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Abstract

Cross-modal hashing is designed to facilitate fast
search across domains. In this work, we present
a cross-modal hashing approach, called quantized
correlation hashing (QCH), which takes into con-
sideration the quantization loss over domains and
the relation between domains. Unlike previous
approaches that separate the optimization of the
quantizer independent of maximization of domain
correlation, our approach simultaneously optimizes
both processes. The underlying relation between
the domains that describes the same objects is es-
tablished via maximizing the correlation between
the hash codes across the domains. The result-
ing multi-modal objective function is transformed
to a unimodal formalization, which is optimized
through an alternative procedure. Experimental
results on three real world datasets demonstrate
that our approach outperforms the state-of-the-art
multi-modal hashing methods.

1 Introduction
Multi-modal data becomes more and more popular in our dai-
ly life. For instance, on webpages, objects are often described
with images or videos surrounded by text. With the interests
on searching multi-modal data (e.g. using images to query
texts), cross-modal retrieval becomes an emergent issue. A
lot of works have been done in this field [Li et al., 2003a;
Rasiwasia et al., 2010; Gong et al., 2014; Hwang and Grau-
man, 2012; Sharma et al., 2012]. Recent efforts focus on
studying efficient search methodologies over large databas-
es. Inspired by the fast search based on hashing algorithms
[Datar et al., 2004; Weiss et al., 2009; Wang et al., 2010;
Liu et al., 2012; Norouzi and Blei, 2011], which have wit-
nessed great success in single-modal search, cross-modal
hashing[Masci et al., 2013; Bronstein et al., 2010; Zhang and
Li, 2014; Zhou et al., 2014; Zhen and Yeung, 2012a] or cross-
view hashing[Kim and Choi, 2013; Quadrianto and Lampert,
2011; Song et al., 2013; Zhai et al., 2013; Zhang et al., 2011;
Zhou et al., 2014] have been attracting a lot.
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Most cross-modal hashing methods are similarity based
(for example, Cross Modality Similarity Sensitive Hash-
ing(CMSSH) [Bronstein et al., 2010] and Semantic Correla-
tion Maximization(SCM) [Zhang and Li, 2014]) or distance-
based (e.g. Cross View Hashing(CVH) [Kumar and Udupa,
2011] and Co-Regularized Hashing(CRH) [Zhen and Yeung,
2012a]). The objective of these methods is to purse ”mean-
ingful” hash codes of data points across domains, i.e., the
distance between two codes - in the mapped hashing spaces
- should be close if the respective data points are from the
same class, and it should be far otherwise. Parametric Local
Multimodal Hashing(PLMH) [Zhai et al., 2013] further con-
strains the learned hashing functions so that they can locally
adapt to the data structure of each modality, and Sparse Multi
Modal Hashing(SM2H) [Wu et al., 2014] preserves both da-
ta similarity based on joint multi-modal dictionary learning
constrained by Hypergraph Laplacian sparse coding. Multi-
modal Latent Binary Embedding(MLBE) [Zhen and Yeung,
2012b] derives a probabilistic model to learn cross-modal bi-
nary hash codes.

In this work, we propose a new cross-modal hashing
method. We take both hashing function learning and quan-
tization of hash codes into consideration. This is inspired by
the significance of quantization in single-modal hashing al-
gorithms (e.g. ITQ [Gong and Lazebnik, 2011]). However,
the effect of hash code quantization is less studied in cross-
modal hashing literature. In conventional cross-modal hash-
ing methods, the quantization of hash codes is realized inde-
pendent of learning the correlation across domains. The sep-
aration of the two processes usually results in a sub-optimal
solution. In this work, we propose a joint learning schema
that consolidates the minimization of quantization loss and
maximization of domain correlation into a single objective
function so that optimal cross-modal hash codes are derived.
In this way, we can simultaneously optimize the quantizer a-
long with binary code learning, so that the quantizer is more
fit to the cross-modality data search. To the best of our knowl-
edge, it is the first attempt to integrate hash function learning
with quantization together for cross-modal hashing. We cal-
l the proposed cross-modal hashing algorithm as Quantized
Correlation Hashing (QCH). Compared to existing works,
the novelty of our work includes:

• A new cross-modal hashing model is optimized simulta-
neously on both hashing code learning and binary quan-
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Figure 1: The framework of cross-modal hashing algorithm

tization;

• The proposed multi-modality objective function is trans-
formed to a single-modality formalization, leading to an
easier optimization procedure.

