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Abstract—Finding the preimage of a feature vector in kernel
principal component analysis (KPCA) is of crucial importance
when KPCA is applied in some applications such as image prepro-
cessing. Since the exact preimage of a feature vector in the kernel
feature space, normally, does not exist in the input data space, an
approximate preimage is learned and encouraging results have
been reported in the last few years. However, it is still difficult to
find a “good” estimation of preimage. As estimation of preimage in
kernel methods is ill-posed, how to guide the preimage learning for
a better estimation is important and still an open problem. To ad-
dress this problem, a penalized strategy is developed in this paper,
where some penalization terms are used to guide the preimage
learning process. To develop an efficient penalized technique, we
first propose a two-step general framework, in which a preimage is
directly modeled by weighted combination of the observed samples
and the weights are learned by some optimization function subject
to certain constraints. Compared to existing techniques, this would
also give advantages in directly turning preimage learning into the
optimization of the combination weights. Under this framework,
a penalized methodology is developed by integrating two types of
penalizations. First, to ensure learning a well-defined preimage, of
which each entry is not out of data range, convexity constraint is
imposed for learning the combination weights. More insight effects
of the convexity constraint are also explored. Second, a penalized
function is integrated as part of the optimization function to guide
the preimage learning process. Particularly, the weakly supervised
penalty is proposed, discussed, and extensively evaluated along
with Laplacian penalty and ridge penalty. It could be further
interpreted that the learned preimage can preserve some kind of
pointwise conditional mutual information. Finally, KPCA with
preimage learning is applied on face image data sets in the aspects
of facial expression normalization, face image denoising, recovery
of missing parts from occlusion, and illumination normalization.
Experimental results show that the proposed preimage learning
algorithm obtains lower mean square error (MSE) and better
visual quality of reconstructed images.

Index Terms—Kernel, kernel principal component anal-
ysis (KPCA), locality preservation, penalty function, preimage
problem.
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I. INTRODUCTION

P
RINCIPAL COMPONENT ANALYSIS (PCA) [1] is a

well-known technique and has been widely applied in un-

supervised learning and dimension reduction. However, real-

world data are always generated by a nonlinear system, and

this nonlinearity hidden in data is difficult to be explored by

PCA, which is designed for data of linear source. Kernel prin-

cipal component analysis (KPCA) [2] is therefore developed as

a tractable technique for such nonlinear modeling.

KPCA is developed based on the theory of reproducing kernel

Hilbert space (RKHS) [3], [4]. Suppose is the input

data space and is an RKHS associated with a kernel function

, where and is an

implicit mapping induced by such that .

With the kernel trick [3], [4], only the kernel function rather

than needs to be explicitly defined.

KPCAhasrecentlybeenusedfornonlineardatapreprocessing.

Encouraging results have been seen in image denoising [5]–[10],

imagecompression[7], imagesuper-resolution[11],etc.PCAap-

proximatesdata inaprincipal component subspace thatpreserves

the greatest variations of data, so that noises or other nonmain

variations of data are expected to be removed in that subspace.

KPCA essentially has almost the same philosophy but differs in

that it performs PCA in the kernel feature space , so nonlinear

processing can be performed on input data.

In order to realize the nonlinear preprocessing by KPCA, the

preimage learning in KPCA is an important step. In this paper,

we call this whole process as “KPCA preimage learning.”

To specify the preimage problem, we demonstrate “KPCA

preimage learning” for data preprocessing in Fig. 1. Any input

pattern is first mapped to in the feature space .

Then, is projected onto the kernel principal component

subspace in and the projection is denoted by . Fi-

nally, a preimage is found in the input data space such that

(1)

Then, is the output of this nonlinear process.

In this process, the central problem is the preimage learning

at the final step. It is difficult (always impossible) to find an

exact preimage entirely satisfying . Note that

when using popular kernels such as radial basis function (RBF)

and polynomial kernels, the feature space may always

hold much higher or infinite dimensionality while the input

data space holds finite dimensionality [12]. In this sense,

all points in the input data space may be mapped onto the

manifold , which may be a nonlinear hyperplane in

as shown in Fig. 1. Therefore, if , then one

1045-9227/$26.00 © 2010 IEEE
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Fig. 1. Illustration of the process “KPCA preimage learning.” Step 1: input
sample  is mapped into a kernel feature space ! by mapping  and  ! "
is the corresponding feature point. Step 2:  ! " is projected onto the kernel
principal component subspace by transform ! for some preprocessing and the
projection is!  ! ". Step 3: find the preimage # of the feature vector!  ! ".

cannot find satisfying (1), and therefore, an exact preimage

does not exist.

To address the preimage learning problem, some algorithms

have been developed. Mika et al. [5] first reported the con-

cept of preimage and proposed an iterative method to deter-

mine the preimage by minimizing least square distance error.

This work gave a foundation for preimage learning. Later, Kwok

and Tsang proposed to find the preimage under distance con-

straints [6] using a similar technique used in multidimensional

scaling (MDS) [13]. It is good that some knowledge in manifold

learning [14]–[16] is used for preimage learning [6]. Bakιr et al.

[7] proposed to learn preimage by learning a preimage mapping

using the idea of kernel regression. Some other recent works

have been reported by Dambreville et al. [17] and Arias et al.

[10]. In [17], Mika’s algorithm was modified and an approxi-

mate solution was given in a noniterative manner; in [10], Nys-

trom extension was introduced, but methods developed in [5]

and [6] were still required to find the preimage finally.

Existing methods always perform based on some assump-

tions or models. However, it is still difficult to find a “good”

preimage, as the estimation is ill-posed. The distance constraint

based method proposed by Kwok and Tsang is based on the as-

sumption that the exact preimage exists, and an approximate so-

lution could be found under distance constraints [6]. In preimage

map, some intuitive label information [7] is explicitly used in a

kernel regression manner, but as analyzed later, negative infor-

mation is not used. Also, how to choose the proper kernel and

parameters for kernel regression is still a problem. Therefore,

guiding the preimage learning process for a better estimation is

still an open problem.

To address this ill-posed estimation problem, we propose a

penalization model called penalized preimage learning .

To develop an efficient penalized methodology, we first for-

mulate a two-step general framework, in which the preimage

is directly learned by weighted combination of the observed

samples subject to some constraints. Compared to existing

methods, it is advantageous to directly turn preimage learning

into the optimization of the combination weights. Under this

framework, a penalized strategy is developed to alleviate the

ill-posed estimation problem. Two types of penalizations are

considered and proposed. First, the combination weights are

learned subject to convexity constraint. This ensures learning a

well-defined preimage whose entries are not out of range. More

insight effects of the convexity constraint will be explored.

