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Abstract

In real world person re-identification (re-id), images of
people captured at very different resolutions from different
locations need be matched. Existing re-id models typical-
ly normalise all person images to the same size. However,
a low-resolution (LR) image contains much less informa-
tion about a person, and direct image scaling and simple
size normalisation as done in conventional re-id method-
s cannot compensate for the loss of information. To solve
this LR person re-id problem, we propose a novel join-
t multi-scale learning framework, termed joint multi-scale

discriminant component analysis (JUDEA). The key com-
ponent of this framework is a heterogeneous class mean dis-

crepancy (HCMD) criterion for cross-scale image domain
alignment, which is optimised simultaneously with discrim-
inant modelling across multiple scales in the joint learn-
ing framework. Our experiments show that the proposed
JUDEA framework outperforms existing representative re-
id methods as well as other related LR visual matching mod-
els applied for the LR person re-id problem.

1. Introduction
Person re-identification (re-id) is a task of matching

pedestrians observed from non-overlapping camera views

in a surveillance system. A significant challenge for person

re-id is that people are often captured in different camer-

a views at significantly different distances to the cameras,

resulting in very different image resolutions. An example

is shown in Fig. 1. In the first camera view (top image)

the target person walked close to the camera with his ap-

pearance details clearly visible in the captured normal res-

olution image, while the resolution of his image becomes

much lower when he reappeared in a different view (bot-

tom image) and was much further away from the camera.

This difference in resolution between matching views, com-
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Figure 1. A typical person re-id scenario. The resolution of a per-

son’s images in two different camera views are significantly dif-

ferent, beyond the scope for simple image size normalisation by

interpolation.

pounded by changes in lighting, pose and occlusion, makes

re-identification extremely hard and unreliable.

Although resolution difference is a common problem for

re-id, it is largely ignored by existing approaches. In par-

ticular, existing methods focus on solving the challenges

caused by view, pose, and lighting changes by exploring

invariant and discriminant features [25, 8, 6, 33, 7, 18, 13,

21, 40, 16] or developing reliable and robust distance met-

rics [8, 11, 27, 41, 23, 31, 26, 17, 39, 38, 35]. When it

comes to the low-resolution (LR) person re-id problem, that

is, matching LR person images to normal (higher) resolu-

tion ones, most (if not all) methods would simply normal-

ize input images to a uniform normal scale. However LR

person images contain much less information than those of

normal resolution and many appearance details have been

lost. A simple image magnification by interpolation thus

would not recover the lost information in the LR person im-

ages. Other Bag of Words (BoW) based methods [42, 21]

do not explicitly require any normalisation of image size.

Nevertheless, the small number of keypoints for BoW com-

putation in LR person images will still lead to the loss of

image details. Existing re-id models therefore do not offer

a solution to the LR person re-id problem.

In this work, for the first time, a principled solution to L-



R person re-id problem is provided. Rather than re-scaling

each LR image to a normal scale as in conventional re-id,

or directly matching a pair of LR and normal (higher) reso-

lution images, we aim to learn a discriminant model for LR

person re-id jointly across different image scales to exploit

the correlation of a person’s appearance at different scales.

More specifically, let us consider images of different scales

belonging to different domains. We assume that images of

the same person in significantly different scales shall dis-

tribute intrinsically in a similar structure in a latent space,

provided that cross-scale common features can be extracted

among these heterogeneous image domains. To that end, we

propose a heterogeneous class mean discrepancy (HCMD)

criterion. Minimising this criterion leads to the learning of

the latent subspace which is capable of aligning the distri-

butions of image features from significantly different image

scales of the same person. Through this cross-scale image
domain alignment process, the shared discriminant infor-

mation can be propagated between the normal resolution

person images and the LR ones. The HCMD-based cross-

scale image domain alignment is optimised simultaneously

with discriminant distance metric modelling in each scale in

our joint learning framework, which is termed joint multi-
scale discriminant component analysis (JUDEA).

Our contributions are twofold: 1) To the best our knowl-

edge, this is the first work focusing on solving the LR per-

son re-id problem. Our learning-based framework is much

more principled than existing approaches of image scale

normalisation; 2) we introduce a new multi-scale discrimi-

nant distance metric learning model which simultaneously

minimises a novel heterogeneous class mean discrepancy

criterion (HCMD) for cross-scale image domain alignment,

so they can benefit each other in such a joint learning model.

Extensive experiments are conducted on three datasets to

validate the effectiveness of the proposed model. They in-

clude a LR person re-id dataset from the CAVIAR dataset

[5] and two simulated LR datasets constructed from the

VIPeR [8] and 3DPES datasets [1]. Our results demon-

strate that the conventional approach of image scaling is

not suitable for the LR person re-id problem, and the pro-

posed approach is much more effective. In addition, the

proposed JUDEA model outperforms a number of related

alternative LR image matching methods designed for other

visual recognition problems such as face recognition.

