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Abstract

Context is critical for minimising ambiguity in object de-

tection. In this work, a novel context modelling framework

is proposed without the need of any prior scene segmen-

tation or context annotation. This is achieved by explor-

ing a new polar geometric histogram descriptor for con-

text representation. In order to quantify context, we for-

mulate a new context risk function and a maximum margin

context (MMC) model to solve the minimization problem of

the risk function. Crucially, the usefulness and goodness

of contextual information is evaluated directly and explic-

itly through a discriminant context inference method and

a context confidence function, so that only reliable con-

textual information that is relevant to object detection is

utilised. Experiments on PASCAL VOC2005 and i-LIDS

datasets demonstrate that the proposed context modelling

approach improves object detection significantly and out-

performs a state-of-the-art alternative context model.

1. Introduction

The role of visual context in object detection has been

studied recently [4, 2, 23]. It has also been shown that

by exploiting contextual information, object detection per-

formance can be improved [12, 15, 13, 6, 25, 18, 11, 10].

However, the general problem of modelling visual con-

text remains a challenging problem and is largely unsolved

mainly due to two reasons: 1) There are many different

types of context often co-existing with different degrees of

relevance to the detection of target object(s) in different im-

ages. Adopting the terminology in [12], objects can be put

into two categories: monolithic objects or “things” (e.g. cars

and people) and regions with homogeneous or repetitive

patterns, or “stuffs” (e.g. roads and sky). Consequently,

there are Scene-Thing [15], Stuff-Stuff [22], Thing-Thing

[18], and Thing-Stuff [12] context depending on what the

target objects are and where the context comes from. Most

existing work focuses only on one type of context and ig-

nores the others. It remains unclear how different types of

contextual information can be explored in a unified frame-

work. 2) Contextual information can be ambiguous and un-

reliable, thus may not always have a positive effect on ob-

ject detection. This is especially true in a crowded public

scene such as an underground train platform with constant

movement and occlusion among multiple objects. How to

evaluate the usefulness and goodness of different types of

context in a robust and coherent manner is crucial and has

not been explicitly addressed.

In this paper, the two aforementioned problems are tack-

led by a novel context modelling framework which has four

key (innovative) components: 1) a polar geometric his-

togram context descriptor for constructing a spatial rela-

tional graph between each candidate object and its context;

2) a context risk function that evaluates the effect of context;

3) a maximum margin context (MMC) model to minimize

the risk of model misfitting and solve the problem of fusing

context information with object appearance information; 4)

a confidence function to directly and explicitly evaluate the

goodness of the inferred context information.

The proposed approach has four major advantages over

the existing models: 1) Rather than focusing on a single

type of contextual information, our polar context descriptor

offers greater flexibility in capturing different types of con-

text including Thing-Thing, Thing-Stuff, and Thing-Scene

contexts. 2) More does not necessarily mean better as not all

contextual information is equally useful and reliable. Our

discriminant context inference model addressing the con-

text risk function with a context confidence measure eval-

uates explicitly and directly the available contextual infor-

mation through learning. This differs significantly from the

existing work where such an evaluation is either nonexis-

tent or only done in an implicit and ineffective way. 3)

Most existing approaches [18, 10, 24, 13, 6] rely on the la-

borious and often arbitrary manual annotation/labelling of

both target objects and context with the exception of the

Thing-and-Stuff (TAS) model proposed in [12]. In contrast,

our approach only needs the labelling of the target object

class(es) and thus is able to exploit data for contextual ob-

ject detection in a more unsupervised way. Comparing with



[12], our approach does not require global image segmenta-

tion for contextual information extraction, which could be

unreliable especially for a cluttered scene. Moreover, our

approach is not limited to only Thing-Stuff context. 4) Most

existing approaches relate contextual information with ob-

ject appearance information using a graphical model, either

directed [12, 11] or undirected [13, 6]. Our approach differs

significantly in that the MMC model is based on discrimi-

nant analysis and thus computationally more efficient.