Second, a penalty function is integrated to guide the preimage

learning process for a better estimation. Particularly, we propose

the weakly supervised penalty and extensively evaluate it along

with Laplacian penalty and ridge penalty. We further interpret

that some kind of pointwise conditional mutual information is

preserved by the learned preimage. In experiments, we apply

the proposed preimage learning to human face applications.

Some ideas of this work were reported in two preliminary

works [8], [9], but the presented methodology in this paper is

significantly different.

Therestofthispaperisorganizedasfollows.SectionIIwillgive

review and analysis of existingmethods.A general framework of

learning preimage in KPCA is formulated in Section III and the

penalizedpreimagelearningmodel isproposedinSectionIV.The

experimental results are reported in Section V. Finally, conclu-

sions and discussions are given in Section VI.

II. REVIEW OF EXISTING METHODS

Suppose are training

samples. Let

, and ,

where . For KPCA, its eigen-

vectors can be learned by computing the eigenvectors of

. The projection of onto

the kernel principal subspace can be written as

for some . The

details are given in Appendix I. For derivation of a general

framework, we review and analyze three major approaches in

preimage learning.

A. Least Square Distance Minimization

Mika et al. proposed to find the preimage by minimizing the

following least square distance [5]:

(2)

Particularly, for RBF kernel,

and becomes

(3)

Taking its derivative with respect to and setting it to zero yield

a (local) minimum as follows:

(4)

For implementation, iterative method was used to find a (local)

minimum as follows:

(5)

Such kind of update is a particular form of gradient descent [9]

(6)

For (5), . When

the fixed-point update scheme in (5) may not be effective for
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other kernel functions (e.g., polynomial kernel), the gradient de-

scent update can be used. Note that (5) is iterative, so the initial

position needs to be determined in advance. To avoid iterative

computation, Dambreville et al. did some modification on the

right-hand side of (4) based on some assumption [17].

B. Distance Constraint

Assume the exact preimage of exists and sup-

pose the distances between and its neighbors

are in the feature space, respec-

tively, where . By inferring the

corresponding distance between and [6], Kwok and

Tsang suggested an MDS-based technique [13] to learn an

approximate preimage subject to these distance constraints

[6]. Let and , where

is an identity matrix and .

SVD decomposition yields . Define

. Then, the approximated preimage

is learned [6] by

(7)

where

, and

.

This method avoids iterative computation but the optimal so-

lution may not be unique as analyzed in [6] and [8], because the

number of variables (the data dimensionality) always seriously

exceeds the number of constraints. Thus, only approximate so-

lution can be currently obtained in [6]. This partially explains

why the algorithm may sometimes be unsatisfactory in dealing

with high-dimensional data [8].

C. Preimage Map

Bakιr et al. [7] proposed to learn a preimage map

where and

is a new kernel function different from . The following kernel-

regression-based criterion [7] is then suggested:

(8)

where is a regularization term and is a loss function.

Define where . When

and

, the criterion can be reformulated and

the solution is as follows [7]:

(9)

where is a new kernel

matrix. Define

and preimage map learns the preimage

of by

(10)

Preimage map exploits some intuitive label information of data

for kernel dependency estimation-based regression [7]. How-

ever, currently only good samples could be used for training.

For example, if is a noisy image, it is not suitable to antici-

pate that the preimage would be close to its original

noisy image . In addition, how to select a proper kernel func-

tion for kernel dependency estimation is still a problem.

III. A TWO-STEP GENERAL FRAMEWORK

In this section, we formulate a two-step general framework

for preimage learning. It would facilitate the development of

penalization methodology presented later. By studying existing

preimage learning algorithms, there is a common point on their

final solutions. Though all these algorithms are formulated

differently, the estimated preimages are the linear combination

of training samples with different weights.1 That is, given a

training sample set , the preimage of a fea-

ture vector is actually determined by ,

with coefficients . Different methods have dif-

ferent estimates of . The following outlines these scenarios.

In Mika et al.’s method [5], when using RBF kernel, the

preimage of is determined by

(11)

So we have . For poly-

nomial kernel, if the initialization of in (6) resides in the range

space of training samples, it is still true that for

some .

In Kwok and Tsang’s method [6], define ,

and then (7) can be reexpressed as

(12)

Note that matrix is part of . Denote

. Let

and for

. Thereby, we have .

In Bakιr et al.’s algorithm [7],

. Define

, and then,

we have .

The above analysis justifies that the preimage values deter-

mined by existing algorithms all lie in the space spanned by

training samples. When the sample size is large enough, the

range space of training samples will cover the input data space

so that the preimage can be completely represented by them.

When the sample size is not enough, the rationale of this kind

of weighted representation is that the preimage is found in

1Kwok and Tsang were motivated before to use the (nearest) training samples
to estimate the preimage in [6].
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the entire principal component space [3] if data are centered.2

Therefore, by devising the optimization function to learn the

weights for a given training set and feature vector

, we formulate a general framework for pursuing the

preimage of feature vector in KPCA by solving the

following problem:

where

satisfies some constraints.
(13)

In this two-step framework, we directly formulate the

preimage solution by linear combination of training samples.

This would directly turn preimage learning into the optimiza-

tion of the combination weights. Note that

have their exact preimages , respectively, so some

local structures associated to the feature vector ex-

plored in the kernel feature space can therefore be preserved in

the input data space by the weights.

It is important to point out that this framework is inspired by

existing work, but it differs in that the combination weights of

training samples are directly modeled and the learning problem

can be directly turned into the optimization of the combination

weights, while indirect modeling is done by existing methods.

Another benefit of this framework is that the function can be

constructed more easily by incorporating prior information and

this would facilitate the development of more efficient and ef-

fective preimage algorithms. As preimage learning is always ill-

posed, prior knowledge can be useful to alleviate the problem.

IV. PENALIZED PREIMAGE LEARNING

Based on the introduced framework in Section III, we design

and develop a new method called penalized preimage learning

model for preimage estimation in order to alleviate the

ill-posed estimation. The penalization will be twofold. First,

convexity constraint is imposed for learning weights to

penalize the range of preimage such that it is well defined and

also to help explore some pointwise conditional mutual infor-

mation as interpreted later; second, a penalized term is further

formulated in the optimization function . So, prior knowledge

could be integrated to guide preimage learning to alleviate the

ill-posed estimation problem.