2. Related Work
Although LR image matching, particularly matching L-

R images against normal (higher) resolution images, has

not been studied in person re-id, it has been investigat-

ed intensively in face recognition. Many LR face recog-

nition methods exploit super-resolution (SR) techniques to

obtain high-resolution (HR) images before matching, with

numerous learning-based face SR algorithms been studied

in the last decade [9, 4, 19, 22, 34, 36]. However, most

of these methods require accurate and dense alignment of

LR and HR images. It is possible for face images; but it

is much more costly and difficult to obtain sufficient la-

belled and perfectly aligned pair-wise person images across

non-overlapping camera views in order to cover the var-

ied intra-class changes for learning effective SR models.

This is due to the significantly greater degree of unknown

changes in body parts between the probe and gallery im-

ages, e.g. matching between a LR person image with a back-

pack with a normal resolution one from the frontal view.

These SR-based LR image matching methods are thus not

suitable for the LR person re-id problem, as validated by

our experiments (see Sec. 4.2.4).

In the last five years there are several coupled trans-

formation based subspace models developed for LR face

recognition [30, 29, 2, 24, 43, 14]. A basic idea of these

works is to learn coupled transformations such that a LR

image can directly match a HR image. Our approach dif-

fers from these transformation-based methods in that we do

not explicitly match an LR body image with a normal reso-

lution one. This is because, due to the misalignment prob-

lem in person re-id as mentioned above, in practice body

images of different resolution always look more different as

compared to face images and thus there is no direct cor-

respondence between low and normal (higher) resolution

body images. Instead, our model simultaneously extract-

s discriminant projections on different scale image spaces,

and further aligns their distributions via cross-scale hetero-

geneous transfer modelling in a latent feature space.

The proposed HCMD criterion is related to the maxi-

mum mean discrepancy (MMD) [3] method. However, our

cross domain alignment based on HCMD is under a het-

erogeneous setting. In contrast, the existing MMD-based

domain adaptation methods [3] focus on the homogeneous

case, where the dimensions of the two domains must be

the same, which is not the case for our problem. They are

thus not applicable for our problem. There are also related

heterogeneous domain adaptation methods [15, 12, 32, 28].

However, for person re-id, in practice people in the training

set will not appear in testing set. So some of the heteroge-

neous domain adaptation method [15, 28] cannot be applied

for re-id since they assume that the training and test sets

contain the same classes. The most closely related approach

to ours is the manifold based alignment model in [32]. Our

experiments show that the proposed model outperforms this

manifold based alignment method.

3. Methodology
3.1. Problem Formulation

Our aim is to match a LR probe image of a person a-

gainst normal even high resolution gallery images. Instead



of directly matching them, our solution is a joint multi-scale

person re-id framework which compute a discriminant sub-

space where images of different scale can be matched more

accurately. The basic idea is that, despite exhibited in dif-

ferent image scales, all images of the same person are as-

sumed to be distributed intrinsically in similar structures in

a latent low-rank dimensional space. Therefore, one is able

to utilise information extracted from the normal resolution

images in order to assist the learning of discriminant dis-

tance metrics for the LR images through a joint multi-scale

learning model. In the following, we first present the idea

on heterogeneous domain alignment and then it will be in-

tegrated into our joint multi-scale learning model.

Without loss of generality, we present a two-scale for-

mulation (see Fig. 2). For convenience, we denote the two

scales as normal scale and small scale respectively. A multi-

scale formulation can be readily generalised.

Suppose a pairwise training set is given, Xh =
{(xh

i , yi)}Ni=1 and Xs = {(xs
i , yi)}Ni=1, where xh

i ∈ R
dh is

the feature vector extracted from a person image of normal

scale, and xs
i ∈ R

ds is the feature vector extracted from the

same image of small scale. N is the total number of sam-

ples in the training set. xh
i and xs

i are labelled as class yi,
and we have dh > ds, that is, we have two heterogeneous

image domains with different feature representations.

3.2. Cross-scale Image Domain Alignment

We assume that different visual appearance variations of

the same person at different image scales are similar in a

latent low-rank dimensional space. In other words, we as-

sume that the intrinsic structures of data distributions of a

person’s appearance across image scales are similar in a fea-

ture space. We wish to exploit the shared features across

the image scales. To that end, one needs to measure the

differences of data distributions of the same person across

image scales after projecting the image features of different

scales into a common low-rank subspace. We call this pro-

cess the cross-scale image domain alignment. Since images

of different scales are more likely to be described differ-

ently by their features, learning scale-specific projections

is required in order to satisfy this cross-scale alignment. To

that end, we define a heterogeneous class mean discrepancy
(HCMD) for minimisation, as follows:

min
Wh,Ws

HCMD(Wh,Ws) =
1

C

C∑

i=1

||W T
h uh

i −W T
s us

i ||22, (1)

where uh
i is the mean feature vector of images of the ith

person/class in the normal scale domain Xh, us
i is the cor-

responding mean feature vector of the images in the small

scale domain Xs, C is the number of classes, Wh ∈ R
dh×r

and Ws ∈ R
ds×r denote the projections on two image s-

cales, respectively, where r is the dimensionality of the pro-

jected low-rank subspace.
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Figure 2. A joint multi-scale learning framework for low-

resolution person re-id problem.

