea-
tures. For a sample with class label l ðl ¼ 1; . . . ; LÞ, the lth
entry of the zero-mean vector equals to a constant positive
number L� 1.

Now, we formulate our joint heterogeneous features
learning model in a multi-task learning framework with
orthogonality constraints considered as follows:

min
W0;fWig;fQig

XS
i¼1
ðkð�W0 þ ð1� �ÞWiÞTQT

i Xi � Yik2F
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{R1ðW0;fWiÞg;fQigÞ

þ gkXi �QiQ
T
i Xik2F

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{R2ðfQigÞ

þ a

S
kW0k2F þ bkWik2F

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{R3ðW0;fWiÞgÞ

Þ
s:t: QT

i Qi ¼ I; i ¼ 1; 2; . . .S:

(1)

Our heterogeneous feature learning model intends to
jointly learn the subspaces (encoded by i-transform fQig),
shared and feature-specific components (represented by W0

and fWig, respectively) in a unified framework. We cast it
as a least-square problem with both prediction (the first
term R1ðW0; fWig; fQigÞ) and reconstruction loss (the sec-
ond term R2ðfQigÞ) as well as the regularization term
R3ðW0; fWigÞ considered together. In the following, we dis-
cuss these terms in detail one by one.

Prediction Loss Term R1ðW0; fWig; fQigÞ. This item is

defined as (kð�W0 þ ð1� �ÞWiÞTQT
i Xi � Yik2F ) such that the

empirical risk of each feature can be minimized, and thus it
would guide our shared-specific structures learning for the
purpose of better recognition. We formulate the prediction
loss term in the multi-task learning framework in order to
jointly learn the shared and specific structures across differ-
ent features and classes together. Here, we model the struc-
tures in the weight space such that the shared-specific
structures can be mined in a discriminative framework. Spe-
cifically, we use a weight matrixW0 that is owned jointly by
different features to encode the shared structures. We also
employ a matrix Wi only privately possessed by the ith fea-
ture to capture its specific component. Discovering the
shared and specific structures in a joint learning model is
essential for connecting and transferring information among
different tasks. Therefore our method could generalize well
to the case of knowledge transfer from some auxiliary data to
facilitate the model learning, which will be further elabo-
rated in Section 5. Here, we utilize parameter � 2 ½0; 1� to
control the tradeoff between the mined shared and specific
structures. Larger � leads to a larger weight on the shared
structure and smaller weight on the specific structures.

Reconstruction Loss Term R2ðfQigÞ. This term is defined as
the reconstruction loss term to ensure that a good recon-
struction (controlled by the parameter g) can be derived
from the learned subspace using i-transform during optimi-
zation, which leads to a meaningful solution of the model.

To facilitate the formulation of reconstruction loss term,
an orthogonal constraint QT

i Qi ¼ I was imposed on the i-
transforms. The purposes are 1) to reduce the redundancy to
certain extent while preserving data information; and more

importantly, 2) to establish a feasible link between points in

the original and projected feature spaces. For instance, given

a point y ¼ Qi
Tx in the projected feature space (via Qi

T ), its
corresponding point in the original feature space is given by
Qiy; and subsequently, 3) to simplify the reconstruction loss
term (shown as follows). Therefore, we can formulate the
reconstruction loss as kXi �QiQ

T
i Xik2F .

To simplify this term further:

kXi �QiQ
T
i Xik2F

¼ trðXT
i ðI�QiQ

T
i ÞðI�QiQ

T
i ÞXiÞ

¼ trðXT
i ðI�QiQ

T
i ÞXiÞ

¼ trðXT
i XiÞ � trðXT

i QiQ
T
i XiÞ

¼ kXik2F � kQT
i Xik2F

Here, trð�Þ represents a matrix trace operator. By discarding
the constant term kXik2F , the reconstruction term can be
reformulated as

R2ðfQigÞ ¼ �gkQT
i Xik2F : (2)

Regularization Term R3ðW0; fWigÞ. The regularization term
a
S kW0k2F þ bkWik2F , a Frobenius Norm on matrices W0 and
Wi parameterized by a and b (S is a constant, the number of
heterogeneous features), aims to achieve a reliable generali-
zation of our joint learning model. The two parameters can
also control the values of the mined shared and specific
components. Larger a leads to a smaller shared component
and larger b results in smaller specific components. Inte-
grating this regularization term can also help deriving a
closed form solution of W0 and Wi during the iterative opti-
mization presented later.

By substituting all the terms into the objective function,
our problem can be rewritten as

min
W0;fWig;fQig

X
i¼1;...;S

ðkð�W0 þ ð1� �ÞWiÞTQT
i Xi � Yik2F

� gkQT
i Xik2F Þ þ akW0k2F þ b

X
i¼1;...;S

kWik2F

s:t: QT
i Qi ¼ I; i ¼ 1; 2; . . .S:

(3)

4.2 Three-Step Iterative Optimization

We solve our joint learning model by a coordinate descent
algorithm that optimizes over one set of the parameters at
each step while keeping the others fixed. The optimization
is achieved by iterating the following three steps, which in a
row monotonically decreases the objective function in For-
mula (2) with a guaranteed convergence to a local optimal
solution.

STEP 1. Fixing the coefficients Wi and Qi, minimize the fol-
lowing function J1 overW0:

min
W0

XS
i¼1
kð�W0 þ ð1� �ÞWiÞTQT

i Xi � Yik2F þ akW0k2F :

(4)

This is an unconstrained minimization problem, whose
solution can be given by W�

0 ¼ � ð�2
P

i Q
T
i XiX

T
i Qi þ a

IÞ�1Pi ðQT
i XiðYT

i � ð1� �ÞXT
i QiWiÞÞ.