Moreover, in this section, to realize the proposed framework,

we design the function by partially absorbing some knowl-

edge in manifold learning. We absorb the idea of locally linear

embedding (LLE) [14], which preserves local information

through the local least square reconstruction weights. This

is motivated by the perspective that the dimension of feature

2If data are not centered, the estimated preimage is the combination of data
mean and principal components of training data.

space is always much higher than that of input data space

when using popular kernels such as RBF [12]. Thus, finding

the preimage of could be viewed as finding an em-

bedding point for in . However, preimage learning

could be different from manifold learning. We aim at finding

the well-defined real-world data of a feature vector value rather

than estimating its intrinsic impact parameters. With penal-

ization on the combination weights in the proposed model,

some penalized local nonnegative reconstruction information

is explored and the insight of this kind of preservation will be

given in our study. While Kwok and Tsang suggested using

some local distance information [6] for preimage learning,

the proposed penalized framework explores different local

information which will be discussed in latter sections.

A. Proposed Model

Given the projection of the feature vector onto the

kernel principal component subspace, , we define

(14)

where . Let be the cardinality of

where , and let , where

, and if . In

practice, it may be difficult to determine the value of and an

alternative way is to determine the parameter , the threshold

number of neighbors of a feature vector.

Redefine . Under the general frame-

work, we design the new criterion (15), shown at the bottom

of the page, for preimage learning with convexity constraint on

weights .

Regardless of the convexity constraint “ and

,” the optimization function

looks similar to (2) proposed by Mika et al. However, they

are notably different. First, criterion (15) directly models the

preimage as the combination of training samples, while it is

not modeled directly3 in Mika’s method (2); the proposed mod-

eling gives the advantage in avoiding iterative manner for op-

timization and also brings efficiency to incorporation of prior

knowledge. Second, the proposed algorithm is localized; that is

the preimage is determined by the assumed nearby neighbors

rather than all training samples, but this cannot be

realized in (2). Moreover, with the penalty on the range of the

weights, we can further immediately get the following proposi-

tion.

Proposition: The preimage learned by criterion (15) is well

defined.

This is because convexity constraint would ensure the learned

preimage to be well defined, i.e., the entries of are not out of

range. For example, the range of entry is always set to be 0–1 or

3Though the solution of Mika’s algorithm can be represented by weighted
combination of training samples, exactly speaking, this conclusion can only be
obtained from its iterative form in (4) rather than by a direct modeling.

where

and

(15)
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0–255 for 8-bit image. More specifically, if the th entry

of data vector is within the domain , then will

also be in this domain, because

Besides the well-defined property, as shown in the experi-

ment, the convexity constraint would also regularize the effect

of weakly supervised penalty proposed in model (16). More-

over, with the convexity constraint, model (16) can still perform

well, even though some popular normalization techniques are

not used finally to refine the range of the preimage values. In

Appendix II, we show some example of this scenario.

In addition, the convexity constraint also benefits for inter-

pretation of the penalized model, which will be given later. Spe-

cially, if in (15), global information would be learned;

if , we in fact learn an appropriate preimage of

by preserving some local nonnegative linear reconstruction in-

formation between and its neighbors. The latter case is

preferred in this paper. It will be further interpreted later and

partially justified in the experiment.

As the exact preimage does not typically exist, penalization

would therefore be useful for guiding the learning process to

find a better preimage value, such as incorporating some prior

knowledge. For this reason, the proposed criterion of learning

in (15) can be further penalized by integrating a penalty

function into the optimization function. Note that

Therefore, the penalized preimage learning model can be

devised as shown in (16), at the bottom of the page, by excluding

the term which is independent of , where the

parameter .

In our study, three types of penalty functions, namely,

Laplacian penalty, ridge penalty, and particularly, the proposed

weakly supervised penalty will be considered, devised, and

discussed in Section IV-B. Before going into the details of the

penalized functions, more insight of the learned preimage is

explored and interpreted below.

Define a function , where

are learned by criterion (16). Since and ,

we can estimate the following conditional probability4

We call this the penalized probability relationship between

and its neighbor , as can be

viewed as a penalized approximation value to given

penalty function and parameters and . Also, as the

preimage is found by additive combination of neighboring

4For any    !  " #!, we can set $  %  !!"  $ %  !!! # $.

preimages of in (16), i.e., , so we can also

estimate the conditional probability .

Therefore, we have the following:

(17)

In this sense, the penalized probability relationship between

and its neighbors in the feature space is preserved

by the learned preimage in the input data space. Moreover, if it

is assumed that the prior probabilities and are

the same,5 i.e., , where is the

sample size, we can further have the following relationship:

(18)

Here

We call the penalized

pointwise conditional mutual information6 between

and its neighbor . This indicates that the penalized point-

wise mutual information between and in the

feature space is preserved as the pointwise

conditional mutual information between the preimages and

in the input data space.

B. The Penalty Function

Since the best preimage is not known, we propose to make

use of penalization to guide the learning process so that a better

(if not the best) preimage can be obtained. In this paper, for

performing penalization on the reconstruction weights, we

introduce the use of Laplacian penalty and ridge penalty in

preimage learning, and propose the weakly supervised penalty.

The Laplacian penalty and ridge penalty are task indepen-

dent and formulated based on prior common knowledge. The

weakly supervised penalty is proposed for finding task-depen-

dent preimage.

5This condition is mild, since such assumption is always held in many linear
and kernel (nonlinear) systems.

6Themutual information between random variables! and! is the expecta-
tion of pointwise mutual information between the outcomes of them. So for any
specific outcomes %

! and %
! of ! and ! , the pointwise mutual information

between them is defined as &'( "& %! " %! ! # )& %! !& %! !* $.

where
and

(16)
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1) Laplacian Penalty: When the preimage value is an image

vector, Laplacian penalty can impose appearance smoothness

constraint on the image. Smoothness is conceived to be a generic

assumption on image appearance, characterizing the coherence

and homogeneity [18], [19]. Suppose is the vector representa-

tion of image matrix in row order and let and be the hor-

izontal and vertical coordinates in an image. Laplacian penalty

is formulated as [19]

(19)

For computation, the discrete form of Laplacian penalty is al-

ways used for approximation [19] and (19) can be approximated

as follows:

(20)

where , and are

matrices that approximate a second derivative by second differ-

ence [19]. Then, the objective function becomes (21), shown at

the bottom of the page.

2) Ridge Penalty: An extension of the penalty form of

Laplacian penalty could be to find a metric matrix such that

. In particular, letting would yield

the well-known ridge penalty, i.e., . Then, the

objective function for minimization becomes (22), shown at the

bottom of the page.

Unlike Laplacian penalty, ridge penalty used in our case

addresses the smoothness of geometry structure between

and its neighbors and also between and .