This HCMD criterion is inspired by the concept of the

maximum mean discrepancy (MMD) [3], which measures

distribution difference by computing the distance between

total-class data means across domains, defined by

min
φ

Dist(X,Y ) = || 1
n1

n1∑
i=1

φ(xi)− 1

n2

n2∑
i=1

φ(yi)||22, (2)

where the two domains are X = {x1,x2, . . . ,xn1} and

Y = {y1,y2, . . . ,yn2}, and function φ is a mapping.

However, HCMD is different from MMD in two aspect-

s: First, HCMD considers the alignment between image s-

paces with different dimensions (e.g. dh �= ds), while M-

MD is constrained to the alignment between two domains

of the same dimension. Second, MMD pools data of two

domains together in an unsupervised way by minimising the

difference of the total-class data means of two domains; in

contrast, HCMD pools the same class data of the two do-

mains together in a supervised way by minimising the dif-

ference of the same class data means from the two domains.

The distributions of the same person images across different

scales can be similar, but the distributions between images

of different classes/people across scales are not.

3.3. Multi-scale Discriminant Learning

For data distribution alignment across image scales in

a low-rank dimensional space, we aim to learn a discrim-

inant metric for each scale. The idea is to ensure on each

scale, the intra-class distance is minimised whilst the inter-

class distance is maximised during cross-scale data distri-

bution alignment. These discriminant information can be

described by the following inter-class scatter matrix Sb and

intra-class scatter matrix Sw:

Sb =

N∑

i,j=1

A
b
i,j

2
(xi − xj)(xi − xj)

T
, Sw =

N∑

i,j=1

A
w
i,j

2
(xi − xj)(xi − xj)

T

Here we specifically incorporate weights for each pair of

samples xi,xj based on their affinity Ai,j [37], where

A
b

i,j =
Ai,j

N − Ai,j

Nc
and A

w

i,j =
Ai,j

Nc
if xi,xj are in the

same class, otherwise A
b

i,j = 1
N and A

w

i,j = 0, Nc is the

number of samples in the corresponding class, and N is the



total number of samples in all classes. This aims to extract

local data variation which has been proven to be useful [26].

For two image domains of different scales, we denote their

inter-class and intra-class scatter matrices as Sh
b and Sh

w for

the normal scale and Ss
b and Ss

w for the small scale.

Now, we aim to minimise HCMD(Wh,Ws) whilst max-

imising both (1) the ratio between inter-class covariance and

intra-class covariance for the normal scale images under

projection Wh and (2) the ratio between inter-class covari-

ance and intra-class covariance for the small scale images

under projection Ws. That is to simultaneously maximise

the following three criteria:

max
Wh,Ws

⎧⎪⎪⎨
⎪⎪⎩

HCMD(Wh,Ws)
−1,

tr(WT
h Sh

b Wh)

tr(WT
h Sh

wWh)
,

tr(WT
s Ss

bWs)
tr(WT

s Ss
wWs)

.

(3)

This cross-scale image domain alignment requires joint-

ly achieving a discriminant optimisation in two image s-

cales. However, it is nontrivial to simultaneously perform

the above optimisation. To solve this problem, we consider

instead a relaxed criterion that unifies all of them as follows:

max
Wh,Ws

tr(W T
h Sh

b Wh +W T
s Ss

bWs)

tr(W T
h Sh

wWh +W T
s Ss

wWs) + αHCMD(Wh,Ws)
(4)

where α is a parameter controlling the strength of HCMD.

For the joint learning on more than two scales, more do-

mains pairs of different scales are used to model HCMD

and more domain data are used to form Ss
b and Ss

w.

We call the above model joint multi-scale discriminant
component analysis (JUDEA). We will show that JUDEA

model can be converted to a conventional eigenvalue de-

composition problem, making it computationally tractable.

3.4. Optimisation

An intuitive way to optimise Wh and Ws in Eq. (4) is

to learn each of them separately by fixing the other. It is,

however, a computationally complex task. Fortunately, we

show that it is possible to directly compute an optimal con-

catenated matrix W = [Wh;Ws]. More specifically, we

define Id as the d × d identity matrix and Od×m as the

d × m matrix of all zero. And let φh = [Idh
,Odh×ds ],

φs = [Ods×dh
, Ids ]. Hence Wh = φhW , Ws = φsW .