We also note that the second derivative of the objec-
tive function J1 can be given by
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@2J1

@W2
0

¼ 2 �2
XS
i¼1

QT
i XiX

T
i Qi þ aI

 !
	 0;

where 	 0 indicates positive semidefinite. Hence, the
derived optimal solution W�

0 would decrease the value of
the objective function.

STEP 2. Fixing the coefficientsW0 and Qi, optimizeWi:

min
fWig

XS
i¼1
kð�W0 þ ð1� �ÞWiÞTQT

i Xi � Yik2F þ bkWik2F :

The above problem can be decomposed into S indepen-
dent Frobenius-regularized unconstrained least square
problems:

min
Wi

kð�W0 þ ð1� �ÞWiÞTQT
i Xi � Yik2F þ bkWik2F : (5)

By setting the first order derivatives of the above function
(5) to zero, we can obtain the optimal solution:
W�

i ¼ ð1� �Þðð1� �Þ2QT
i XiX

T
i Qi þ bIÞ�1QT

i XiðYT
i � �XT

i

QiW0Þ. Similar to STEP 1, we can easily derive the second
derivative as

@2J2

@W2
i

¼ 2ðð1� �Þ2QT
i XiX

T
i Qi þ bIÞ 	 0:

Here, J2 indicates the objective function in Formula (5).
Hence, it is convex with respect to Wi, which indicates
that the updating scheme at STEP 2 would decrease the
value of our objective function in Formula (3) and mini-
mize the function.

STEP 3. Finally, we fixW0;Wi and optimize Qi:

min
Qi

XS
i¼1
ðkð�W0 þ ð1� �ÞWiÞTQT

i Xi � Yik2F � gkQT
i Xik2F Þ

s:t: QT
i Qi ¼ I; i ¼ 1; 2; . . .S

Note that all the Qis in the above system are indepen-
dent. Hence, we turn to solving the following S indepen-
dent subproblems:

min
Qi

kð�W0 þ ð1� �ÞWiÞTQT
i Xi � Yik2F � gkQT

i Xik2F
s:t: QT

i Qi ¼ I:
(6)

It is not easy to solve the problem in Formula (6) directly in
the euclidean space due to the non-convex constraints. We
optimize each subproblem with a gradient based method on
the Stiefel manifold where the approximate solution is
required to satisfy the orthogonality constraint in each itera-
tion [42]. Specifically, given the tth step estimator ofQiðtÞ, we
first define a skew-symmetricmatrix Ï ¼ GQiðtÞT �QiðtÞGT ,
whereG is the gradient of the objective function in the Euclid-
ean space and it can be indicated by G ¼ Xiðð�W0 þ ð1�
�ÞWiÞTQiðtÞTXi � YiÞT ð�W0 þ ð1� �ÞWiÞT � 2gXiX

T
i QiðtÞ.

Then the newupdated point can be determined by the Grank-
Nicolson-like scheme Qiðtþ 1Þ ¼ ðIþ t

2rÞ�1ðI� t
2rÞQiðtÞ,

where t is the iteration step size and an optimal step size
would be determined by a line search method within each
iteration. We summarize the optimization for the objective
function in Formula (3) inAlgorithm 1.

Algorithm 1. Optimization for the Objective Function in
Formula (3). Terms objUpdate and objUpdateIni Indicate
the Value Variation of the Objective Function of Formula
(3) and the ith Subproblem (6) at STEP 3, Respectively

Require:
Input:M;a;b; g; �;Yi;Xi;
Initialization: W0;Wi 2 RM�L are random matrices, Qi is
set as the topM principal components of Xi, IterOut ¼ 1;

Ensure:
1: while objUpdate 
 thr and IterOut < maxIter do
2: W0  ð�2

P
i Q

T
i XiX

T
i Qi þ aIÞ�1;

3:
P

i Q
T
i XiðYT

i � ð1� �ÞXT
i QiWiÞ;

4: Wi  ðð1� �Þ2QT
i XiX

T
i Qi þ bIÞ�1QT

i XiðYT
i � �XT

i QiW0Þ,
i ¼ 1; 2; . . . ; S;

5: for i ¼ 1; i � S; iþþ do
6: IterIn ¼ 1; objUpdateIni ¼ 1þ thr;
7: while objUpdateIni 
 thr and IterIn � 50 do
8: G Xiðð�W0 þ ð1� �ÞWiÞTQT

i Xi � YiÞð�W0 þ ð1� �Þ
WiÞT � 2gXiX

T
i Qi

9: Ï GQT
i �QiG

T

10: Qi  ðIþ t
2ÏÞ�1ðI� t

2ÏÞQi;
11: IterInþþ;
12: end while
13: end for
14: IterOutþþ;
15: end while
16: return W0;Wi;Qi

Here, we would like to point out that the employed
updating scheme at STEP 3 still makes the objective
function decrease. We provide our proof in the supple-
mentary file, available online, based on some tricks pro-
vided in [42].

As discussed above, all the three steps in our optimiza-
tion method would decrease the objective function in our
JOULE model. Since

�kQT
i Xik2F ¼ �kXik2F þ kXi �QiQ

T
i Xik2F 
 �kXik2F ;

the objective function in Formula (3) is lower bounded
when a;b; g 
 0. Therefore, the proposed optimization algo-
rithm can converge to a minimum in practice.