Ridge penalty would make the weights not differ too much,

because is minimized subject to

and if and only if . This penalty would

prevent any from dominating the value of and may be

helpful to make the learned preimage robust to noise, since

more information from other training samples is used. As the

exact preimage of a feature vector is difficult to be determined,

properly using more information may sometimes be useful for

getting a better estimation.

3) Weakly Supervised Penalty: It is found that no supervised

information is used in the former two penalty functions. How-

ever, KPCA is an unsupervised technique and class labels are

not available. For this reason, we propose a way to incorpo-

rate some weakly supervised prior knowledge if it is available.

The weakly supervised knowledge means only positive class in-

formation and negative class information are available and the

exact class labels of samples are indeed unknown. In this paper,

positive class is defined as the sample set which the preimage is

expected to be close to and the negative class is defined as the

sample set which the preimage is expected to be far away from.

Denote the positive class by and the

negative class by , where and are

samples in the positive class and the negative class, respectively.

Here and are not restricted to be out of the training sam-

ples for learning KPCA. We here assume these prior informa-

tion is available. As show in the experiment, such weakly su-

pervised knowledge may not be difficult to be obtained in most

applications. We also give discussions on this issue at the end of

Section VI. For penalization, the learned preimage is expected

close to the local positive class information and far away from

the local negative class information. Therefore, we design the

weakly supervised penalty as follows:

and (21)

and (22)



ZHENG et al.: PENALIZED PREIMAGE LEARNING IN KERNEL PRINCIPAL COMPONENT ANALYSIS 557

(23)

where is one of the nearest

positive samples of

is one of the nearest negative samples of

, and and are the cardinalities of

and , respectively. Define

Then, ignoring the last term independent of in (23) would

yield criterion (24), shown at the bottom of the page, where we

let and for simplification in the above

criterion.

For utilizing the weakly supervised penalty function, it is re-

quired to properly design the positive and negative information

depending on the applications.

To solve the criterion (24) as well as (21) and (22), a simple

quadratic program could be used to get the optimal solution.

Sometimes, when the training set of KPCA is the same as

the positive sample set, we would set in (24), as the

preimage is already the combination of positive samples by

utilizing the criterion (16).

V. EXPERIMENTAL RESULTS

In this section, by utilizing the proposed preimage learning

algorithm as well as existing techniques, KPCA was applied to

four different image preprocessing applications on face images,

namely facial expression normalization, image denoising, oc-

clusion recovery, and illumination normalization. Human face

image analysis has been received great attractions in the last

few years. To measure the quality of the processed images, this

paper adopts the mean square error (MSE) measurement similar

as in [5]–[7]. The visual processing results are also illustrated

for comparison.

A. Experiment Settings

1) Data Sets: Two data sets, namely Cohn–Kanade facial ex-

pression (CKFE) database [20] and YALEB [21] database were

used for experiments. CKFE includes image sequences of dif-

ferent persons, and each sequence describes the variations from

natural expression to a particular facial expression. The num-

bers of images in different sequences are different. The avail-

able portion supplied by Carnegie Mellon University (CMU)

was used in this paper. We cropped all face images from the

original images manually. In total, there are 8795 images of dif-

ferent kinds of expressions from 97 persons, including surprise,

fear, joy, sadness, disgust, and anger. YALEB consists of ten

persons with nine different poses. For each pose, there are 65

face images undergoing various illuminations. Face images of

each pose in YALEB are divided into five subsets [21] according

to the light-source directions. The light-source directions of im-

ages in subset 1 are frontal or nearly frontal. In the experiment,

each image was aligned and resized to 60 80.

2) Kernel Function: In the experiments, all images were

linearly stretched to full range of pixel values of .

The performances of preimage learning algorithms are

reported using two kernel functions, namely RBF kernel

and polynomial kernel

. For RBF kernel, we set

; for polynomial kernel, we set and .

In all experiments, KPCA was learned on training set (will

be specified later) and a KPCA subspace was determined by

retaining the largest kernel principal components that were

selected to preserve 95% energy.

3) Design of Experiments: For evaluation, we applied KPCA

with preimage learning in four applications: facial expression

normalization, face image denoising, recovery of occluded face

images, and illumination normalization of face images. Experi-

ment settings are as follows.

a) Expression normalization: CKFE database was used.

The first three images from each sequence of facial expression

were used for training, since they are nearly natural facial ex-

pression. The rest of images in the sequence except the last

image were used for testing. The last image will be used later.

The last two images of a sequence were captured at different

time, albeit similar with the exact facial expression. So there

were 1461 training images and 6847 testing images. Note that

there is no unique ground truth natural facial expression for each

person in CKFE, but a set of training images of nearly natural

facial expression is available. The MSE value of a normalized

facial expression image was then obtained by computing the

minimum MSE between it and all training images of the same

person.

b) Image denoising: The experiment is conducted on

subset 1 of YALEB database, of which images were captured

under normal or nearly normal illumination condition. In that

subset, for each pose, there are seven images for each person.

We established the training set by randomly selecting six

images from each pose for each person in the subset 1 to train

a KPCA model, and the rest one image of each pose from

and (24)
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TABLE I
MSE: CONVEXITY CONSTRAINT IN  !, NORMALIZED FACIAL EXPRESSION (CKFE)

each person was treated as the clean testing image and two

testing noisy images were generated by adding noise on each

clean testing image. This procedure repeated ten times and the

average MSE of each preimage learning method was obtained,

where totally 1800 testing noisy images were processed over

the ten run experiment. Note that only Gaussian noise with zero

mean and random variance between 0 and 1 was used.

c) Reconstruction of occluded images: The experiment

setting is almost the same as the one for image denoising ex-

cept the only change that each occluded image was generated

by placing a rectangle black patch onto each clean testing image

at a random coordinate. The width and height of the patch were

random, and they varied from 15 to 40 in pixels.

d) Illumination normalization of face images: Similarly,

all images in subset 1 were used for KPCA learning, as they

are under or almost under normal illumination condition. All

images from nine poses in subset 2 and subset 3, in total 2160

images, were used for testing. For evaluation, each normalized

face image was compared with the corresponding face image

under normal illumination condition.

B. Evaluation of the Proposed Method

This section evaluates the proposed method. In this paper,

two kinds of penalizations are used in , i.e., the con-

vexity constraint for learning the combination weights

and the penalty function . Under the developed two-step

framework, these penalizations yield criteria (15) and (16),

respectively. In Section V-B1, we first evaluate the usefulness

of convexity constraint in criterion (15); in Section V-B2, the

effects of different penalty functions are demonstrated.