Therefore, learning Wh and Ws is equal to learning W :

W = argmax
tr(W TΛbW )

tr(W TΛwW ) + α tr(W TΛHCMDW )
, (5)

where

Λb = φT
hS

h
b φh + φT

s S
s
bφs, Λw = φT

hS
h
wφh + φT

s S
s
wφs,

ΛHCMD =
1

C

C∑

i=1

(φT
hu

h
i − φT

s u
s
i )(φ

T
hu

h
i − φT

s u
s
i )

T .

Hence the optimization of Eq. (5) can be cast as a typical

generalized eigenvalue problem:

ΛbW = λΛW , (6)

where Λ = Λw + αΛHCMD. In this way, we can obtain the

optimal Wh and Ws efficiently.

3.5. Matching Low-resolution Probe Images

The joint multi-scale learning framework is used for

matching a LR probe image against a set of normal reso-

lution or HR gallery images. Similar to the training process

of JUDEA, for a LR probe image xp, we obtain two images

by scaling the input to a small scale image xs
p and scal-

ing it to a normal scale image xh
p , where the normal scale

and small scale conform to the training setting. Similarly,

for each images xg in the gallery , normal scale image xh
g

and small scale image xs
g are also obtained in this way. We

combine the two different scale distances as:
d(xp,xg) = β||W T

h xh
p −W T

h xh
g ||2 + (1− β)||W T

s xs
p −W T

s xs
g ||2

(7)

where Wh and Ws are the optimal projection matrices for

different scales (Sec. 2.3), and β is the weight for regulating

the effects of normal and small scale distance. This fusion

matching strategy further exploits the information from dif-

ferent scales in multi-scale framework.

4. Experiments
4.1. Datasets and Settings

Datasets. The CAVIAR dataset [5] is widely used for e-

valuating person re-id, containing images of 72 individuals

captured from 2 cameras in a shopping mall. This dataset is

suitable for testing LR person re-id, as the resolution of im-

ages captured from the second camera is much lower than

that in the first camera (Fig. 1 bottom). Among the 72 peo-

ple, 22 were only captured in a single camera view with no

low resolution images, and they were thus removed. The

remaining data were used in our experiments which include

1000 images of 50 people, with 10 normal resolution im-

ages and 10 LR images per person (see Fig. 3).

Two simulated LR person datasets LR-VIPeR and LR-

3DPES were also used for evaluation. These are based on

VIPeR [8] and 3DPES [1] respectively. The VIPeR dataset

consists of 632 people captured outdoor with two images

for each person. The 3DPES dataset includes 1011 images

of 192 individuals captured from 8 outdoor cameras with

significantly different viewpoints. In this dataset each per-

son has 2 to 26 images. In order to make the two datasets

suitable for evaluating the person re-identification in low

resolution, we randomly selected half of all the images of

each person from both datasets, and replaced them with the

LR images which were sub-sampled to a quarter of their o-

riginal image size. Examples of the generated LR-VIPeR

dataset and LR-3DPES dataset are shown in Fig. 3.



(a) CAVIAR (b) LR-VIPeR (c) LR-3DPES

Figure 3. Examples of the normal person images and the corre-

sponding LR images on three LR datasets.

Settings. In our experiments, we adopted a single-shot

experiment setting. All datasets were randomly divided

into training set and testing set by half so that there are

p = 25, p = 316 and p = 96 individuals in the testing set

of CAVIAR, LR-VIPeR and LR-3DPES respectively. The

probe set consists of all LR images per person in the testing

set. One normal resolution image for each individual in the

testing set was randomly selected to construct the gallery

set. This procedure was repeated 10 times. For evaluation,

we used the average cumulative match characteristic (CM-

C) curves to show the ranked matching rates.

The setting described above is the conventional closed-

set setting, i.e. the gallery and probe sets contain exactly

the same set of people. In a real-world application scenario,

an open-set setting could be more appropriate, under which

there is no one-to-one correspondence between the people

appeared in the gallery and probe sets. For evaluation under

the open-set setting, images of 50% of the gallery people

were randomly removed and the probe set remain the same

as the closed-set. For this setting, we used ROC curves in-

stead of the CMC curves as the evaluation metric.