4.3 Inference

Given the model parameters W0;Wi and Qi, the inference is
to predict the best activity label for a new sample with het-
erogeneous features xi; i ¼ 1; 2; . . . ; S. We first define two
confidence vectors to encode the shared and specified com-
ponents of xi as

Ci
shared ¼�WT

0Q
T
i xi 2 RL

Ci
specified ¼ð1� �ÞWT

i Q
T
i xi 2 RL:

(7)

Here, � is the model parameter used to balance the con-
tribution of the shared and specific structures during
training. Specifically, when � ¼ 0, a model without form-
ing any shared components is formulated, while setting
� ¼ 1 formulates a baseline without specific structures
explored. The effect of � will be discussed in the experi-
mental section.
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Inspired by the construction of augmented features in
[17], here we treat all the shared and specific confidence
vectors as higher-level augmented features and concate-
nate them together to form our final representation. To
speed up our testing, a linear SVM classifier was first
trained on the augmented features from the training set
and then subsequently used to make the final decision
for a test image.

5 TRANSFER JOINT HETEROGENEOUS FEATURE
LEARNING

It is challenging to learn a set of reliable i-transforms
and shared-specific structures from a target set (a set
where testing is carried out) with limited training sam-
ples. This situation could be mitigated by using some
non-target sets (widely known as transfer learning).
Thanks to the nature of joint learning, our JOULE model
could generalize well to this case. Here, we introduce a
transfer learning model to enhance our feature learning
on the target set by the assistance of learning on other
non-target datasets [29], [56].

Specially, we utilize samples from a non-target set as our
auxiliary set to assist our feature learning on the target set
and train our model on both sets in one framework. For clar-
ity, in the following, we will use auxiliary set to denote non-
target set. Let W0; fWig (and W0; fWig) be the shared and
specific structures to be mined in the target (and auxiliary)
set, respectively. For transferring the learning from an auxil-
iary set to a target set, we assume that the i-transforms fQig
can be shared for the same type of features across datasets,
so that the data in the auxiliary set can provide a strong
prior for our feature learning on the target set. Therefore,
the feature learning on the target and auxiliary sets are con-
nected by fQig and they can be optimized jointly. Let fXa

i g,
fYa

i g (and fXt
ig; fYt

ig) denote the feature representation and
label information of the auxiliary set (and the training sam-
ples from target set). Our transfer joint learning model is
formulated as

min
W0 ;fWig;

fQig;W0 ;fWig

r F ðfXt
ig; fYt

ig;W0; fWig; fQigÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Learned on the training samples of target set

þ ð1� rÞF ðfXa
i g; fYa

i g;W0; fWig; fQigÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Learned on the auxiliary set

s:t: QT
i Qi ¼ I; i ¼ 1; 2; . . .S:

(8)

Here, function F ð�Þ is the objective function of our JOULE
model (1) in the form of

PS
i¼1ðR1ð�Þ þR2ð�Þ þR3ð�ÞÞ. The

first F ð�Þ function is defined on the training samples from
the target set and the second F ð�Þ function on the auxiliary
sets. We use the parameter r 2 ½0; 1� to control the effect of
the auxiliary set. Specifically in the case of r ¼ 0, the i-trans-
forms fQig are solely determined by the feature learning in
the auxiliary set.

Similar to JOULE, we develop a three-step optimization
algorithm to solve problem (8), i.e., iteratively optimizing the
objective function over one set of parameters with the others
fixed (e.g., at one step, we optimize over the shared compo-
nentsW0 andWa

0 by fixing the others.). The only difference is
that the i-transforms {Qi} are optimized simultaneously on
both target and auxiliary datasets. The gradient of the

objective function in problem (8) with respect to Qi can be

given by r
@F ðfXt

i
g;fYt

i
g;W0;fWig;fQigÞ
@Qi

þ ð1� rÞ @F ðfX
a
i
g;fYa

i
g;W0;fWig;fQigÞ
@Qi

,
which is a combination of gradients in the target set and aux-
iliary set. It is easy to see that in the extreme cases when
r ¼ 0 (or r ¼ 1), the i-transforms fQig will be derived solely
from the auxiliary set (or the target set). After all the parame-
ters are learned, the inference step is actually identical to the
JOULEmodel described in Section 4.3 and the corresponding
decisions are made on the testing samples from the target set
using the learned parameters:W0; fWig; fQig.

6 EXPERIMENTS

We evaluated our methods extensively on three benchmark
3D activity datasets and one newly collected human-object
interaction dataset. In the following, we first briefly intro-
duce the implementation details, and then describe the
experiments and results.

6.1 Implementation Details

The model parameters a;b; g; � were fixed as 10�1; 10�1, 1
and 1

2, respectively through all our experiments. The
dimensionality M of the subspace is specified empirically
for each dataset. Intuitively, it is suggested to be smaller
than the number of training samples. We will investigate its
effect in detail in Section 6.6. When computing DCP and
DDP features, one image patch of size 60� 60was extracted
around each joint position in a trajectory in order to capture
the context cues. A set of image patches were extracted for
each trajectory. For computational efficiency, all the image
patches were then resized to 32� 32 and the cell size of
HOG was set to 8.