The effectiveness of our approach is evaluated using the

PASCAL Visual Object Classes challenge datasets [8] and

the UK Home Office i-LIDS data [1]. The latter is featured

with a busy underground station where the task is to de-

tect different types of luggages. Our results demonstrate

that the proposed MMC context model can improve the de-

tection performance for all object classes. In addition, it

is also shown that our context model clearly outperforms

a state-of-the-art alternative model from [12], and the im-

provement is especially significant in the more challenging

i-LIDS dataset.

2. A Polar Geometric Context Descriptor

In our approach, contextual information is extracted

mainly from the surrounding area of each candidate object.

The candidate objects can be obtained using any existing

sliding window object detection method, and in this paper

the histogram of oriented gradients (HOG) detector [7] is

adopted. A low threshold is used to ensure that the can-

didate object detection windows contain most of the true

positives.

Figure 1. Examples of the polar geometric structure. The target

object classes are car and people respectively in the left and right

images.

Given a candidate object window Wc, a polar geomet-

ric structure is expanded from the centroid of the candidate

object (see Fig. 1) to represent the context information sur-

rounding the object detection window. With a orientational

and b+1 radial bins, the context region centered around the

candidate object is divided into a ·b+1 patches with a circle

one at the centre, denoted by Ri, i = 1, · · · , (a · b + 1). In

this paper b is set to 2 and a is set to a value between 1 and

16 depending the object categories. The size of the polar

context region is proportional to that of the candidate ob-

ject window Wc. Specifically, the lengths of the bins along

the radial direction are set to 0.5σ, σ and 2σ respectively

from inside towards outside of the region, where σ is the

minimum of the height and width of the candidate detec-

tion window Wc. As shown in Fig. 1, our polar context

region bins are expanded from the centroid of the object,

and thus have two key characteristics: 1) It can potentially

represent many existing spatial relationships between ob-

jects and their context used in the literature, including in-

side, outside, left, right, up, down, co-existence. 2) The

regions closer to the object are given bins with finer scale.

This makes perfect sense because intuitively, the closer the

context is, the more relevant it is, and from which more in-

formation should be extracted.

The polar context region is represented using the Bag of

Words (BoW) method which is robust to partial occlusion

and image noise. To build the code book, SIFT features [14]

are extracted densely [5]. These features are invariant to

scale, orientation, and robust to changes in illumination and

noise. They are thus well suited for representing our polar

context region. More specifically, given a training dataset,

SIFT features are extracted from each image and clustered

into code words using K-means with K set to 100 in this pa-

per. Subsequently for each bin in the polar context region,

a normalised histogram vector [9] is constructed, entries of

which correspond to the probabilities of the occurrences of

visual words in that bin. These histogram vectors are then

concatenated together with the context inside the detection

window which is represented using a single histogram vec-

tor to give the final context descriptor for the object candi-

date window Wc, denoted as hc. The interaction between

the context from inside and outside of the detection window

would be inferred by the proposed context model.

Our polar context descriptor differs from alternative po-

lar context descriptors [25, 16] in that the Bag-of-Words

method is employed. Additionally, context features are ex-

tracted densely to cope with low image resolution and noise

in our method, while only some predetermined sparse pixel

locations were considered for context feature extraction in

[25, 16].

3. A Discriminant Context Model

3.1. Quantify Context

Without relying on segmentation, our polar context re-

gion contains useful contextual information as well as infor-

mation that is irrelevant to the detection task. Therefore for

constructing a meaningful context model, these two types

of information must be separated. To that end, we introduce

a risk function to evaluate context with the help of a prior

detection score given by the sliding window HOG detector.

Consider a training set of N candidate detections O =
{Oi}

N
i=1 and each of the detection window has an associ-



ated probability of the target object class being contained

in the window si = P (Oi|Wi), where Wi is the corre-

sponding detection window. Suppose that the ground truth

information about the target object class is available at the

training stage, and without loss of generality let the first `

candidate detections Op = {Oi}
`
i=1 be true positive detec-

tions and the last N − ` detections On = {Oi}
N
i=`+1

be

false positives. Let us denote the polar context descriptor

corresponding to Oi by hi and define Hp = {hi}
`
i=1 and

Hn = {hi}
N
i=`+1

.