In the rest part of the paper, we present the details of the pro-
posed method in Sec. 2 and extensive evaluation on three
public datasets in Sec. 3. Finally, we conclude the paper in
Sec. 4.

2 Quantized Correlation Hashing
In this section, we will present our QCH in details and use
two-modalities for example introduction. Our method would
be easily extended to the case for more than two modalities.
In addition, our hashing model can be applied to deal with
multi-view data as well, which will be tested in Section 3.

Assume that there are n objects represented by two modal-
ities (xi,yi), where xT

i is the ith row of data matrix X ∈
Rn×dx of the first modality and yT

i is the ith row of data
matrix Y ∈ Rn×dy of the second modality. dx and dy are
the dimensions of the two modalities. We assume all data
are zero-centered which is usually adopted in existing hash-
ing algorithms [Wang et al., 2010; Zhang and Li, 2014], i.e.,∑n

i=1 xi = 0 and
∑n

j=1 yj = 0. In addition, the similari-
ty information between data points across domains is given:
Sij = 1 if xi and yj are similar and Sij = 0 otherwise.We
focus on a weakly supervised case which we are offered only
positive pairs data.

The goal of cross-modal hashing is to learn two types of
binary codes (Bx ∈ {−1, 1}n×c and By ∈ {−1, 1}n×c) with
the same code length c for each object by the hash function-
s f(xi) = sign(Wx

Txi) and g(yj) = sign(Wy
Tyj), where

Wx ∈ Rdx×c and Wy ∈ Rdy×c denote two projection matri-
ces for the two modalities, respectively. The cross-modality
fast searching task includes 1) using texts to search for the re-
lated images, and 2) using images to query the related texts.
In cross-modal hashing framework, these two tasks are trans-
lated below: 1) using the hash codes of texts to find the related
images in the hash code set of images according to the ham-
ming distance, and 2) using the hash codes of images to query
texts within the hash code set of texts. The framework of our
approach is shown in Figure 1.

The principle of cross-modal hashing is that the codes Bx

and By of data points from the same class but from different
modalities should be as similar as possible, while they should
be as distinct as possible if they are from different classes.

2.1 Formulation
We use the cosine similarity between hash codes of two
across-modality data points,

cos(f(xi), g(yj)) =
f(xi)

T g(yj)

f(‖xi)‖2‖g(yj)‖2
(1)

to measure the similarity in the hash space. The cosine simi-
larity between two data points should be as small as possible
if they are from the same class and as large as possible if not.
We use the projection vector to replace the hash codes and
obtain the approximate cosine similarity:

cos(f(xi), g(yj)) ≈
xT
i WxWy

Tyj√
xT
i WxWx

Txi

√
yT
j WyWy

Tyj

. (2)

We further borrow the maximum margin criterion idea from
[Sharma et al., 2012; Li et al., 2003b] and replace the ratio
operation with the subtraction operation:(

xT
i WxWy

Tyj−
√

xT
i WxWx

Txi

√
yT
j WyWy

Tyj

)
(3)

The quantization loss, inspired by ITQ [Gong and Lazeb-
nik, 2011], is defined as ‖B − XW‖2F . Combining the sim-
ilarity constraint across domains and the quantization losses
over each domain, we have the optimization problem:

minO(Bx,By,Wx,Wy)

=(‖Bx −XWx‖2F + ‖By −YWy‖2F )− α′
∑
(i,j)

Sij

(
xT
i WxWy

Tyj−
√

xT
i WxWx

Txi

√
yT
j WyWy

Tyj

)
s.t.Wx

TWx = Ic×c

Wy
TWy = Ic×c

(4)
Here α′ is the control parameter to balance the quantization
loss and the cosine similarity constraint. The constraints,
Wx

TWx = Ic×c and Wy
TWy = Ic×c, are used to make

Wx and Wy be orthogonal projections.