6.2 MSR Daily Activity Dataset

We tested the proposed methods on the MSR Daily Activity
dataset [39], which has become a standard set for studying
3D human activities. It contains 320 video clips of 16 differ-
ent activities (drinking, eating, walking, cheering up, read-
ing book, etc) performed by 10 participants in two different
poses, namely sitting and standing. Most of the activities
involve human-object interactions (see Table 4). We fol-
lowed the same experimental settings as in other related
works, where half of the participants were used for training
and the rest for testing.

To evaluate our proposed JOULE model, we compare
with a baseline implementation that fuses different
features together with a standard SVM classifier, MTDA
[53] and HFM [4]. We denote these baselines as “SVM”,
MTDA, and HFM. In addition, we also compare with the
MPCCA model presented in [3], which intends to dis-
cover shared-specific structures in a non-discriminative
learning framework. We also present the recently
reported results of other 10 different methods for com-
parison. The dimensionality M for our JOULE model
was set to 40.

Results. Table 1 shows the results and comparison. Our
method obtains an accuracy of 95 percent, which exceeds
most of the latest reported results and is comparable with
the state-of-the-art [21]. However, we would like to point
out that Lu et al. [21] requires a clear pixel-wise segmenta-
tion of the actor, background and occlusion objects, which
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may render it unsuitable for activities with more complex
interactions and cluttered background. Compared to the
closely related methods focusing on feature fusion using
deep model [20] and structured sparse model [30], our
model outperforms both of them by a considerable margin
(more than 9.4 percent), which implies our feature learning
system is superior to other RGB-D activity fusion systems.
Compared with the baseline of SVM, the performance gain
(95 versus 90 percent) by our JOULE model demonstrates
the benefits of the shared and specific components model-
ing. Our JOULE outperforms MTDA and HFM considerably
by 4.4 and 10.6 percent using exactly the same set of fea-
tures. It is worth noting that MTDA did not seek to learning
feature-specific structures. The superior performance of our
JOULE over MTDA indicates that modeling feature-specific
structures is essential for capturing the complex connections
among the employed heterogeneous features. It is also
observed that HFM performed worse than the baseline of
SVM. Bear in mind that, in order to compute the similarity
of two training instances, HFM needs to manually select a
proper kernel for each feature type, which is a big challenge
in the presence of noisy heterogeneous features (e.g., part of
our DCP features were extracted from the background pix-
els). Therefore, the resulting similarity matrix could be
unreliable and HFM might not cope with our features well.
In our implementation of HFM, we used both RBF kernel
and linear kernel to measure the similarity between two fea-
tures, which was suggested in [4]. In contrast, the SVM will
adaptively learn a set of weights to encode the contribution
of each feature dimension in a discriminative framework
and thus can be more applicable in our RGB-D activity
recognition. The MPCCA is an approach close to the pro-
posed JOULE, but it performed clearly inferior to JOULE.
One of the reasons is that the Gaussian noise assumption in
MPCCA is not sufficient to describe the specific information
of each feature channel. Moreover, JOULE also benefited
from learning discriminant shared-specific structure.

The confusion matrix of the results by our JOULE model
is shown in Fig. 4. It can be seen that our model achieves
perfect classification results on 10 classes. The larger error is

due to the mis-classification of the activity of writing on a
paper as reading book, which may be largely attributed to
high similarity between the object and activity contexts in
these two activities.

6.3 Cornell Activity Dataset 60 (CAD 60)

This public dataset consists of 68 video clips captured by
Microsoft Kinect device [33]. Four actors were asked to per-
form 13 specific activities (still, talking on the phone, and etc.)
and one random activity in five different environments:
office, kitchen, bedroom, bath room, and living room. We
followed the same experimental setting in [39] by adopting
the leave-one-person-out cross validation for each environ-
ment, which ensures that person participating in the train-
ing cannot be seen in the testing. The final accuracy was
calculated by averaging the accuracies of all the possible
splits (totally 20 in this set).

Our methods are compared with the results reported in
the state-of-the-art [39]. We also ran the released code of
HON4D on this set and listed the recognition results as
“Reported Results” in Table 2. Since there is no default
parameter settings suggested by the author on this set, we
report the best results by varying their parameters in a wide
range. Similar to MSR Daily set, we also highlight the

TABLE 1
Comparison on the MSR Daily Activity Dataset

Method Accuracy(%)

Reported
Results

Dynamic Temporal Warping [25] 54
3D Joints and LOP Fourier [39] 78
HON4D [28] 80.00
SSFF [30] 81.9
Deep Model (RGGP) [20] 85.6
Actionlet Ensemble [39] 85.75
Super Normal [48] 86.25
Bilinear [14] 86.88
DCSF+Joint [43] 88.2
LFF+IFV [51] 91.1
Group Sparsity [22] 95
Range Sample [21] 95.6

Our Results

HFM [4] 84.38
SVM 90
MPCCA [3] 90.62
MTDA [53] 90.62
JOULE 95

Fig. 4. Confusion matrix of JOULE on MSR daily dataset.

TABLE 2
Comparison on the CAD 60 Dataset

Method Accuracy(%)

Reported Results STIP [59] 62.5
Order Sparse Coding [26] 65.3
Object Affordance [15] 71.4
HON4D [28] 72.7
Actionlet Ensemble [39] 74.7

Our Results

HFM [4] 72.7
SVM 75
MPCCA [3] 79.1
MTDA [53] 82.6
JOULE 84.1
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benefits of using JOULE model by comparing with the base-
line SVM, MTDA and HFM. Here, the dimensionality M of
Wi (andW0) is set as 4 on this dataset.