Compared Methods. To evaluate the proposed model,

we compared it against a total of twelve different exist-

ing related models. We first compared it with six existing

re-id methods, including a representative subspace learn-

ing method LFDA [26], a non-learning distance metric L1-

norm, two discriminant distance learning methods KISSME

[11] and LADF [17], and two ranking models PRSVM [27]

and RDC [41]. Since none of the existing re-id approaches

explicitly addresses the LR person re-id problem as we do,

we further compared six other relevant methods. Specifi-

cally, five cross-domain learning methods were compared,

including domain adaptation based on manifold alignment

(DAMA) [32], canonical correlation analysis (CCA) [10],

coupled marginal fisher analysis (CMFA) [29], maximum-

margin coupled mappings (MMCM) [30] and the DTRSVM

in [20]. Among the five methods mentioned above, DAMA

is for general purpose, DTRSVM is for domain adapta-

tion in person re-identification but not for LR image pro-

cessing, and CCA, CMFA and MMCM are representative

methods for LR face image matching. In addition, a popu-

lar super-resolution method based on sparse representation

(SPARSE-SR) [36] was also compared.
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Figure 4. Comparison with related re-id methods in conventional

setting on CAVIAR: CMC curves with rank-1 matching rate, and

ROC curves with area-under-curve(AUC) values.

Feature Representation. The uniform normal scale and s-

mall scale were set to 128× 48 and 64× 24 respectively in

our experiments (i.e. 1:4 scale ratio). We used appearance

representations of pedestrians captured by a set of different

basic features which are a mixture of color, LBP and HOG

features. Specifically, we obtained overlapping patches of

size 16 × 16 from each person image, defined with every

8 pixels in both the horizontal and vertical directions. We

then extracted features in each patch and finally concatenat-

ed them to form the final feature of the image. The patch

feature vectors were made of 16-bins histogram of 8 col-

or channels (RGB, YCbCr, HS). To incorporate the texture

patterns and shape information, uniform LBP histograms

and HOG descriptors were also computed for each image

patch. So each patch was represented by a 484-dimensional

feature vector. For each image normalised to 128 × 48
and 64 × 24 pixels, a total of 75 and 14 patches were ex-

tracted respectively, forming 36300-dimensional and 6776-

dimensional feature vectors for the two scales respectively.

4.2. Evaluation on the CAVIAR LR Dataset

4.2.1 Comparison with Existing RE-ID Methods

For matching LR images to a normal resolution image, ex-

isting re-id methods scale the LR image upto the normal

scale. The results of JUDEA compared with 6 existing re-

id methods are shown in Fig. 4 (a). The following obser-

vation can be made: (1) Compared to the subspace-based

method LFDA, JUDEA outperforms LFDA notably, with

JUDEA achieving 7% improvement over LFDA at rank-

1. (2) Compared to the metric/ranking learning methods,

it is evident that the proposed JUDEA improves matching

significantly over all of them including KISSME, LADF,

PRSVM and RDC. More specifically, the rank-1 matching

rate is 22.12% for JUDEA, 16.72% for KISSME, 11.12%
for LADF, 15.56% for PRSVM, and 15.12% for RDC.

These results show that the existing re-id methods perfor-

m poorly for LR re-id. In particular, as the appearance de-

tails have been lost in LR images, these methods are not

designed for coping with such loss in imagery information.



(a)

Methods r =1 r =5 r =10 r =20

JUDEA 22.12 59.56 80.48 97.84

LFDA F 17.68 53.76 76.60 97.36

L1-norm F 12.40 43.44 67.88 94.36

KISSME F 18.92 55.08 78.16 98.00
LADF F 15.88 51.80 75.60 96.68

PRSVM F 17.00 47.00 69.48 94.48

RDC F 17.60 48.84 71.96 95.40

(b)

Methods r =1 r =5 r =10 r =20

JUDEA 22.12 59.56 80.48 97.84
LFDA C 16.40 50.08 72.52 96.56

L1-norm C 11.84 41.52 65.72 93.20

KISSME C 17.72 53.20 77.24 97.72

LADF C 11.68 48.84 74.36 96.56

PRSVM C 16.20 46.60 68.64 94.80

RDC C 15.84 45.60 67.04 94.52

(c)

Methods r =1 r =5 r =10 r =20

JUDEA 22.12 59.56 80.48 97.84
LFDA H 14.00 47.56 72.28 96.72

L1-norm H 10.40 38.32 64.44 92.92

KISSME H 15.76 51.08 74.72 97.32

LADF H 10.24 42.08 68.44 95.56

PRSVM H 14.36 45.24 67.44 94.44

RDC H 13.44 45.68 67.32 94.76

Table 1. Matching Rate (%): JUDEA vs. re-id methods under multi-scale settings on CAVIAR. “ F” indicates learning at two scales and

combining, “ C” indicates learning on concatenated features of two scales, and “ H” indicates extracting features of the same dimension.

Methods r =1 r =5 r =10 r =20

JUDEA 22.12 59.56 80.48 97.84
DAMA 19.08 52.68 76.04 97.52

CCA 12.12 40.52 62.40 92.12

CMFA 13.28 43.36 66.76 94.44

MMCM 15.24 46.64 68.84 95.76

DTRSVM 16.81 48.47 71.22 94.40

SPARSE-SR 15.12 49.36 72.84 96.60

Table 2. Matching Rate (%): JUDEA vs. others on CAVIAR.