2.2 Relaxation
We first derive an upper bound of the objective function
O(Bx,By,Wx,Wy) in Eq.(4) use it as a substitute for the ob-
jective function, leading to a relatively easily-optimized prob-
lem. Then we transform the multi-modality formulation into
a unimodal formulation.

Exploring the well-known inequality,

xT
i WxWx

Txi + yT
j WyWy

Tyj

2
≥√

xT
i WxWx

Txi

√
yT
j WyWy

Tyj

(5)

we simplify the third term on the right hand side of Eq.(4),
resulting in∑
(i,j)

Sij(x
T
i WxWy

Tyj−
1

2
(xT

i WxWx
Txi + yT

j WyWy
Tyj))

(6)



write it in a matrix form,

tr(Wx
TXTSYWy)

− 1

2
(tr(Wx

TXTLxXWx) + tr(Wy
TYTLyYWy))

(7)

where Lx and Ly are diagonal matrix and the diagonal ele-
ments are the row sum and column sum of S.

Then, the objective function in Eq.(4) becomes

O′(Bx,By,Wx,Wy)

=(‖Bx −XWx‖2F + ‖By −YWy‖2F )

−2α(tr(Wx
TXTSYWy)

+tr(Wx
TXTLxXWx) + tr(Wy

TYTLyYWy))

(8)

where α = 1
2
α′ is the control parameter to keep a balance

between the hash function learning stage.
It can be distinctly verified that the relationship be-

tween the objective function values in Eq.(4) and Eq.(8) is:
O(Bx,By,Wx,Wy) ≤ O′(Bx,By,Wx,Wy). This indicates
that minO′(Bx,By,Wx,Wy) ≥ O(Bx,By,Wx,Wy). In
other words, our approach adopts a widely-used optimization
principle: minimize an upper bound of the objective function.

To balance the cross-domain correlation
tr(Wx

TXTSYWy) and its normalization term
tr(Wx

TXTLxXWx) + tr(Wy
TYTLyYWy), we intro-

duce an extra parameter β′ to weigh the normalization
term: tr(Wx

TXTSYWy) − 1
2
β′(tr(Wx

TXTLxXWx) +
tr(Wy

TYTLyYWy). For simplicity, the third term and the
fourth term in Eq.(8) are written as 2αtr(Wx

TXTSYWy) −
β(tr(Wx

TXTLxXWx) + tr(Wy
TYTLyYWy), where

β = αβ′.
Rather than optimizing the problem through an alternat-

ing procedure: optimizing the parameters for one domain and
then optimizing the parameters for the other domain in one it-
eration, we transform the objective function by combining the
parameters across domains together into a unimodal objec-

tive function. Define W =

[
Wx

Wy

]
, S̃ =

[
βLx αS
αST βLy

]
,

Z =

[
X

Y

]
, and B =

[
Bx

By

]
. Then our objective func-

tion Eq.(8) can be simplified below:

O(B,W) = ‖B− ZW‖2F − tr(WTZT S̃ZW). (9)
To facilitate the optimization, we impose the orthogonality
constraint over the whole weight matrix W: WTW = Ic×c.
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Figure 2: The objective value against the number of iterations
on 2(a) NUS-WIDE and 2(b) 58W-CIFAR, respectively.