A context model is sought to increase the confidences

of those true positive detections. Specifically, we aim to

learn a leverage function g to leverage any prior detec-

tion confidence s such that the posterior confidence of the

true positive detection is larger than the false positive, i.e.

sα
i · g(hi) > sα

j · g(hj), where hi ∈ Hp, hj ∈ Hn, and

α measures the importance of the prior detection probabil-

ity. To that end, a leverage function g which minimizes the

following context risk function is learned as follows:

L =
∑

hi∈Hp

∑

hj∈Hn

δ(sα
i · g(hi) ≤ sα

j · g(hj)), (1)

where δ is a boolean function with δ(true) = 1 and 0 oth-

erwise. This risk function measures the rank information

between true positives and false positives. The smaller the

risk function is, the more confident the detection would be

expected. In our current model, we define the leverage func-

tion as:

g(hi) = exp{f(hi)}, (2)

where f(hi) is the score of context descriptor hi, the larger

the f is the more positive the context information tends to

be. Here, f is formulated as a kernel linear function:

f(hi) = w
T
t ϕ(hi) + bt, (3)

where ϕ is a nonlinear mapping implicitly defined by a Mer-

cer kernel κ such that ϕ(hi)
T ϕ(hj) = κ(hi,hj). Kernel

trick is used because the descriptor we introduce (i.e. a his-

togram) is a distribution representation . In this way, the

popular exponent X 2 distance kernel [9] for the estima-

tion of the distance between two discrete distributions can

be employed, as it is a Mercer kernel. Note that the variable

bt does not have any impact on the risk function up to now,

but it will be useful for learning a much better wt in an ap-

proximate way. This is because a more flexible solution for

wt can be found by utilising bt at the training stage, as we

shall describe next (see Eq. (5)).

An ideal case for minimizing the risk function is to find

w
T
t and bt such that the following inequalities are satisfied:

f(hi) + log sα
i > f(hj) + log sα

j ,∀hi ∈ Hp,hj ∈ Hn.

(4)

Directly solving this problem is hard if not impossible and

would also be a large scale optimization problem. For ex-

ample, if #Hp = 100 and #Hn = 100, there will be 10000
inequalities for consideration. Therefore, an approximate

solution is required. We approach the problem of minimiz-

ing the risk function by investigating a solution constrained

by a margin ρ(≥ 0) as follows:

f(hi) + log sα
i ≥ ρ, ∀hi ∈ Hp,

f(hj) + log sα
j ≤ −ρ, ∀hj ∈ Hn.

(5)

Ideally, the constraints in Eq. (4) would be satisfied if the

above constraints are valid. For approximation, we would

like to learn the function such that the margin ρ is as large as

possible. Also, by revisiting Eq. (3), the inference of useful

and discriminant context information is actually performed

by the projection w in the high dimensional kernel feature

space. We therefore also like to maximize the margin be-

tween positive and negative context, so the `2-norm on w

would be minimized. To this end, we turn to the following

optimization problem:

{wt, bt} = arg min
w,b,ρ

1

2
||w||2 − νρ

s.t. w
T ϕ(hi) + b ≥ ρ − log sα

i , ∀hi ∈ Hp,

w
T ϕ(hj) + b ≤ −ρ − log sα

j , ∀hj ∈ Hn,

ρ ≥ 0.

(6)

The model is similar to but differs from the ν-SVM [21] in

the extra constants log sα
i and log sα

j as α is not considered

as a variable. It would also result in a slightly different dual

problem for solution.

In order to automatically learn the importance fac-

tor α, we define ẇt = [wT
t , α]T and ψ(hi, si) =

[ϕ(hi)
T , log si]

T . Subsequently, inequalities Eq. (5) is re-

formulated as

ẇ
T
t ψ(hi, si) + bt ≥ ρ, ∀hi ∈ Hp,

ẇ
T
t ψ(hj , sj) + bt ≤ −ρ, ∀hj ∈ Hn.