4.2.2 Comparison under Multi-scale Settings

Since our JUDEA is learned using images of two scales

in the experiments, whilst the existing re-id methods learn

their models at a single scale. For a fair comparison, we

now learn the six re-id models at two scales.

Learning at two image scales and combining. We re-

scaled each image to both a normal scale image and a small

scale image, learned them independently, and finally fused

the distances when matching. The existing re-id methods

learned in this way are denoted by adding a suffix ” F” after

their names, e.g. LFDA F. The results are shown in Table

1 (a). Compared to Fig. 4 (a), it is evident that all the meth-

ods performed better. This suggests that learning at separate

scales is important for LR person re-id. However, it is al-

so evident that our model still yields overall much better

performance than other methods, especially at lower rank.

This suggests even though existing methods were applied

on two scales separately, they are still sub-optimal solutions

without joint learning at different scales.

Learning on concatenated features of two image scales.

We re-scaled each image to a normal scale image and a s-

mall scale image, extracted features from each image, con-

catenated the features of a pair of normal scale images and

their small scale counterparts, and then tested the existing

re-id methods on the concatenated features. In this case, we

denote the existing re-id methods by adding a suffix ” C”

after their names, e.g. LFDA C. Although the performance

of these methods (Table 1 (b)) has gained a slight improve-

ment (compared to Fig. 4 (a)), this feature concatenation

approach is less effective than our model.

Extracting features of the same dimension. Instead of re-

scaling images, for each LR image, we directly extracted

features in the same dimension as that of the normal resolu-

tion images by densely sampling as much as possible from

the LR one. Then, existing re-id methods can be applied

directly. In this experiment, we use the suffix “ H” after

each name of existing re-id methods to denote this variation.

From Table 1 (c), it is evident that JUDEA outperforms oth-

er methods. Compared to Fig. 4 (a), the performances of

the existing methods are poorer. This suggests it is not a

sensible solution by forcefully extracting equal amount of

information in the LR images as in the normal resolution

images, when the information has already been lost.

4.2.3 Comparison with Cross-domain Methods

Five cross-domain learning methods (DAMA [32], CCA

[10], CMFA [29], MMCM [30] and DTRSVM [20]), which

can cope with different scale domains, were also applied

to LR re-id. However, none of them was designed for L-

R re-id. In this context, DAMA can be considered as a

joint learning model across different scales. In compari-

son, our JUDEA learns a locally discriminant metric so as

to identify the appearance change locally. The advantage

of JUDEA is validated by the experimental results shown

in Table 2: at rank-1, JUDEA achieves approx. 3% perfor-

mance advantage over DAMA; as rank increases, more im-

provements are observed. In addition, compared to the C-

CA, CMFA and MMCM, the three coupled transformation

methods used for LR face recognition, JUDEA also outper-

forms them significantly. This is because the assumption

made by these methods on directly aligning low and high

resolution face images is not applicable for LR person re-id

problem. We also implemented DTRSVM for solving our

multi-scale based LR re-id problem by treating different s-

cales as different domains. Since DTRSVM requires the

dimensions of all data must be the same, we have to extract

the features of the same dimension from LR images as we

do for the normal resolution images. As shown, DTRSVM

is 5 and 11 matching rates lower than our method at rank 1

and rank 5 on CAVIAR, respectively. The inferior results

show that domain adaptation by DTRSVM is not optimal

for solving our multi-scale based LR re-id problem.

4.2.4 Comparison with Super-resolution Method

We also utilised a super-resolution method based on sparse

representation (SPARSE-SR [36]) to generate normal reso-



Methods
Mixed resolution probe set Normal resolution probe set

r =1 r =5 r =10 r =20 r =1 r =5 r =10 r =20

JUDEA 45.35 74.29 88.17 98.82 71.29 90.84 96.93 99.96
LFDA 39.33 66.86 83.05 97.77 67.96 89.47 96.62 99.82

L1-norm 36.46 60.78 77.60 95.45 64.13 83.78 91.69 98.62

KISSME 36.99 67.47 84.32 98.57 59.51 85.47 94.04 99.73

LADF 26.95 62.08 81.73 97.79 44.53 79.38 92.49 99.78

PRSVM 39.81 65.73 81.26 96.63 66.76 88.13 95.33 99.38

RDC 39.92 65.54 81.01 96.91 67.47 87.33 94.44 99.51

DAMA 40.72 69.47 84.95 98.53 64.76 88.13 94.84 99.64

CCA 33.83 60.06 76.04 95.54 57.96 81.78 91.20 99.33

CMFA 35.62 64.54 79.94 96.76 60.44 88.07 94.58 99.34

MMCM 36.71 64.82 80.42 96.90 60.57 85.02 93.29 98.17

DTRSVM 40.21 65.50 81.08 96.23 66.22 84.43 92.04 98.24

SPARSE-SR 39.94 68.80 84.36 98.19 67.51 90.40 97.16 99.96

Table 3. Matching Rate (%): JUDEA vs. related methods on

CAVIAR with different probe sets. Mixed resolution probe set

indicates probe set is composed of LR images and normal reso-

lution images. Normal resolution probe set indicates probe set is

composed of all normal resolution images.