Algorithm 1 Quantized Correlation Hashing
Require:

Two-modality data matrices X and Y, similarity matrix S be-
tween two modalities, code length c, random initialized matrix
W0, α, β, iteration number N .
for t = 1 : N do

Optimize B when fixing W using Eq.(12);
Iteratively optimize W when fixing B using Eq.(18);

end for
Ensure:

Projection matrix W and hash codes B

2.3 Optimization
We adopt an alternating optimization procedure to iteratively
optimize W and B.

Fix W and optimize B

When W is fixed, the second term of Eq.(9) is a constant.
Then, we have

O(B) = ‖B‖2F + ‖Z‖2F − 2tr(BWTZT )

= nc+ const− 2tr(BWTZT )
(10)

Minimizing Eq.(10) is equal to maximizing the following:

tr(BWTZT ) = tr(BVT ) =

n∑
i=1

c∑
j=1

BijVij (11)

where V = ZW. Since V is fixed, it is clear that the hash
codes Bij should have the same sign as Vij . Consequently,
we have

B = sign(ZW) (12)

Fix B and optimize W

When B is fixed, Eq.(9) becomes an optimization problem
with orthogonal constraint. Through introducing Lagrangian
multipliers, we can rewrite the objective function for optimiz-
ing W as follows:

L(W,Λ) = O(W)− 1

2
tr(Λ(WTW − I)) (13)

where Λ consists of Lagrangian multipliers, and O(W) is

O(W) = ‖B− ZW‖2F − tr(WTZT S̃ZW)

= ‖B‖2F + ‖ZW‖2F − 2tr(BWTZT )

− tr(WTZT S̃ZW)

= const+ tr(WTZTZW)− 2tr(BWTZT )

− tr(WTZT S̃ZW)

(14)

Setting the gradient of Eq.(13) with respect to W to be zero,
we can get

∂L(W,Λ)

∂W
=
∂O(W)

∂W
−WΛ = 0 (15)

For the convenience of description, let G =
∂O(W)

∂W
. Then

we have

G =
∂O(W)

∂W
= 2(ZT S̃ZW + Z‘TZW − ZTB) (16)
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Figure 3: MAP results of different algorithms for two tasks
on NUS-WIDE dataset with various numbers of training data.

From Eq.(15), it is clear that we can get Λ = WTG. S-
ince WTW is symmetric, Λ is symmetric as well. So

Λ = WTG = GTW and ∂L(W)

∂W
= G −WGTW. Based

on the orthogonal constraint optimization procedure in [Wen
and Yin, 2013], we can define a skew-symmetric matrix
A = GWT − GTW. Then, we will update W by Crank-
Nicolson-like scheme [Smith, 1965]

W(t+1) = W(t) − τ

2
A(W(t) + W(t+1)) (17)

where τ is the step size. By solving (17), we can obtain

W(t+1) = QW(t) (18)

Q = (I +
τ

2
A)−1(I− τ

2
A) (19)

Hereafter, we iteratively update W several times based on
Eq.(18) with Barzilai-Borwein (BB) method [Wen and Yin,
2013]. In addition, please note that when iteratively optimiz-
ing W, the initial W is set to be the one optimized in the last
round between B and W. For the first round, W is randomly
initialized.

Convergence Analysis
B and W are alternately optimized for several iterations to
seek an optimal solution. Since we minimize the objective
function in each step, the convergence analysis of our opti-
mization is

O(B(t),W(t))≥O(B(t+1),W(t))≥O(B(t+1),W(t+1)) (20)

where B(t) and W(t) are the optimal hash codes and projec-
tion matrix in the tth iteration, respectively. In the experi-
ments, the proposed hashing model almost converges at 50
iterations were conducted on optimizing W, as shown in Fig-
ure 2(a) and 2(b). In summary, the whole procedure of our
method is illustrated in Algorithm 1.

3 Experiments
3.1 Datasets
To verify the efficiency and effectiveness of QCH, a se-
ries of experiments are carried out on two benchmark multi-
modal datasets, Wiki[Rasiwasia et al., 2010] and NUS-WIDE
[Chua et al., 2009], and a large-scale dataset 58W-CIFAR
[Krizhevsky and Hinton, 2009] for which we extracted two
types of features to build multi-view data, so that cross-view
retrieval can be performed.