(7)

Similar to Eq. (6), the optimization problem becomes:

{ẇt, bt} = arg min
w,b,ρ

1

2
||w||2 − νρ

s.t. w
T ψ(hi, si) + b ≥ ρ, ∀hi ∈ Hp,

w
T ψ(hj , sj) + b ≤ −ρ, ∀hj ∈ Hn,

ρ ≥ 0.

(8)

where the positive ν will be learned by cross-validation. To

obtain the solution, a new mercer kernel κ̇ for ψ can be de-

fined as κ̇({hi, si}, {hj , sj}) = κ(hi,hj) + log si · log sj .

In addition, satisfying all the constraints in model (8) could

be hard and in practice some positive slack variables ξi

should be introduced as auxiliary variables.



We refer the above model as the maximum margin con-

text model (MMC). It utilises the prior detection results ob-

tained by the sliding window detector and enables the model

to selectively learn useful discriminant context information

so that the confidence of those marginal true positive detec-

tions are maximised. After selecting and quantifying con-

textual information from the context descriptor using the

MMC model, a posterior detection score sci for the can-

didate detection Oi with the context model is defined as:

sci = sα
i × exp{wT

t ϕ(hi) + bt}. (9)

Remark. In the above models, the importance factor α is

not restricted to be non-negative. Automatically learned by

the model, α determines not only the importance of the

prior detection probability but also whether the approxi-

mation Eq. (5) is sufficiently valid. Specifically, when α

equals zero, it means the prior probability would not have

any effect on the maximum margin model and should also

be ignored in the risk function and the posterior detection

score. When α is less than zero, the smaller the prior de-

tection probability is, the larger the posterior score is ex-

pected. This is because si ∈ (0, 1] and the leverage function

g(hi) is always bounded by investigating the dual problem

of model Eq. (8). For α > 0, the larger it is, the more im-

portant the prior detection probability is and the less useful

the contextual information will be. However, a very large

α value will mean the contextual information is completely

discarded. Hence if the system outputs a very small or large

α, both cases could imply that either the approximation for

minimization of context risk function by our MMC model

cannot be made, or the context descriptors do not contain

sufficiently useful contextual information.

3.2. A Confidence Measure on Context

So far whatever contextual information is inferred by our

MMC model is considered to be reliable. This may not al-

ways be the case. In some cases, without explicitly measur-

ing the goodness of context, ambiguous contextual infor-

mation could even reduce the performance of object detec-

tion performance. In this section, we introduce a confidence

function c(hi) which quantifies the goodness of the polar

geometric histogram context descriptor hi. To that end, the

posterior detection score in Eq. (9) is rewritten as:

sci = sα
i × exp{c(hi) · w

T
t ϕ(hi) + bt}, (10)

A low value of c(hi) indicates unreliable contextual infor-

mation.

To learn the confidence function, we first explore the am-

biguous context information that is hard to be identified as

positive or negative context, i.e. context associated with

positive and negative detection windows respectively. In

our case, the ambiguous context information Hc
c is simply

extracted by using a threshold ε on the X 2 distances be-

tween context descriptors as follows:

Hc
c = {hi ∈ Hp, min{X 2(hi,hj),∀hj ∈ Hn} < ε}

⋃
{hj ∈ Hn, min{X 2(hi,hj),∀hi ∈ Hp} < ε}. (11)

Detecting whether hi belongs to Hc
c can be considered as

outlier detection. Since the proposed context descriptor is of

high dimension, we then learn c(hi) using one-class SVM

[20], which is a non-parametric technique and thus suitable

for high dimensional distribution estimation, as follows:

{wc, bc} = arg min
w,b,ξi

1

2
||w||2 + b +

∑
i ξi

ν · #Hc
c

s.t. w
T ϕ(hi) + b ≥ −ξi, ∀hi ∈ Hc

c, ξi ≥ 0.

(12)

where ν is a cross-validated positive value. The confidence

function c(hi) is then modeled as follows:

c(hi) = −1 × (wT
c ϕ(hi) + bc) × δ(wT

c ϕ(hi) + bc < 0).
(13)

Threshold ε. The ε in Eq. (11) can be specified by

ε = X 2,min
pn + d · (X 2,max

pn −X 2,min
pn ), (14)

where d ∈ (0, 1], X 2,min
pn = min{X 2(hi,hj), hi ∈

Hp,hj ∈ Hn} and X 2,max
pn is formulated in a similar way.