Results. The results and comparison are shown in Table 2.
Our method achieves an accuracy of 84.1 percent, which sig-
nificantly outperforms the state-of-the-art result [39] by a
large margin (9.4 percent). It is worth noting that most of
our baseline implementations including the simple combi-
nation of our heterogeneous features with a standard SVM
classifier can achieve a performance comparable to the
state-of-the-art method with carefully designed classifiers,
which proves that our feature is superior to that developed
in [39]. Especially, by considering the shared and specific
components, our model (JOULE) obtains a gain of 9.1 per-
cent compared with the fusion methods using standard
SVM classifier without explicitly modeling shared and spe-
cific components (84.1 versus 75 percent), and a significant
gain of 11.4 percent compared with HFM. In addition, our
JOULE works better than MTDA on CAD 60 set with a
smaller performance gain than on the MSR Daily set.

The confusion matrix of the results by our JOULE model
is presented in Fig. 5. It can be seen that our model can dis-
tinguish well the five activities of rinsing mouth with water,
wearing contact lenses, cooking (chopping), working on
computer and random activities, which demonstrates that
our model can effectively capture the interactions between
human and the manipulated object. It can also be observed
that the activities of talking on couch and relaxing on couch
are often confused by our model, mainly due to the inaccu-
rate human skeletons captured by the Kinect camera.

6.4 Composable Activities Dataset

This dataset consists of 693 video clips performed by 14 par-
ticipants.1 Each participant was asked to perform 16 complex
activities (Walkwhile calling with hands,Walkwhile handwaving,
and etc.) several times. All the considered activities in this set
are composed by a number of mid-level actions such as walk-
ing, waving hand, reading etc., and about 75 percent of them

contain human-object interactions. For a fair comparison, we
followed exactly the same leave-one-subject-out experimental
setting as in [19], where each time the activity samples per-
formed by 13 participants were all used to train a model and
the rest were used for testing. And finally, the average accura-
cieswere computed and reported.

Here, we directly compare the performance of our method
with the results reported in the state-of-the-art [19]. Mean-
while, we also ran the released code of HON4D by the author
on this set, and again report the best results by varying their
parameters in awide range. In addition, we further compared
the JOULEwith the baseline “SVM”,MTDA andHFM. In this
experiment, we set the dimensionality M of the subspace as
100. Its influencewould be further discussed in Section 6.6.

Results. The results and comparison are shown in Table 3.
As shown, simply feeding the concatenation of all primal
heterogeneous features into a SVM classifier without explic-
itly considering their hidden structures and connections
achieves an accuracy of 88.32 percent and outperforms the
state-of-the-art [19] by a margin of 2.6 percent. As expected,
the performance gap becomes larger (
 5:9 percent) when
our proposed JOULE model is employed to explicitly model
the shared and specific structures among different heteroge-
neous features. Similar to the observations on other data-
sets, our JOULE outperforms MTDA by over 2 percent on
the Composed Activities Datasets, which once again experi-
mentally confirms that the learning of feature-specific struc-
tures is beneficial.

By closely examining the confusion matrix in Fig. 6, we
can observe that JOULE achieves perfect recognition

Fig. 5. Confusion matrix of JOULE on CAD 60 set.

TABLE 3
Comparison on the Composable Activities Dataset

Method Accuracy(%)

Reported Results
HON4D [28] 83.29
Hierarchical Model [19] 85.7

Our Results

HFM [4] 84.44
SVM 88.32
MPCCA [3] 90.76
MTDA [53] 92.07
JOULE 94.24

Fig. 6. Confusion matrix of JOULE on composable activities dataset.1. http://web.ing.puc.cl/�ialillo/ActionsCVPR2014/
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performance on most of the activities. The most challenging
activities for our model are “Walk while calling with hands”
and “Walk while hand waving”, which are often confused

with each other. This is not surprising, because these two
activities contain highly similar motions, and the subtle dif-
ference between them is that activity “calling with hands”
often involves a motion of moving fingers or hands back
and forth, while “waving hands” refers to a slight hand
movement of moving between left and right. However, it is
quite challenging to capture these tiny differences by the
prevailing Kinect cameras available in the market with stan-
dard specification of spatial and depth resolution.

6.5 SYSU 3D Human-Object Interaction Set

Dataset Description. We have collected a new RGB-D activity
dataset focusing on human-object interactions to further
evaluate all methods. We name this as SYSU 3D Human-
Object Interaction (HOI) dataset. For building this set, 40 par-
ticipants were asked to perform 12 different activities freely.
For each activity, each participant manipulates one of the
six different objects: phone, chair, bag, wallet, mop and
besom. Therefore, there are totally 480 video clips collected
in this set. The contained activity samples have different
durations, ranging from 1.9 to 21 s. For each video clip, the
corresponding RGB frames, depth sequence and skeleton
data were captured by a Kinect camera. Activity samples
are shown in Fig. 8. We highlight the differences between
our 3D HOI set and relevant existing sets in Table 4. Com-
pared to those datasets (MSRDaily, CAD 60, MSRAction,
Composable Activities dataset, and Multiview set), our
dataset presents new challenges: 1) the involved motions
and the manipulated objects’ appearance are highly similar
among some activities; for instance, the manipulated objects
besom and mop involved in the activities mopping and

Fig. 8. Snapshots of activities in SYSU 3D HOI set, one sample per class. The rows headed with RGB show the samples in RGB channel and the
rows underneath headed with Depth show the corresponding depth channel superimposed with skeleton data. Best viewed in color.