1) Evaluation of Convexity Constraint in Criterion (15): Be-

sides some statistical interpretation in Section IV, this part ex-

perimentally justifies the usefulness of convexity constraint. The

comparison between criterion (15) and “nonconvex criterion

(15)” is reported in Tables I–IV. The “nonconvex criterion (15)”

means the constraint “ and ” in crite-

rion (15) is removed and is a special case of our previous al-

gorithm [8]. Except the case of denoising on YALEB, the re-

sults show that the MSEs are overall lower7 when the convexity

constraint is applied. Although the nonconvex version is a bit

better than criterion (15) for image denoising on YALEB, we

will particularly show later that criterion (15) plus weakly super-

vised penalty would always obtain a notable improvement with

(much) lower MSE than “nonconvex criterion (15).” In addi-

tion, we conducted the “nonconvex criterion (15) CUT,” which

truncated the results obtained by “nonconvex criterion (15)” in

order to make the preimage well-defined directly. As shown, the

7Note that the pixel value of each image is defined in "# $%. If it is defined in
"# &''%, then all MSEs reported have to be multiplied by &'' .

truncation only gives slight improvements over “nonconvex cri-

terion (15).” This suggests that the well-defined property had

better be considered during the optimization process of the pro-

posed preimage learning criteria, since the convexity constraint

can also help learn some pointwise conditional mutual informa-

tion that is difficult to be realized by the truncation process. Next

section will further justify its usefulness in another proposed cri-

terion (16) when weakly supervised penalty is used. In a word,

the experimental results indicate that the convexity constraint is

overall useful in two proposed criteria.

2) Evaluation of the Proposed Penalty Function: This sec-

tion evaluates the effects of using penalty functions. The goal

is to show that with proper penalty function can enhance

the first proposed criterion (15) and therefore get a much better

preimage.

a) Parameters/penalty function setting: We report

the results of with different values of the impor-

tance weight and the number of nearest neighbors, where

and . For

implementation of weakly supervised penalty function, we set

in (24). As stated in Section IV-B, we assume

the prior knowledge, i.e., positive and negative class samples

for learning the weakly supervised penalty are available. The

selection of negative class samples in the experiments are

described as follows.

1) For facial expression normalization, the last image of each

facial expression image sequence was treated as the nega-

tive sample. In total, there were 487 negative class samples.

2) For face image denoising, the noisy samples in the nega-

tive class for each run were additionally generated on the

training set; that is, two noisy images were generated on

each image in the training set using Gaussian noise with

zero mean and random variance. So there were 1080 neg-

ative class samples for each run.

3) For reconstruction of occluded face images, samples of

the negative class were also additionally generated on the

training data for each run; that is, for each face image in

the training set, two occluded face images were generated

with rectangle black patch randomly placed in the image.

So there were also 1080 negative class samples for training

for each run.

4) For illumination normalization, we only simply selected all

illuminated images in subset 5 from nine poses of YALEB

database as the negative samples. Those images are with

extremely serious illumination. So, there were 1800 im-

ages treated as the negative class data.

It should be noted that there was no overlap between the neg-

ative data set and testing data set.

Besides, since the training samples of KPCA were good in

our experiments, it can therefore be viewed that the positive
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TABLE II
MSE: CONVEXITY CONSTRAINT IN  !, DENOISING (YALEB)

TABLE III
MSE: CONVEXITY CONSTRAINT IN  !, OCCLUSION RECOVERY (YALEB)

TABLE IV
MSE: CONVEXITY CONSTRAINT IN  !, ILLUMINATION NORMALIZATION (YALEB)

information (i.e., training samples) has already been used. So,

as stated in (24), we did not employ additional positive data

set; that is, we set to be 0 in (24) and only let the param-

eter be active in (24). In the experiment, we also let

. Please note that we only tuned

for weakly supervised penalty, as it is written in

(24). Though and were set small, we would show that the

proposed method can get superior performance to the popular

preimage learning methods in the next section.

b) Experimental analysis: Results of the MSE perfor-

mances of penalized preimage learning with different

penalty functions are tabulated in Tables V–VIII, where the

lowest MSEs with respect to each parameter value of or

across different configurations of penalty functions are

shown in bold. From Tables IX–XII, the comparison results

between two proposed criteria (15) and (16) are shown, where

only the penalty on data range is used in criterion (15). For

fixed parameter , the MSE results of using penalty functions

are the corresponding best ones reported in Tables V–VIII. In

Tables IX–XII, for each parameter , the lowest MSE value is

shown in bold.

With the results shown in TablesV–VIII, we find that utilizing

weakly supervised penalty could be overall better, because it

always gets lower MSE except several cases when or

equals to using RBF kernel as shown in Tables VI–VIII.

Moreover, results in Tables IX–XII show using weakly su-

pervised penalty can always get the lowest MSE values. Com-

pared to another proposed criterion (15), using weakly super-

vised penalty function can enhance the performance of in

all applications and using Laplacian penalty and ridge penalty

can mainly enhance the performances in face illumination nor-

malization. On the one hand, it is true that a further integrated

penalty function has the chances to make get a further

better preimage; on the other hand, compared with the other

two penalty functions, it is suggested that weakly supervised

penalty, a task-dependent penalty, would be more useful and ef-

fective, though it is still difficult to prove that it would always

perform the best. The reason may be because some weakly su-

pervised information that defines the positive and negative in-

formation is used, while Laplacian and ridge penalties are task

independent. Although weakly supervised penalty depends on

the positive and negative information used as prior knowledge,

as shown here it is sometimes not difficult to obtain them. More

discussions on this issue will be given in Section VI. Addition-

ally, the success of using weakly supervised penalty shows that

the negative information from data could be useful, while neg-

ative information is not used in preimage map.

Finally, as weakly supervised penalty is preferred in gen-

eral, we additionally implemented “nonconvex criterion (16)”

and “non-convex criterion (16) CUT” with weakly supervised

penalty where the convexity constraint in criterion

(16) is removed and the truncation process is further applied,

respectively. By comparing the results of nonconvex criterion

(15) from Tables I–IV with the results in Table XIII, we show

that under the same parameter setting weakly supervised penalty

can make much more improvements when convexity constraint

is imposed in criterion (16); otherwise, the improvement may

be slight or not happen. Moreover, when convexity constraint

is used, the performance of weakly supervised penalty would

be more stable, as the MSE changes relatively small across dif-

ferent numbers of neighbors, as compared to the case when con-

vexity constraint is removed. The reason for this could be be-

cause weakly supervised penalty would make the preimage be

placed away from its nearby negative samples, but it might also

simultaneously make the preimage be out of data range as the

direction of the movement of preimage value could not be ac-

curately specified. So, the convexity constraint actually restricts

the variation range of preimage; that is, some regularization is
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TABLE V
MSES OF NORMALIZED FACIAL EXPRESSION IMAGES USING PENALIZED PREIMAGE LEARNING

TABLE VI
MSES OF DENOISED YALEB IMAGES USING PENALIZED PREIMAGE LEARNING

TABLE VII
MSES OF RECONSTRUCTED OCCLUDED IMAGES USING PENALIZED PREIMAGE LEARNING

TABLE VIII
MSES OF NORMALIZED ILLUMINATED IMAGES USING PENALIZED PREIMAGE LEARNING

implicitly imposed to alleviate this potential problem. Hence,

the convexity constraint is not only able to ensure a well-de-

fined preimage, but also help regularize the effect of weakly su-

pervised information.