In addition, for convenience, we will treat the MMC model

discussed in the last section as the case when d = 0.

Training. With the confidence function, the learning pro-

cess in the last section is modified so that only confident

context descriptors are used to learn our MMC model. More

specifically, we specify confident positive context informa-

tion Hc
p and negative Hc

n as:

Hc
p = Hp −Hfp, Hc

n = Hn −Hfn. (15)

where Hfp = {hi ∈ Hc
c

⋂
Hp}

⋃
{c(hi) = 0,hi ∈ Hp}

and Hfn = {hi ∈ Hc
c

⋂
Hn}

⋃
{c(hi) = 0,hi ∈ Hn}.

Then the maximum marginal context model is trained just

by updating ϕ(hi), Hp and Hn in Eq. (8) as:

ϕ(hi) ← c(hi) · ϕ(hi), Hp ← Hc
p, Hn ← Hc

n. (16)

4. Experiments

Datasets and settings – We evaluate the proposed MMC

model against a state-of-the-art context model TAS [12] and

a traditional HOG model [7] using two datasets: PASCAL

Visual Object Classes challenges 2005 [8] for detecting four

object categories (car, motorbike, people, bicycle), and the

UK Home Office i-LIDS [1] for detecting two types of lug-

gages (suitcases and bags) (see Fig. 5).



0.1 0.2 0.3 0.4 0.5

0.4

0.6

0.8

1

People

recall

MMC

TAS

HOG

0.1 0.2 0.3 0.4

0.4

0.6

0.8

1

Car

recall

p
re
c
is
io
n

0.1 0.2 0.3 0.4

0.4

0.6

0.8

1

Motorbike

recall

p
re
c
is
io
n

0.1 0.2 0.3

0.4

0.6

0.8

1

Bicycle

recall

p
re
c
is
io
n

Figure 2. Precision-Recall Curves: Detection of four object categories in PASCAL VOC2005.

For PASCAL, we adopted the same data and settings

from [12]. For i-LIDS, we selected 658 image frames of

640× 480 from the i-LIDS underground scenario, where

269 for training and the rest for testing. For context model

training on i-LIDS, we first train a pair of HOG luggage

detectors (refer to as the HOG detector) using randomly se-

lected 540 positive samples for each, 7278 and 5047 neg-

ative samples for the two detectors respectively. We then

manually cropped and annotated 328 positive luggage sam-

ple windows from i-LIDS image frames. Due to frequent

luggage partial occlusion in the i-LIDS scenario, we fur-

ther used the trained HOG detector to select automatically

another 628 near-miss negative luggage sample windows.

Here we utilsed both positive and near-miss negative sam-

ple windows from above as candidate luggages for learning

a MMC context model with each sample associated with a

prior confidence value obtained by converting the HOG de-

tector output into a probability value using a logistic regres-

sion function [12]. By assigning the prior confidence to si

in Eq. (1), a MMC model is learned. Separate i-LIDS test-

ing image frames consisting of 1170 true luggage instances

were selected with groundtruth manually annotated for per-

formance evaluation. The threshold of the overlap between

the predicted object bounding box and the groundtruth one

the was set to 0.5 [8].

Compare MMC to no context (HOG) and local tem-

plate context (HOG+SVM) modelling – We first compare

the performance of our MMC model to that of a standard

HOG detector [7]. We set the number of orientation bin

to 16, 16, 1 and 1 for people, cars, motorbike and bicycles

respectively for computing the polar geometric histogram

context descriptor. For PASCAL, the red and dashed-black

plots in Fig.2 show the precision-recall curves for MMC

and HOG respectively. Columns 2 and 4 in Table 1 give

their average precision rates defined by the PASCAL pro-

tocol [8]. Both show that MMC significantly improves

the detection accuracy especially on car, motorbikes and

people. We also show a clear advantage of modeling ex-

plicitly object-centred (local) and location dependent (dy-

namic) inter-relationships between each object candidate

and its context using MMC over a direct template-based

context modelling approach. Column 5 (HOG+SVM) of

Table 1 shows the detection precision rate by using a nor-

malised joint product of the HOG detection score and the

score from a template-based context classifier trained on

SVM [21] using our polar context descriptors as features.