Fig. 7. Confusion matrices of JOULE on SYSU 3D HOI set under setting-
1 (a) and setting-2 (b).

TABLE 4
Comparison of 3D HOI Dataset with Relevant Datasets

DataSet Data Cla. No. Sub. No. Vid. No. HOI Ra.

CAD 60 [33] RGB-D 14 4 68 85:7%

MSRDaily [39] RGB-D 16 10 320 87:5%

MSRAction [18] Depth 20 10 567 � 70%

Comp. Activities [19] RGB-D 16 14 693 75%
Multiview [41] RGB-D 8 8 3,815 100%

SYSU 3D HOI RGB-D 12 40 480 100%

Cla. denotes class, and Sub. for subject, Vid for video, HOI Ra. for HOI ratio
among the dataset.
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sweeping are highly similar; 2) the number of participants is
three times (or even larger than in most cases) that of exist-
ing ones, so that more inter-subject variations could be
observed for the same type of activities due to the different
characteristics of participants.

Evaluation Protocol. We tested all the compared methods
in two different settings. In the first setting (setting-1), for
each activity class, we selected half of the samples for train-
ing and the rest for testing. In the second setting (setting-2),
video sequences performed by half of the participants were
used to learn model parameters and the rest for testing,
where there is no overlap of participants between the train-
ing and test set. This is a cross-subject setting. For each set-
ting, we report the mean accuracy and standard deviation
of the results over 30 random splits.

Baselines. Similar to that on the MSRDaily and CAD60
sets, the baselines SVM, HFM, MPCCA, MTDA and
HON4D are compared to show the effectiveness of our joint
learning model (JOULE). We set M ¼ 30 in our model. In
total, we report a comprehensive set of results of up to six
different implementations on this new dataset.

Results. Table 5 reported the results. Again, using the
proposed JOULE model to fuse different heterogeneous fea-
tures is always beneficial in all settings. The accuracies in
setting-2 are higher than that of setting-1 without consider-
ing cross-subject split. This is because the prediction could
be biased by appearance when activities with similar
motion and object context (e.g., mopping versus sweeping)
performed by the same participant are contained in both
training and test sets, which may occur in the setting-1. The
performances of JOULE and MTDA are comparable with
JOULE performing perceivably better. It was noted that the
performance gap between our models and the baselines is
smaller (e.g., 84.9 versus 82.8 percent) than that on the other
three datasets. This somehow indicates the new dataset is
more challenging for feature fusion.

By examining the confusion matrices of our JOULE
model in Fig. 7, we observed that our model often confuses
the activities of mopping with sweeping in both settings,
which is mainly due to similar motions and objects appear-
ance in the two interactions. In addition, the activities of tak-
ing from wallet share similar motions with activities of
playing phone and taking out wallet, which are occasionally
misidentified as playing phone or taking out wallet.

6.6 Analysis and Discussion

Convergence. Our method converges to a minimum after
a limited number of iterations. We empirically observed
that 20 iterations (outer iterations, i.e., term IterOut in

Algorithm 1) are sufficient for obtaining a reliable solution
in all of our experiments. See Fig. 9 for an example illustrat-
ing the convergence of our method on the MSR Daily activ-
ity set, where the objective value of each step was recorded
during each iteration. Excluding the time for computing the
features, one round training of our algorithm takes about
1.26 minutes per training sample. However, our testing is
pretty fast, and takes about 0.5 second per sample. Comput-
ing the DS, DCP, and DDP features costs time. It takes about
0.24 second for processing each frame of a RGB-D video
using MATLAB on a normal desktop PC (CPU i5-4570,
memory 28 G).

Effect of Dimensionality M. We investigate the effect of the
dimensionality M of the subspace. Fig. 10 shows the per-
formances of our method JOULE with different values of
M. Generally, a very small M leads to an inferior perfor-
mance, as the smaller dimensionality of the subspace is, the
less representative it is for the original features. When M
becomes larger (typically larger than a value about 1

6 � 1
4 of

the number of training samples), the performances start to
remain stable, which means our algorithm is not sensitive
M in a reasonable range.

TABLE 5
Comparison on the SYSU 3D HOI Dataset

Method Mean Acc�std (%)

setting-1 setting-2

HON4D [28] 73.39 (�2.59) 79.22 (�2.36)
HFM [4] 75.03 (�2.68) 76.74 (�2.63)
MPCCA [3] 76.25 (�2.36) 80.72 (�2.07)
SVM 77.34 (�2.53) 82.78 (�2.83)
MTDA [53] 79.19 (�4.27) 84.21 (�2.19)
JOULE 79.63 (�2.13) 84.89 (�2.29)

Fig. 9. Illustration of the convergence of our method. The vertical axis
indicates the value of objective function and the horizontal axis is the
number of iterations.

Fig. 10. Effects of parameterM on the system performance.
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Effect of TPF on Gradient Signal. In this work, we have
modified temporal pyramid Fourier features developed in
[39] so as to apply both the original feature signal and its
gradient to implicitly encode human motions, since they are
complementary to each other. The TPF of original signal
captures the original signal cues, whereas the TPF of gradi-
ent signal encodes the first derivative (velocity) information.
Table 6 shows the results of our model with and without
temporal Fourier features computed from the gradient sig-
nal on all of the three datasets. It can be seen that, while the
improvement on the SYSU 3D HOI dataset is relatively
mild, TPF features on gradient consistently improve the
results in all of the cases, with the biggest gain (7.6 percent)
achieved on the CAD60 dataset. This indicates that the pro-
posed extension of TPF features to the gradient signal is
promising and effective.