3) The Effect of the Number of Nearest Neighbors: This part

shows that using local information could be already satisfactory

in the two proposed criteria (15) and (16) by extensively evalu-

ating its effect.

We first address the case when the penalty term in the opti-

mization function does not take effect, i.e., or equals to

zero. Table XIV reports the results and the lowest MSE value

in each row is in boldface. It can be seen that obtains the

lowest MSE when is small (e.g., ) and degrades as

increases, for both RBF kernel and polynomial kernel. Note

that the derivation of criterion (15) is partially inspired by the

assumption in LLE, i.e., locality preserving. Without any effect
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TABLE IX
MSE: CRITERION (15) VERSUS CRITERION (16) IN  ! FOR NORMALIZED FACIAL EXPRESSION IMAGES

TABLE X
MSE: CRITERION (15) VERSUS CRITERION (16) IN  ! FOR IMAGE DENOISING (YALEB)

TABLE XI
MSE: CRITERION (15) VERSUS CRITERION (16) IN  ! FOR RECONSTRUCTION OF OCCLUDED IMAGES (YALEB)

TABLE XII
MSE: CRITERION (15) VERSUS CRITERION (16) IN  ! FOR ILLUMINATION NORMALIZATION (YALEB)

of any penalty function, this case does exactly evaluate the fea-

sibility of using local but not global information for learning

preimage.

Consider criterion (16) where penalty function is used. We

consider the unsupervised penalty functions, i.e., the ridge and

Laplacian penalties. As these two penalty functions currently

perform better for illumination normalization, we mainly

present their results in this case. As shown in Tables XV and

Table XVI, when quite fewer neighbors are used, the best

results are obtained.

The above two cases indicate that when only unsupervised

information is used, using appropriately quite limited local in-

formation is sufficient. This will also coincide with the case of

distance constraint reported later, which also only uses unsuper-

vised information.

Now, consider the case using weakly supervised penalty

. Results are shown in Table XVII. Since some

weakly supervised information is integrated, the scenario could

be different. For polynomial kernel, a small is still preferred;

for RBF kernel, the scenario becomes a bit complicated. How-

ever, we may still get some experimental observations that if

more facial structures are preserved, less local information may

be probably sufficient when weakly supervised information is

used for RBF kernel. The facial expression variation may de-

stroy facial structures relatively slightly, as much more holistic

facial structures are still preserved. In contrast, noise, occlu-

sion, and illumination would make some structures missed.

However, it should be noted that even though more neighbors

are used for RBF in this case, is still much smaller than the

amount of training samples.

Therefore, when the model becomes less unsupervised, a bit

more neighbors may be needed sometimes. It may be because

the weakly supervised penalty uses some negative information

to regularize the preimage value, but from another point of view,

this might drive the preimage away from some ideal positive

neighbors (training samples here) at the same time. So, more

neighbors from training samples may be needed to alleviate this

possible side effect. Currently, it would be difficult to fully in-

terpret why the case of using polynomial kernel is less sensitive

to weakly supervised penalty. One interpretation might be that

the polynomial kernel with factional power used in this paper

may be already discriminative itself as explored by Liu [22].

Moreover, taking the performance of with weakly

supervised penalty when as the reference,

Table XVIII shows that the computational expense of quadratic

program will increase a lot for each testing image if is large
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TABLE XIII
MSE: CRITERION (16) VERSUS NONCONVEX CRITERION (16), USINGWEAKLY SUPERVISED PENALTY   ! "# $

TABLE XIV
MSE VERSUS NUMBER OF NEIGHBORS IN % &, CRITERION (15)

TABLE XV
MSE VERSUS NUMBER OF NEIGHBORS, CRITERION (16), RIDGE PENALTY  ! ! "# $

TABLE XVI
MSE VERSUS NUMBER OF NEIGHBORS, CRITERION (16), LAPLACIAN PENALTY  ! ! "# $

(e.g., ) but with little significant improvement. Like

some preimage algorithms, is learned for each testing

sample. So, it would be reasonable for to use an appro-

priate small number of neighbors to infer preimage in this

aspect. As shown later, even though is set appropriately small

(e.g., ), still obtains (much) lower MSE and better

visual results as compared to existing methods.

In summary, the results show that in the two proposed criteria

(15) and (16), learning the preimage of a feature vector using its

nearby neighbors rather than a large amount of training sam-

ples would be already satisfactory and get better performances

than existing methods as shown later. For the completely unsu-

pervised case, quite a limited number of neighbors are already

enough. When weakly supervised information is used, some-

times, a bit more neighboring information would be preferred

for some kernel, such as RBF, and this may also depend on

how challenging the application is. In such a case, a tradeoff

between reconstruction performance and computational com-

plexity needs to be considered. In practice, some model selec-

tion techniques could be used. Section VI will provide addi-

tional discussion on this issue.

C. Comparison With Other Methods

This section conducts a comparison between the proposed

penalized preimage learning model and three representative

methods, namely, Mika’s method [5], the distance-con-

straint-based scheme proposed by Kwok and Tsang [6], and

preimage map [7]. As Mika’s method was originally developed

based on RBF kernel [5], so for polynomial kernel, we used

the gradient update scheme for acquiring a solution. In our

experiments, we set in (6), set the training sample mean

as the initialized value, and set the maximum iteration count to
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TABLE XVII
MSE VERSUS NUMBER OF NEIGHBORS, CRITERION (16), WEAKLY SUPERVISED PENALTY   ! "# $

TABLE XVIII
PERFORMANCE IMPROVEMENT VERSUS INCREASE OF COMPUTATIONAL EXPENSE [TAKE % & AT ! ! '

AS THE REFERENCE PERFORMANCE, WEAKLY SUPERVISED PENALTY, RBF   ! "# $]