The Wiki dataset [Rasiwasia et al., 2010] consists of 2,866
documents containing image-text pairs annotated with 10

semantic labels and each image was represented by 128-
dimensional SIFT feature and each text was denoted with a
10-dimensional feature vector generated by Latent Dirichlet
Allocation (LDA) model.

The NUS-WIDE dataset [Chua et al., 2009] consists of
269,648 images from 81 ground-truth concepts with a total
number of 5,018 unique tags. In our experiments, 186643
samples from 10 classes that involve largest amount of data
were selected. Besides, each image was presented by a 500-
dimensional bag-of-words (BOW) feature vector and each
text was denoted by a 1000-dimension tag vector.

To evaluate the performance in cross-view retrieval and
the scalability of QCH, the 58W-CIFAR dataset consisting of
580,409 images from 10 categories selected from the 80 mil-
lion tiny image dataset [Krizhevsky and Hinton, 2009] was
used. To establish the multi-view data, a 384-dimensional
GIST descriptor and a 496-dimensional HOG descriptor were
extracted from each image. In the rest of paper, for the con-
venience of description, we consider GIST as “image” and
HOG as “text” so that identical denotations can be acquired
for all datasets.

On training and testing protocol, for Wiki dataset, 80% of
the data were randomly selected as the training set and the
remaining formed the testing set. For the other two datasets,
NUS-WIDE and 58W-CIFAR, we randomly selected 1% of
the data as the testing samples; while for training, we select-
ed different numbers of instances to evaluate the influence of
training size on our proposed model. In Experiment, we set
the size of training set to 5000.

3.2 Compared Methods and Evaluation

In this experiment, we concentrate on two-modality data, and
the following two tasks for fast search are conducted. 1) Task
1: using images to query texts; and 2) Task 2: using texts to
query images. To make comparisons with QCH, three state-
of-the-art cross-modal hashing algorithms were selected in
this paper: (1) CMSSH [Bronstein et al., 2010], (2) CVH[Ku-
mar and Udupa, 2011] and (3) SCM [Zhang and Li, 2014].
CMSSH is a method to learn a group of hash functions for two
modalities through eigen-decomposition and boosting. CVH
extends spectral hashing [Weiss et al., 2009] to multimodal
data, and SCM is derived from Kernel-based supervised hash-
ing [Liu et al., 2012].

In addition, two baseline methods are selected, including
(1) CCA [Hardoon et al., 2004] which is an unsupervised and
also based on the cosine similarity function that can be ap-
plied to match data points of two domains, and (2) supervised
CCA(SCCA) which is our QCH method without incorporat-
ing the quantization loss for optimization.

To assess the performance of different algorithms, the
widely used criterion Mean Average Precision(MAP)[Kumar
and Udupa, 2011; Zhang and Li, 2014; Zhai et al., 2013;
Zhen and Yeung, 2012a] is selected, defined as:

mAP =
1

Q

Q∑
i=1

AP (qi) (21)
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Figure 4: Precision results of different algorithms for two taks with R varying from 50 to 1000 on the condition of two kinds
of bit lengths: 8 bits (4(a) Wiki, 4(c) NUS-WIDE, and 4(e) 58W-CIFAR) and 16 bits (4(b) Wiki, 4(d) NUS-WIDE, and 4(f)
58W-CIFAR), respectively.
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Figure 5: Effect of parameters for QCH on different datasets (5(a) Wiki, 5(b) NUS-WIDE, and 5(c) 58W-CIFAR)
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Figure 6: MAP results of different algorithms with various code lengths for two tasks on the three datasets (6(a) Wiki, 6(b)
NUS-WIDE, and 6(c) 58W-CIFAR).
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Figure 7: MAP results of different algorithms with various code lengths for two tasks on the three datasets (6(a) Wiki, 6(b)
NUS-WIDE, and 6(c) 58W-CIFAR).

where Q is the number of queries, and AP is computed as

AP (q) =
1

L

R∑
r=1

Pq(r)δ(r), (22)

where L is the number of true neighbors for the query q
among the retrieval items, Pq(r) denotes the precision for
query point q when top r data points are returned, and δ(i)
is an indicator function which is 1 when the ith result is a true
neighbor of the query and otherwise 0. Ground-truth neigh-
bors are defined as those pairs which share at least one la-
bel. In our experiments, we set R = 500. All results were
averaged over 10 independent runs with random selection of
training and testing data in each run. All the experiments
were conducted on a workstation with 24 Intel(R) Xeon(R)
E5-2620@2.0GHz CPUs, 96 GB RAM and 64-bit Ubuntu
system.