Effect of a and b. As discussed in previous sections, the
parameters a and b were employed to control the generali-
zation ability of our joint learning model. Here, we investi-
gate their influence on Composable Activities dataset and
SYSU with setting-2, where cross-subject settings (i.e., half
of the subjects for training, and the rest for testing) are
employed. In this test, parameters a and b were both
selected from f0; 10�2; 10�1; 100; 101; 102g, and therefore we
have a total of 36 different parameter settings. We present
the recognition results in Fig. 11. It could be observed that,
generally large a and b (
 10) lead to an inferior perfor-
mance. This is because the larger the a and b are, the less
the shared and specific components are discovered for rec-
ognition. However, when a and b are smaller than 1, the
performance would remain relatively stable in most cases,
which demonstrates that our method is insensitive to the
parameters in a reasonable range. This study also reveals
that the optimal ranges of a and b are approximately the
same, which indicates that we can simply set a ¼ b (e.g.,
both were set as 0.1 in all of the other experiments) to reduce
the number of parameters without affecting the system per-
formance too much.

Influence of �. In our joint learning framework, we intro-
duce a parameter � to explicitly control the trade-off

between the shared structure W0 and feature-specific struc-
tures fWigi¼1;2;...;S . Here, we evaluate its influence by setting
� as 0, 0.25, 0.5, 0.75, and 1, respectively, and then report the
achieved performances in Table 7. As expected, a proper
combination of the shared and specific structures gives a
better result; generally too small or too large � would result
in an inferior performance. Especially, without modeling
the specific structures (� ¼ 1) or shared structure (� ¼ 0),
the performance decreased in both cases. Overall, albeit not
always the best, on all of the four datasets considered,
� ¼ 0:5 is an acceptable setting.

Influence of g. In the JOULE model (Formula 1), we
employed a reconstruction loss term (parametered by g) to
regularize the i-transforms learning in order to preserve as
much information as possible. Here, we investigate its influ-
ence by varying it systemically. The results are presented in
Table 8. As shown, the model performed the best when
g ¼ 1 on most of the datasets. In general, a smaller or larger
g would lead to lower recognition accuracies. In particular,
when g is zero and the reconstruction term is not used to
constrain the i-transforms learning, lower recognition
results were observed.

Single versusMulti Channels. In the JOULEmodel, we have
integrated the learning of features from different channels
(RGB, depth (DEP) and skeleton (SKL)) in a framework so
that the learning of one channel can facilitate the learning of
other channels. To investigate the benefits of joint learning,
we tested the JOULE by feeding it with 1) features from one
channel only and 2) features from two or more channels,
respectively. Therefore, we tested 7 cases for each dataset. In
total we conducted 35 experiments, and results are summa-
rized in Table 9. It can be seen that the performances of learn-
ing features from two channels are higher than each of them
alone. Using features from three channels always outper-
form one or two channels. This demonstrates that jointly
learning the features from different channels is beneficial.

6.7 Experiments on Transfer-JOULE

In this section, we tested the performance of Transfer-
JOULE (Formula (8)) and show how the auxiliary set can

TABLE 6
Accuracy (%) of Our Methods with and without TPF on Gradient

MSRD CAD60 Comp. Act. 3DHOI(s-1) 3DHOI(s-2)

With 95 84.1 94.24 79.63 84.89

Without gradient 91.25 76.5 92.22 78.83 83.63

s-1 denotes setting-1 and s-2 for setting-2 applied on the SYSU3DHOI dataset.

Fig. 11. Effects of parameters a (the vertical) and b (the horizontal) on
the system performance (%) on the cross-subject settings of compos-
able activities dataset and SYSU set.

TABLE 7
Effects of Parameter � on Recognition (%)

Dataset � ¼ 0 � ¼ 0:25 � ¼ 0:5 � ¼ 0:75 � ¼ 1

MSRD 90.62 91.87 95 92.5 91.25
CAD60 82.58 83.33 84.1 85.61 82.58
Comp. Act. 91.21 93.80 94.24 93.37 91.50
SYSU(s-1) 78.83 80.24 79.63 79.50 78.89
SYSU(s-2) 83.81 84.65 84.89 85.15 84.58

Average 85.41 86.78 87.57 87.23 85.76

TABLE 8
Effects of Parameter g on Recognition Accuracy (%)

Dataset g ¼ 0 g ¼ 0:01 g ¼ 1 g ¼ 100 g ¼ 10;000

MSRD 90.6 91.5 95 93.8 90
CAD60 79.6 81.1 84.1 78.0 76.5
Comp. Act. 91.4 93.4 94.2 93. 7 92.80
SYSU(s-1) 77.0 80.0 79.6 76.8 76.9
SYSU(s-2) 81.6 83.0 84.9 84.1 82.9
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benefit our heterogeneous features learning on the target
set. The experiments were carried out on the SYSU 3DHOI
and Composable Activities sets as they are the two largest
datasets among those considered.