TABLE XIX
MSES OF NORMALIZED FACIAL EXPRESSION IMAGES USING COMPARED METHODS

TABLE XX
MSES OF DENOISED YALEB IMAGES USING COMPARED METHODS

TABLE XXI
MSES OF RECONSTRUCTED OCCLUDED IMAGES USING COMPARED METHODS

TABLE XXII
MSES OF NORMALIZED ILLUMINATED IMAGES USING COMPARED METHODS
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Fig. 2. Illustration of normalized facial expression images. In each row of (d)–(g), the left six images are results based on RBF kernel and the right six images
are results based on polynomial kernel. Five neighbors are used in both the distance-constraint-based method and  !. The importance weight  in  ! is "# .
Noting that there is no unique ground-truth natural facial expression image for each person in the data set, we show the one nearest to the mean of training samples
for each person in (b) for reference. (a) Facial expression images. (b) References of natural facial expression images. (c) PCA. (d) Mika’s method. (e) Distance
constraint. (f) Preimage map. (g) Penalized preimage learning (weakly supervised).

be 200. In preimage map, we know that a different kernel is

additionally used for kernel regression [7]. However, as far as

we know, how to determine this kind of kernel function is still

an unsolved or at least a not well-investigated problem. In this

paper, we selected the RBF kernel and set

where was commonly set as

In our experiments, the parameter in (8) was selected from

, and the best

result would be reported. In addition, results of PCA will also

be reported for reference.

For convenience of the comparison, in Tables XIX–XXII,

the results of the proposed model with weakly supervised

penalty are included. The results show that the

proposed model overall achieves significant improvements

against the compared methods. This scenario could be more

evidently observed in the experiments of facial expression

normalization, recovery of occluded images, and illumina-

tion normalization. Note that, in most cases, using other

penalty functions that are not listed in Tables XIX–XXII or
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Fig. 3. Illustration of denoised face images. In each row of (d)–(g), the left six images are results based on RBF kernel and the right six images are based on
polynomial kernel. Ten neighbors are used in the distance-constraint-based method and  !. The importance weight  in  ! is "# . (a) Noisy images. (b)
Original images. (c) PCA. (d) Mika’s method. (e) Distance constraint. (f) Preimage map. (g) Penalized preimage learning (weakly supervised).

just in form of the proposed criterion (15) can also get superior

results to the ones obtained by existing methods. Though

Mika’s method also performs well for illumination normal-

ization when using polynomial kernel, it is computationally

expensive. The preimage map does not always get much lower

MSE than Mika’s method except the cases for facial expression

normalization and image denoising using polynomial kernel.

Though it can obtain better visual quality than Mika’s method

for digit image denoising in our inner test which coincides with

the finding in [7], it is somewhat surprising to us that the perfor-

mance of preimage map is still overall unsatisfactory over the

applications presented here. This may be at least due to its two

weaknesses. First, as discussed in Section II-C, preimage map

currently cannot be learned by taking use of negative samples;

second, the selections of kernel function for kernel regression

and the regularization parameter are so far still difficult to be

determined in literatures.

In addition, we have an experimental finding that the dis-

tance constraint scheme would not perform well for high-di-

mensional data when fewer neighbors are used, and as seen

in Tables XIX–XXII, the MSEs of distance constraint are high

when . Interpretation of this scenario has been given in the

previous section. Though the number of neighbors of the kernel

feature should be properly designated in both and the dis-

tance-constraint-based method, the performance of would

be affected insignificantly when different numbers of neighbors

are used. This is particularly indicated by the results shown in

Tables XIV–XVII.



566 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 21, NO. 4, APRIL 2010

Fig. 4. Illustration of reconstructed occluded face images. In each row of (d)–(g), the left six images are results based on RBF kernel and the right six images are
results based on polynomial kernel. Ten neighbors are used in the distance-constraint-based method and  !. The importance weight  in  ! is "# . (a) Oc-
cluded images. (b) Original images. (c) PCA. (d) Mika’s method. (e) Distance constraint. (f) Preimage map. (g) Penalized preimage learning (weakly supervised).

Finally, we compare the visual results of all methods which

are shown in Figs. 2–5. For illustration, the numbers of neigh-

bors used in the distance constraint method and are

indicated in the caption of each figure. They were selected as

the tradeoff between better visual results and smaller MSE

values obtained in our experiments. For preimage map, we

mainly illustrate the results corresponding to the lowest MSE.

For visualization, we have implemented the Matlab function

“mat2gray,” in which the intensity of image was set within

the range from 0 to 1. It should be noted that the MSE values

reported in Tables I–XXII were computed based on pure data,

which were purely obtained by preimage learning algorithms

without any additional preprocessing.

The comparison results show that the distance constraint

scheme and always perform better than the iterative

method and the preimage map. However, gets better visual

quality of reconstructed face images, especially by comparing

the local portions of images near noses, eyes, mouths, etc.

Although Mika’s method also gets low MSE in illumination

normalization when polynomial kernel is used as reported in

Table XXII, the reconstructed images shown in Fig. 5(d) are

smoother than the ones obtained by the proposed method.

In addition, the results also show that KPCA with preimage

learning performs better than PCA. In summary, the experi-

mental results show that algorithm gives lower MSE and

better visual results.
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Fig. 5. Illustration of normalized illuminated face images. In each row of (d)–(g), the left six images are results based on RBF kernel and the right six images are
results based on polynomial kernel. Ten neighbors are used in the distance-constraint-based method and five neighbors are used in  !. The importance weight
 in  ! is "# . (a) Illuminated images. (b) Original images. (c) PCA. (d) Mika’s method. (e) Distance constraint. (f) Preimage map. (g) Penalized preimage
learning (weakly supervised).

VI. CONCLUSION AND DISCUSSION

In this paper, we address the preimage problem in kernel

PCA. The contributions are as follows.

1) An efficient penalized preimage learning method-

ology has been developed based on a two-step general

framework.

2) For penalization, the weakly supervised penalty is pro-

posed and extensively evaluated along with Laplacian

penalty and ridge penalty. The convexity constraint on the

combination weights is also introduced, evaluated, and

discussed in the proposed methodology.

Moreover, a comprehensive comparison between different

preimage learning methods in KPCA has also been reported

by conducting extensive experiments in four different appli-

cations, namely facial expression normalization, face image

denoising, recovery of occluded face image, and illumination

normalization of face image.