3.3 Evaluation of QCH
Firstly, we investigate the influence of two parameters intro-
duced in QCH: α and β. α controls the tradeoff between hash
function learning stage and quantization stage and β is a reg-
ularizer coefficient. During this experiment, c = 16 is used.

Fig.3 displays the MAP results of QCH on three datasets with
α varying from 0.001 to 5 and β ranging from 0.001 to 5.

We can find that QCH is a little more sensitive to α and β
on Wiki and NUS-WIDE as compared to the case on dataset
58W-CIFAR. By further investigating the results in this fig-
ure closely, an interesting and promising phenomenon can be
found that when α > 0.02 and 0.005 < β < 0.05 on Wiki and
NUS-WIDE datasets, QCH seems not so sensitive to α and
β, which provides us the evidence that setting α = 0.05 and
β = 0.02 is a reasonable to QCH for Wiki and NUS-WIDE
datasets. QCH performs better on 58W-CIFAR dataset when
α and β are larger. Since multi-view data have stronger cor-
relation than cross-modal data, so we set larger values, i.e.
α = 1 and β = 0.1 on multi-view datasets for example 58W-
CIFAR.

3.4 Comparison with State-of-the-art Methods
and Baselines

The comparison experiments were carried out between the
compared methods and QCH on the three datasets. For fair
comparison, the parameter settings of three state-of-the-art al-
gorithms are adopted as recommended in their corresponding
papers. Table 1 shows the experimental results of differen-



Table 1: MAP results of different algorithms with different code lengths on three datasets for different tasks. The best value
along with each code length is highlighted.

Task Method Wiki NUS-WIDE 58W-CIFAR
c = 8 c = 16 c = 24 c = 32 c = 48 c = 8 c = 16 c = 24 c = 32 c = 48 c = 8 c = 16 c = 24 c = 32 c = 48

Image Query
v.s.

Text database

CMSSH 0.1805 0.1716 0.1684 0.1663 0.1651 0.4171 0.4268 0.4579 0.4646 0.4887 0.1297 0.1265 0.1190 0.1142 0.1171
CVH 0.1962 0.1671 0.1553 0.1487 0.1417 0.4366 0.4178 0.4112 0.4086 0.4015 0.1388 0.1313 0.1370 0.1424 0.1470
SCM 0.1905 0.2089 0.2223 0.2289 0.2301 0.4876 0.5031 0.5246 0.5267 0.5300 0.1169 0.1204 0.1220 0.1236 0.1242
CCA 0.1202 0.1253 0.1261 0.1257 0.1231 0.4293 0.4145 0.4023 0.4009 0.3939 0.1304 0.1187 0.1208 0.1198 0.1196

SCCA 0.1910 0.1689 0.1552 0.1485 0.1412 0.4804 0.4601 0.4462 0.4372 0.4234 0.1394 0.1244 0.1215 0.1195 0.1180
QCH 0.2239 0.2343 0.2482 0.2477 0.2455 0.5319 0.5395 0.5528 0.5489 0.5584 0.1424 0.1530 0.1571 0.1548 0.1510

Text Query
v.s.