First, we evaluated the effect of the control parameter r by
varying its value from 0 to 1. In this evaluation, one of the
two datasets is considered as a target set, and the other as the
auxiliary set. When SYSU 3DHOI was used as the target set,
we followed two different settings (setting-1 and setting-2)
as in Section 6.5. When Composable Activities dataset was
used as the target set, we followed the leave-one-subject-out
setting as described in Section 6.4. Thus in total, we have
three different test cases: 1) SYSU 3DHOI ! Composable
Activities dataset; 2) Composable Activities dataset! SYSU
3DHOI (setting-1); 3 Composable Activities dataset! SYSU
3DHOI (setting-2), where! indicates the direction of trans-
fer, i.e., auxiliary set! target set. In each case, we employed
the same evaluation protocol as that in Section 6 by reporting
the average accuracy over a number of different training/
test splits (i.e., 14 in Composable Activities dataset and 30 in
SYSU 3DHOI set) on the target set. To illustrate the effective-
ness of the proposed transfer learning framework, we also
implemented a baseline that directly trains a JOULE (For-
mula 3) model on the pooled dataset that contains both the
training set (from the target set) and the entire auxiliary set.
This is a naive case denoted as “ExTrain”.

The results are summarized in Table 10. As shown, a
proper combination (r 
 0:6) of the feature learning in tar-
get set and auxiliary set usually improves the recognition
accuracy compared to the performance of using target train-
ing set only (r ¼ 1). The performance decreases when r is
getting smaller. In general, setting r ¼ 0:6 produces the best
overall performance. It is observed that the direct use of i-
transforms learned on auxiliary set (r ¼ 0) can also result in
a good performance on the target set, which indicates that
the i-transforms could generalize well from one to the other.
The superior performance of “Transfer-JOULE” over

“ExTrain” shows the better capability of Transfer-JOULE in
transferring information gained in auxiliary set to target set.
Note that the Transfer-JOULE always performs better than
the (non-transfer) JOULE trained on the pooled dataset.
This suggests that simply merging the auxiliary and target
datasets together is not an optimal way to exploit the trans-
ferrable shared-specific structures.

Finally, we investigate the influence of the number of the
training samples in the target set. Here, we compare the per-
formances of our JOULE model with and without transfer
learning (i.e., Transfer-JOULE (8) and JOULE (1)). As sug-
gested in the last experiment, the parameter r for Transfer-
JOULE is set as 0.6. The methods are evaluated when the
SYSU-3DHOI set is used as the target set under two different
settings (setting-A and setting-B). In setting-A, we randomly
selected a certain number of samples per class to train the
model and used the rest for testing. In setting-B, we ran-
domly selected a certain number of participants and used all
the samples performed by them as the training set. For a fixed
number of training samples (or participants) in each setting,
we report the average accuracy obtained by 30 trials. The
Composable Activities dataset is used as the auxiliary set in
both settings. The results are presented in Fig. 12. It is
observed that in all of the cases tested, with the help of auxil-
iary set, the performance of our Transfer-JOULEmodel iscon-
sistently higher than that of JOULE. When the number of
training samples is smaller (e.g., less than 15), the perfor-
mance gap gets much larger. The performance gain of using
the auxiliary set becomes smaller but clearly noticeable when
the number of training samples gets larger, which is as
expected. In particular, in the case of one-shot activity recog-
nition where only one target training sample per class is
available for the model training, our Transfer-JOULE model
can obtain accuracies of 39.17 and 43.04 percent in the set-
ting-A and setting-B, respectively,which are about 13 percent
higher than the (non-transferred) JOULE model. This clearly
demonstrates thatwith the help of an auxiliary set, our Trans-
fer-JOULE model can learn a set of parameters with better
generalization than the (non-transferred) JOULEmodel.

7 CONCLUSION

We have proposed a new RGB-D method called joint heter-
ogenous features learning model to jointly learn heteroge-
neous features with different number of dimensions for
RGB-D activity recognition. A transfer version is also intro-
duced to further facilitate the joint learning on target set via
exploiting shared intermediate transforms (i-transforms)

TABLE 9
Effects of Jointly Learning in Different Channels

Data Channel MSRD CAD60 Comp. Act. SYSU(s-1) SYSU(s-2)

RGB 86.9 78.0 88.9 71.6 80.0
DEP 84.4 79.6 88.3 74.3 82.3
SKL 75 77.9 91.2 75.5 76.9
DEP+RGB 87.5 80.3 90.1 74.8 82.6
RGB+SKL 91.3 81.1 93.2 76.9 81.4
DEP+SKL 90.6 82.6 93.2 79.7 83.5

DEP+RGB+SKL 95 84.1 94.2 80.2 84.9

s-1 denotes setting-1 and s-2 for setting-2 applied on the SYSU 3D HOI
dataset (%).

TABLE 10
Comparison of Transfer-JOULE and JOULE, and the Effects

of r, Where! Indicates the Direction of Transfer (%)

Dataset JOULE Transfer-JOULE ExTrain

r ¼ 1 r ¼ 0:8 r ¼ 0:6 r ¼ 0:4 r ¼ 0

SYSU! Comp. 94.24 95.10 94.81 92.80 92.07 91.93
Comp.! SYSU(s-1) 79.63 80.10 80.71 79.54 78.58 77.19
Comp.! SYSU(s-2) 84.89 84.92 85.15 84.51 81.14 81.11

Fig. 12. Effects of the number of training samples per class (left—
setting-A), and the number of subjects (right—setting-B) when the
SYSU set is used as the target set.
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from non-target data. Extensive results are reported on four
RGB-D activity sets, demonstrating the effectiveness of the
proposed methods. A limitation of our method is the
assumption that all the considered activities should be fully
executed and observed by the system, which makes it less
applicable for identifying ongoing activities containing par-
tial activity execution. In the future, we would like to extend
the JOULE model so that it can be used for real-time activity
recognition or prediction.
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