Compared with existing preimage learning models, the major

differences are that the preimage learned by is directly

modeled by convex combination of training samples and fur-

ther learned by the guidance of penalized function, so that the

preimage is well defined and preserves the penalized pointwise

conditional mutual information. In existing algorithms, the

preimage values are indirectly learned as the combination

of training samples, since their preimage algorithms are not

directly turned to the optimization of the combination weights

as demonstrated in this paper. Existing methods do not guar-
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Fig. 6. Examples of preimage values extracted by Mika’s method and Kwok and Tang’s method, respectively. In our experiments, each pixel in a gray image
is ranging from 0 to 1. (a) Original image. (b) Occluded image. (c) Preimage vector obtained by method [5]. (d) Preimage vector obtained by method [6]. (e)
Reconstructed image obtained by method [5], using normalization-I. (f) Reconstructed image obtained by method [6], using normalization-I. (g) Reconstructed
image obtained by method [5], using normalization-II. (h) Reconstructed image obtained by method [6], using normalization-II. Two types of normalization,
namely, normalization-I and normalization-II are used for showing the visual results. For normalization-I, threshold is made as normalization such that the entries
of the preimage vector are set to be 1 if they exceed 1 and 0 if they are negative; for normalization-II, linear scaling is directly done such that the entry values are
stretched, ranging from 0 to 1. All results are based on RBF kernel with the parameter specified in the experiment.

Fig. 7. Examples of the preimage values obtained by  !. (a) Original image. (b) Occluded image. (c) Preimage vector obtained by the proposed  ! (weakly
supervised penalty,  " #$ ). (d) Reconstructed image obtained by  !, using normalization-I. (e) Reconstructed image obtained by  !, using normaliza-
tion-II. All results are based on RBF kernel with the parameter specified in the experiment.

antee to learn a well-defined preimage and the penalization

framework is not modeled and widely discussed for alleviating

the ill-posed problem in preimage learning as well. Besides

these main differences, is noniterative as compared to

Mika’s method [5], learns the preimage that preserves local

nonnegative penalized reconstruction information as compared

to the distance-constraint-based algorithm that preserves the

local information in line with MDS [6], and is able to use

(local) negative information as compared to preimage map [7].

In addition, it might be possible to apply convexity constraint

or the proposed penalty function by modifying some existing

models; however, the advantage of realizing these ideas in

criteria (15) and (16) is that the combination weights of sam-

ples are directly modeled for quadratic optimization and this

would benefit for developing efficient algorithms for preimage

learning. Experimental results show can get lower MSE

values and better visual quality of reconstructed images.

Among the penalty functions discussed, the weakly super-

vised penalty outperforms the others. Currently, one concern

about this penalty is how to get positive and negative informa-

tion. In current experiments, negative data were obtained by ad-

ditional simulation for applications of image denoising and re-

covery of occlusion. Even for facial expression and illumina-

tion normalization, simulation of facial expression and illumi-

nated images could also be possible by using active appearance

models [23] and Lambertian model [24], respectively. If this in-

formation, especially the negative information, is sometimes not

immediately available or difficult to be simulated in practice,

we could consider an incremental manner for implementation.

It can be motivated that some positive or negative information

may be able to be explored from some testing samples that have

already been observed. Assume there is a filter that can distin-

guish any of these testing images as positive or negative infor-

mation well. In this way, the knowledge of positive/negative in-

formation can grow out of nothing as more testing images are

observed. It should be noted that such filter and the details of

incremental technique need to be well designed in future. Spe-

cially, if it is assumed that the images to be preprocessed are

corrupted, then they can be treated as negative samples and the

incremental learning may be implemented more easily without

a filter.

A possible future research issue for weakly supervised

penalty (as well as other related methods) could be on the

selection of useful neighbors. So far, we demonstrated exper-

imentally that local information could be already satisfactory

for preimage learning under criterion (16). It would currently

be still difficult to design an elegant and efficient strategy to

determine the optimal number of neighbors by balancing the

reconstruction performance and computational expense, though

a practical and simple way could be to employ a validation
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set for some model selection, conditioned that the maximum

number (e.g., 100) of nearest neighbors is restricted.8Moreover,

it may also be useful to discuss some more general topic about

the selection of useful neighbors in future.

Finally, the extensive evaluations of different preimage

learning algorithms in a wide range of applications also show

that KPCA with preimage learning could be widely applied

to many applications and appealing results can be obtained,

though KPCA is implemented without incorporating any

special physical model. However, KPCA is still an unsuper-

vised technique and one can find that even using the proposed

preimage learning model, a few processed images are likely

different from the reference images. In this aspect, applying

preimage learning to some other kernel algorithms such as

support vector data description as done in [25], [26] or some

supervised kernel algorithms may possibly be useful for tack-

ling this problem in future. Also, how to combine “KPCA

preimage learning” with existing models for solving specific

computer vision problem could be an interesting research

issue, as specific model is designed to solve each application

and “KPCA preimage learning” may perform some com-

pensation. For example, in a recently reported work for face

illumination normalization [27], there were still some artifacts

appearing in the normalized images such as occlusions and

noises, which appeared unpredictably in the normalized image.

In this case, “KPCA preimage learning” could be used

for denoising and recovery process. However, how to use it

properly still needs further investigations in future.

APPENDIX I

A sketch of KPCA is given here. Similar contents can be re-

ferred to [2], [5], and [6]. The goal of this presentation is mainly

to acquire a simple formula for projecting a feature vector onto

a kernel principal subspace as shown by (26).

Define . Then,

KPCA in fact performs linear PCA in the feature space and is

formulated as the following eigenvalue problem:

(25)

where , ,

, . As

and

we then have

8This is only a possible way that may not be optimal to control the computa-
tional expense of the model.

Also, from (25), for each , we could have some

[2], [3] such that

where . So

. Denote the subspace spanned by the first

largest kernel principal components by

. Then, for a given pattern , in KPCA, the pro-

jection of onto such subspace is

(26)

where

and .

APPENDIX II

This appendix shows an example that the proposed model

performs more robust, as compared to the state-of-the-art

methods, even though popular normalization technique is not

applied to the learned preimage. For this purpose, we here

compare the results of Mika’s [5] and Kwok and Tsang’s

methods9 [6]. Two examples are first shown in Fig. 6. As shown

in Fig. 6(c) and (d), the learned preimages do not lie in the

image domain , since some pixel value can be negative

or larger than 1. In Fig. 6(e)–(h), the visual results produced

by two commonly used normalization techniques are also

shown. It is shown that the results may not still be good even

if a normalization step is additionally adopted after preimage

learning. For comparison, we show the corresponding results

of the proposed model in Fig. 7. Note that the preimage learned

by can be well defined without any normalization. So the

result shows that even though the normalization is not pro-

cessed, the reconstructed image learned by can be much

more similar to the original reference image. This indicates that

with convexity constraint, the proposed method could perform

more robust. More extensive justifications could be found in

Section V-B1.
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