lution images from LR images and then applied LFDA for

the re-id matching task. Table 2 shows that the performance

of SPARSE-SR is 6% lower than that of the JUDEA at rank

1. Although SPARSE-SR is a popular method for image

super-resolution, the results show that it does not solve the

LR person re-id problem well. One reason is that it re-

quires accurate and dense alignment across scales which is

not available for person full body images. The other rea-

son is that since there are only limited samples for training

and each person’s appearance varies significantly in the re-

id datasets, most super-resolution methods tend to over-fit

the training data and generalise poorly to the test data.

4.2.5 Effects of Probe Sets of Different Resolutions

In a realistic re-id situation, a probe set may include both LR

images and normal (higher) resolution images. To validate

the effectiveness of our model for this situation experimen-

tally, we kept similar percentages of LR images and normal

resolution images in the probe set. The results in Table 3

show that the JUDEA model still outperforms other meth-

ods under this setting. In order to further verify the robust-

ness of JUDEA, we considered an extreme case for which

the probe set only has normal resolution images. As shown

in Table 3, when the probe set has no LR images, our model

can still obtain the best performance compared to the other

methods, although as expected, the gap is smaller. This re-

sult shows that our model is competitive even when the LR

person re-id problem does not exist.

4.3. Evaluation on Simulated LR Datasets

Our experiments were also conducted on two simulated

LR datasets LR-VIPeR and LR-3DPES. Our results (Fig. 5

and Table 4) show clearly that JUDEA outperforms other

methods on both datasets. The advantage is particularly sig-

nificant on the LR-VIPeR, with JUDEA is 5% higher than

the best of all the related methods at rank-1.
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Figure 5. Comparison with related re-id methods in conventional

setting on LR-VIPeR and LR-3DPES

Methods
LR-VIPeR LR-3DPES

r =1 r =5 r =10 r =20 r =1 r =5 r =10 r =20

JUDEA 25.16 54.27 68.10 81.71 34.04 58.99 69.07 78.98
DAMA 18.01 43.01 56.80 72.88 30.24 52.47 61.33 73.02

CCA 9.37 24.68 35.09 47.88 26.22 45.91 54.89 64.36

CMFA 13.29 31.65 46.32 57.18 26.73 49.64 58.14 69.53

MMCM 14.74 34.43 49.03 62.85 28.43 51.54 61.28 70.86

DTRSVM 12.26 36.43 48.87 64.52 31.75 54.28 64.69 73.23

SPARSE-SR 20.70 45.76 58.73 73.99 32.83 55.62 66.45 76.52

Table 4. Matching Rate (%): JUDEA vs. other related methods on

LR-VIPeR and LR-3DPES.

Methods
LR-VIPeR LR-3DPES

r =1 r =5 r =10 r =20 r =1 r =5 r =10 r =20

JUDEA 25.16 54.27 68.10 81.71 34.04 58.99 69.07 78.98
LFDA F 21.61 48.89 63.70 76.46 32.89 55.74 65.40 75.90

L1-norm F 7.88 19.49 28.39 39.27 28.21 49.57 58.06 69.90

KISSME F 21.84 50.09 65.98 79.05 32.35 56.08 65.88 77.60

LADF F 11.33 33.89 47.44 63.80 16.06 42.72 58.81 73.33

PRSVM F 11.36 30.32 42.82 57.66 33.03 53.22 62.50 71.57

RDC F 10.60 29.40 41.08 56.49 31.31 53.30 62.51 72.01

Table 5. Matching Rate (%): JUDEA vs. re-id methods with fusion

matching across two scales on LR-VIPeR and LR-3DPES.

Similarly, we have compared JUDEA with the six re-id

methods under the “Multi-scale Settings” as what have been

done in Sec. 4.2.2. Due to space limit, we only show the

comparison results under the setting “Learning at two image

scales and combining”. The results in Table 5 show that

our model also performs better than other re-id methods.

Similar conclusions can be drawn for the other two settings.

4.4. Further Analysis

Contributions of HCMD in JUDEA. The HCMD criterion

minimises the intra-class distribution differences of images

of the same individual on different scale image domains.