This method essentially performs naive score level fusion

of context and object appearance. It is very similar to the

methods in [16][17] in that they all assume the context and

object are independent and treat them equally during learn-

ing, rather than inferring the most useful and reliable con-

textual information conditioned on the prior object detec-

tion score as our method does. The results show that fusing

the inferred contextual information using our MMC is more

effective than direct and blind fusion using HOG+SVM.

Object Class HOG [7] TAS [12] MMC HOG+SVM

Car 0.325 0.363 0.3773 0.3467

Motorbike 0.341 0.390 0.4238 0.4019

People 0.346 0.346 0.3924 0.3706

Bicycle 0.281 0.325 0.3025 0.2692

Table 1. Average Precision Rates on PASCAL VOC2005.

Luggage detection results on i-LIDS are shown in Table

2 and Fig. 3. Here the number of orientation bin is set to

16 for luggages. It is evident that MMC outperforms HOG

when context confidence is measured, where (d = 0) in-

dicates MMC without confidence function (Eq. (13)) and

(d=0.1) with confidence function (see more details on the

effect of confidence function latter). These detection rates

are relatively poorer than those from PSACAL. In general

reliable luggage detection in public space is more challeng-

ing as color and texture features are ineffective especially in

low-resolution, poorly lit underground scenes (Fig. 5). Ob-

jects in PASCAL are more distinct with more discriminative

appearance. Furthermore, context information surrounding

luggages in i-LIDS is less well-defined than that of objects

in PASCAL VOC2005 (see the effect of confidence measure

on false positive detection later).



HOG [7] TAS [12] HOG+SVM MMC (d=0) MMC (d=0.1)

0.1195 0.1180 0.1185 0.1184 0.1271

Table 2. Average Precision Rate on luggage detection in i-LIDS.
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Figure 3. Precision-Recall Curves: Luggage detection in i-LIDS.

MMC vs. TAS – On the PASCAL data, we compared

the results from MMC with the best reported results of

TAS [12] in Table 1. For obtaining the precision-recall

curve for TAS, we re-run the TAS model provided by the

authors 1 several times and the best results are shown as

blue-dashed plots in Fig 2. Note that TAS is an EM based

method and these curves are either very similar or slightly

better (e.g. motorbike) than those originally shown in [12].

Overall, MMC outperforms TAS on the detection of car,

motorbike and people whilst TAS is better for bicycle.

In particular, MMC improved the detection of people

with a fairly large margin. As acknowledged by the authors

in [12], the TAS model struggles with people detection in

the PASCAL data. This can be caused by two factors. First,

as people appear more randomly compared to other rigid

objects such as cars on a street, the contextual information

for people is more ambiguous and uncertain than the other

three object classes. Without measuring the risk of using

contextual information for detection explicitly, the existing

context model such as TAS will not be able to exploit ef-

fectively the ambiguous contextual information for object

detection improvement. Second, the TAS model is focused

on Thing-Stuff context, i.e. the context between people and

the background regions. The useful contextual information

between people and other objects is thus ignored. In con-

trast, our model is able to utilise any contextual information

that is relevant regardless the type of the context.

Note that MMC achieves slightly lower average preci-

sion rate than TAS on bicycle class, because the bicycle

class is unique with no clear boundary between the object

and background. In such a case, alternative models such

as TAS with scene segmentation may be less affected, al-

though segmentation itself is challenging under occlusion

in a cluttered scene.

We also implemented TAS for the i-LIDS dataset us-

ing the same HOG detector as base detector for initialis-

1http://ai.stanford.edu/∼gaheitz/Research/TAS/

ing object candidate locations in image frames. For TAS,

we segmented each image frame using the superpixel tech-

nique [19] and represented each region using 44 features

(color, shape, energy responses) similar to the ones used in

[12, 3] and implemented TAS with the suggested parame-

ter values given by the authors in their toolkit available on

the web. The results are shown in Table 2 and Fig. 4 and

Fig.5. As shown, MMC outperforms both TAS and stan-

dard HOG with clear margin. It is also evident that the result

of TAS resembles that of PASCAL people detection. This

can be explained by the same two reasons described above.