Image database

CMSSH 0.1924 0.1874 0.1791 0.1819 0.1822 0.4416 0.4563 0.4411 0.4669 0.4482 0.1210 0.1180 0.1152 0.1158 0.1148
CVH 0.2399 0.1955 0.1727 0.1592 0.1484 0.4366 0.4178 0.4112 0.4070 0.4008 0.1392 0.1304 0.1366 0.1417 0.1464
SCM 0.2330 0.2762 0.2913 0.2979 0.3062 0.4547 0.5038 0.5298 0.5348 0.5443 0.1141 0.1209 0.1214 0.1227 0.1250
CCA 0.1181 0.1180 0.1184 0.1193 0.1175 0.4215 0.4076 0.3998 0.3992 0.3930 0.1304 0.1178 0.1201 0.1193 0.1190

SCCA 0.2326 0.1880 0.1685 0.1574 0.1480 0.5045 0.4780 0.4577 0.4470 0.4316 0.1411 0.1245 0.1222 0.1207 0.1188
QCH 0.2835 0.3034 0.3120 0.3170 0.3156 0.5386 0.5568 0.5776 0.5741 0.5814 0.1424 0.1533 0.1568 0.1556 0.1511

t algorithms on two tasks with different code lengths on the
three datasets. In addition, for different tasks, Fig. 4 further
presents the precision changes of different algorithms along
with the number of retrieval results R with c = 8 and c = 16,
respectively. Based on the table and figure, we have the fol-
lowing analysis.

Task 1: using images to query texts
From Table 1, we can find that QCH outperforms all the com-
pared algorithms on all datasets over all code lengths. From
Fig.4, we can find that QCH is notably superior to the five
compared methods on Wiki and NUS-WIDE datasets; On
58W-CIFAR, QCH is particularly better than SCM, CMSSH
and CCA, and obtains a bit better performance than CVH and
SCCA. The above performance of QCH demonstrates the ef-
ficiency and effectiveness of QCH on the first task. The su-
periority of QCH over SCCA on all datasets over all code
lengths substantiates the importance of simultaneously opti-
mizing quantization loss in our cross-modal hashing model.

Task 2: using texts to query images
From Table 1, the same conclusion as that of the first task can
be drawn. Compared to the first task, we find that QCH ob-
tains better performance on the second task, especially on Wi-
ki and NUS-WIDE datasets. From Fig.4, we can observe that
QCH shows its great advantage over all the compared algo-
rithms on Wiki and NUS-WIDE. While on the 58W-CIFAR
dataset, QCH achieves a notable improvement over SCM,
CMSSH and CCA, and performs comparably to CVH and
SCCA. Again, the comparison results on the second task con-
sistently verify the superiority of the proposed cross-modal
hashing model.

3.5 Effect of the Size of the Training Set and the
Code Length

To further demonstrate the effectiveness of QCH, we addi-
tionally evaluate the effect of the code length and the effect
of the numbers of training data against the compared methods
in Figure 6 and Figure 3, respectively.

From Figure 6, we can conclude that QCH consistently
performs significantly better than all compared algorithms on
all datasets as the code length c increases no matter for Task1

or Task2. More specifically, QCH outperforms CMSSH,
CVH, CCA and SCCA clearly; Compared to SCM, though
QCH is a little better on Wiki and NUS-WIDE datasets, it
particularly gains great advantage on 58W-CIFAR.

To see the effect of the training data size on QCH, we con-
ducted experiments on the NUS-WIDE dataset by increasing
the train size from 2,000 to 20,000 as shown in Figure 3. Ev-
idently, QCH is not sensitive to the size, while the others are
particularly sensitive. It indicates QCH can perform very well
even only a small number of data points are used for training.
This is beneficial from the incorporating of simultaneously
optimizing quantization loss and optimizing similarity loss in
the proposed model. Note that due to space limitation, we
only report the results over the NUS-WIDE dataset, and the
conclusions for other datasets hold.

4 Conclusions
In this paper, we introduce the Quantized Correlation Hash-
ing (QCH) method for cross-modal similarity search that si-
multaneously optimizes the quantization loss and binary code
learning. The problem is effectively optimized using the re-
laxation scheme and the alternative procedure. Extensive
experiments on three datasets show that QCH outperforms
the state-of-the-art cross-/multi-modal hashing methods, es-
pecially when the code length is small.
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