This reduces data redundancy and increases the availabili-



Methods
CAVIAR LR-VIPeR LR-3DPES

r =1 r =5 r =10r =20 r =1 r =5 r =10r =20 r =1 r =5 r =10r =20

JUDEA 22.1259.56 80.48 97.84 25.1654.27 68.10 81.71 34.0458.99 69.07 78.98

JUDEA-w/o 20.2456.56 78.52 97.28 21.8049.59 63.67 77.56 33.2957.69 67.76 78.78

JUDEAnormal 19.3254.64 76.32 96.40 23.9252.18 67.41 81.17 32.5056.77 67.53 78.27

JUDEAsmall 19.7656.64 78.08 97.76 18.5746.01 60.89 75.89 30.7656.01 66.84 77.89

JUDEAthree 22.4061.04 81.80 98.48 25.8755.02 68.53 82.13 34.7259.36 70.21 79.87
Table 6. Matching Rate (%): Further Analysis of JUDEA on

CAVIAR, LR-VIPeR, and LR-3DPES.

ty of details for LR images. In Table 6, JUDEA-w/o de-

notes JUDEA without HCMD. These results show clearly

that JUDEA consistently outperforms JUDEA-w/o. The

improvement is particularly significant on the LR-VIPeR.

Fusion matching vs. single matching in JUDEA. We also

evaluated fusion matching in JUDEA. The fusion match-

ing criterion is designed to improve the performance by

combining similarity scores of different scales. We com-

pared fusion matching with single matching which is adopt-

ed on the normal scale and the small scale, denoted as

JUDEAnormal and JUDEAsmall respectively. Table 6

shows that JUDEA with fusion matching obtains better re-

sults, even though JUDEA with single matching on tradi-

tional normal scale already gives a notable improvement

over existing re-id methods as shown in Figs. 4 and 5.

Using more than two scales in JUDEA. The proposed

JUDEA model uses two scales to achieve joint multi-scale

learning in all previous experiments. One may wonder

whether using more than two scales helps. To answer the

question, we designed an even smaller scale (32×16) in ad-

dition to the existing two scales, resulting in a joint learning

across three scales in JUDEA, which we call JUDEAthree.

We performed experiments on three datasets and the results

are reported in Table 6. It shows that the performance of

JUDEAthree has a slight improvement. This suggests that

the benefit from using more scales is limited for LR person

matching, with the added computational costs.

Effects of parameters. We implemented the JUDEA by s-

electing parameter α = 10 and r=100 on all datasets, and β
is set to 0.7 and 0.3 for LR-VIPeR and other datasets respec-

tively. We varied the three parameters to evaluate JUDEA.

Due to space limit, we only show results on the CAVIAR

dataset here. Similar conclusions can be drawn from the

results on the two datasets. We varied the value of one pa-

rameter whilst fixing the other. The AUC (Area under CMC

curve) of α, β and r are plotted in Figs. 6 (a), (b) and (c),

respectively. It can be seen that when α is around 10, β is

around 0.3 and r is around 100, the model achieves the best

result. But overall their effects are small.

Open-set testing. Due to limited space, we only can re-

port the comparative results under the open-set testing in

Figs. 4 (b), 5 (b) and 5 (d). It is also evident that the pro-

posed model outperforms others under the open-set setting.
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Figure 6. AUC of JUDEA with different parameters on CAVIAR.

4.5. Discussions

The key findings of the experiments are:

1) Existing re-id methods are not specifically designed for

LR person re-id problem, and thus their performances de-

grade significantly as shown in Sec. 4.2.1 & 4.3.

2) Even when we modify the existing re-id methods to learn

models at different scales in Sec. 4.2.2, there is still a clear

margin between the performances of our method and theirs,

showing the importance of joint multi-scale learning.

3) Compared to related cross-domain LR face recognition

methods in Sec. 4.2.3 and 4.3, the proposed JUDEA does

not explicitly align a pair of low and normal resolution im-

ages, but simultaneously learns discriminant metrics of d-

ifferent scales constrained by HCMD. The results suggest

our strategy is more suitable for LR person re-id.

5. Conclusion
To address the low resolution (LR) person re-id problem,

we proposed a joint multi-scale discriminant component

analysis (JUDEA) model by learning a shared subspace

across different scales, which is the first specific work on

solving such a challenge to our best knowledge. Extensive

experiments were conducted to evaluate and compare the

proposed model on three different LR person re-id datasets.

A number of conclusions can be drawn from the results.

First, a multi-scale discriminant modelling unified with the

proposed heterogeneous class mean discrepancy (HCMD)

criterion for simultaneously learning metrics on image do-

mains of different scales is more effective than single-scale

based modelling followed by simple combination of the

models. Second, LR is indeed a challenge to re-id. Al-

though there exists LR recognition techniques in face recog-

nition, we show that these techniques do not work well on

the harder LR person re-id problem.
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