This also demonstrates that without any segmentation of a

whole image, more effective context information can also

be learned.

Confidence function evaluation – We further evaluated the

effect of the confidence function (Eq. (13)) on regulating

context ambiguity in MMC applied to the i-LIDS data (d

set to 0.1). The last two columns in Table 2 compare the re-

sults and show a sizeable improvement on average precision

rate by the introduction of our confidence function. Table 2

also shows that without this confidence measure, the perfor-

mance of MMC on i-LIDS is very similar to that of TAS and

HOG+SVM. This suggests that the 0.87% improvement due

to modelling confidence on MMC is significant on reducing

false positives, as illustrated by the examples in Fig. 5. This

is further supported by the precision-recall curves shown in

Fig. 3 where MMC with d=0.1 is significantly better than

the other three when the recall rate is less than 0.1.

Reducing false positive detections – Finally, we show

some visual examples to illustrate the benefit of our MMC

model on reducing false positive detections. Fig. 4 and

Fig 5 give some typical examples of false positive detec-

tion in both PASCAL and i-LIDS. For all methods, we il-

lustrate the detection results when the recall-rate is at 0.3

for PASCAL and 0.1 for i-LIDS. It is evident from these

examples that our MMC model is more capable of remov-

ing false positives whilst keeping true positives compared

to both TAS and HOG. More specifically, without context

modeling, HOG often cannot differentiate true positives and

false positives. Although both TAS and MMC can filter out

false positive detections, MMC is more effective. Partic-

ularly, it is evident that TAS tends to generate false posi-

tives or fail to detect when luggages are near people. Again,

this is because the crucial contextual information between

luggage and other objects (people in this case) cannot be

captured by TAS. Fig. 6 shows some examples of failed de-

tections by all three models. This is mainly due to drastic

illumination variation and severe occlusion.

5. Conclusion

In this paper we introduced a novel object centred po-

lar geometric histogram context descriptor to represent lo-



Figure 4. Compare examples of object detections using HOG, TAS and MMC models on PASCAL. The left-hand side two columns are for

people detection, the middle two are for car detection, and the right-hand side two are for motorbike detection. The first row corresponds

to results from HOG without threshold, the second, third and fourth rows correspond to HOG, TAS and MMC with threshold respectively.

The red bounding box indicates true positive detections and the green one is for false positives.

Figure 5. Compare examples of object detections using HOG, TAS and MMC models on i-LIDS. The first row corresponds to results from

HOG without threshold. The second, third and fourth rows correspond to HOG, TAS and MMC with threshold respectively. The red

bounding box indicates true positive detections and the green one is for false positives.

cal context surrounding of a candidate object. In order

to quantify this context, we formulated a new context risk

function and a maximum margin context (MMC) model to

solve the minimization problem of the risk function. Our



Figure 6. Examples of failed detections. The first, second and third

rows correspond to results of HOG, TAS and MMC with threshold

respectively. The green bounding box shows false positive detec-

tions.

MMC is effectively solved by convex quadratic program-

ming. Compared to the state-of-the-art context models, the

proposed MMC model utilises a novel confidence on mea-

suring the goodness of context in order to selectively em-

ploy context for more robust object detection. The pro-

posed MMC model also differs from existing models that

utilise graph based context information mining. To that

end, our MMC model directly addresses the maximization

of the confidence of true positive detections defined by a

context risk function, whilst a graph model addresses in-

directly by classification without any knowledge or mea-

surement on the rank information between true and false

positive detections. Moreover, our MMC model does not

require any prior image segmentation and labelling of im-

age patches. We demonstrated the superior performance of

our MMC model through extensive comparative evaluation

against alternative models using both PASCAL VOC2005

and UK Home Office i-LIDS datasets. We also showed that

a quantitative measure of the goodness of context is critical

in reducing false positive detections in challenging scenes.
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