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Abstract 

Recent advances have shown that algorithms with (2D) matrix-based representation perform 

better than the traditional (1D) vector-based ones. In particular, 2D-LDA has been widely 

reported to outperform 1D-LDA. However, would the matrix-based linear discriminant analysis 

be always superior and when would 1D-LDA be better? In this paper, we investigate into these 

questions and have a comprehensive comparison between 1D-LDA and 2D-LDA in theory and 

in experiments. We analyze the heteroscedastic problem in 2D-LDA and formulate mathematical 

equalities to explore the relationship between 1D-LDA and 2D-LDA; then we point out potential 

problems in 2D-LDA. It is shown that 2D-LDA has eliminated the information contained in the 

covariance information between different local geometric structures, such as the rows or the 

columns, which is useful for discriminant feature extraction, whereas 1D-LDA could preserve 

such information. Interestingly, our new finding indicates that 1D-LDA is able to gain higher 

Fisher score than 2D-LDA in some extreme case. Furthermore, sufficient conditions on which 

2D-LDA would be Bayes optimal for two-class classification problem are derived and 

comparison with 1D-LDA in this aspect is also analyzed. This could help understand how 2D-

LDA is expected to achieve at its best, further discover its relationship with 1D-LDA, and well 

support other findings. After the theoretical analysis, comprehensive experimental results are 

reported by fairly and extensively comparing 1D-LDA with 2D-LDA. In contrast to the existing 

view that some 2D-LDA based algorithms would perform better than 1D-LDA when the number 

of training samples for each class is small or when the number of discriminant features used is 

small, we shown that it is not always true and show that some standard 1D-LDA based 

algorithms could perform better in those cases on some challenging data sets. 

 

Keywords: Fisher’s Linear Discriminant Analysis (LDA), Matrix-based Representation, Vector-

based Representation, Pattern Recognition 
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1.   Introduction 

 

Over the last two decades, many subspace algorithms have been developed for feature extraction. 

Among them are principal Component Analysis (PCA) [7][8][6][1], (Fisher’s) Linear 

Discriminant Analysis (LDA)[1][2][3][4][5], Independent Component Analysis (ICA) 

[22][23][21][20], Non-negative Matrix Factorization (NMF) [24][25][26], Locality Preserving 

Projections [46] and Bayesian probabilistic subspace [47][48] etc. 

 

Most well-known subspace methods require the input patterns to be shaped in vector form. 

Recently there are efforts seeking to extract the features directly without any vectorization work 

on image samples, i.e., the representation of an image sample is retained in matrix form. Based 

on this idea, some well-known algorithms are developed, including Two-dimensional Principal 

Component Analysis (2D-PCA) [28][36] and Two-dimensional Linear Discriminant Analysis 

(2D-LDA) [33][37][38]. 

 

2D-PCA was first proposed by Yang et al. [28][36], and a generalized work has been 

subsequently described in [29] called bilateral-projection-based 2DPCA (B2DPCA). Ye then 

proposed the Generalized Low Rank Approximations of Matrices (GLRAM) [54] as a further 

development of 2D-PCA. Recently a modification on 2D-PCA was proposed in [31] and it could 

be treated as implementing 2D-PCA after the rearrangement of the entries of an image matrix. 

 

For supervised learning, 2D-LDA has also been developed recently. Xiong et al. [37] and Li et al. 

[33] extended One-Dimensional LDA (1D-LDA), a vector-based scheme, to 2D-LDA. In 

contrast to [33][37] which only do transform on one side of the image matrix, i.e., either left side 

or right side, some methods have been proposed for extraction of the discriminative transforms 

on both sides of the image matrix. Yang et al. [35] proposed to do the IMLDA (uncorrelated 

image matrix-based linear discriminant analysis) twice, i.e., IMLDA is first implemented to find 

the optimal discriminant projection on the right side of the matrix and then to find another 

optimal discriminant projection on the left side. Similarly, Kong et al. [30] proposed to first 

extract the 2D-LDA discriminative projections on both sides of the image matrix independently 

and then combine them by some processing. Different from them, Ye et al. proposed an iterative 

scheme to extract the transforms on both sides [38] simultaneously. Recently, some other 

modifications on 2D-LDA [52][53][39] are proposed. Especially, in [53], similar to Fisherface 
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[5], 2D-LDA is processed after the implementation of 2D-PCA. Though such rapid development 

appeared in the last two years, however Liu et al. [27] actually had suggested a 2D image matrix-

based (Fisher’s) linear discriminant technique which performed LDA directly on image matrices 

in 1993. In nature, the idea behind is to construct the covariance matrix, including total-class 

scatter matrix, within-class scatter matrix and between-class scatter matrix, by just using the 

original image samples represented in matrix form. Moreover, some recent studies 

[29][30][32][34] have realized that two-dimensional matrix based algorithms are special 

blocked-based methods such as column-based or row-based LDA\PCA in essence. 

 

2D-LDA is attractive since it is efficient in computation and always avoids the “small sample 

size problem” [5][11][13][14][15] that the within-class scatter matrix is always singular in 1D-

LDA when the training sample size is (much) smaller than the dimensionality of the data. 

Recently, the 2D-LDA based algorithms have been experimentally reported superior to some 

standard 1D-LDA based algorithms, such as Fisherface [5], on some limited datasets. 

 

However, one may ask: “Could 2D-LDA always perform the best?” “Why would it be better 

sometimes?” “Is there any drawback in 2D-LDA?” “What is the intrinsic relationship between 

1D-LDA and 2D-LDA?” “1D-LDA is Bayes optimal for two-class classification under some 

sufficient conditions, and then what is the situation for 2D-LDA? What are the differences 

between 1D-LDA and 2D-LDA under their sufficient conditions being Bayes optimal?” After all, 

“When is 1D-LDA better than 2D-LDA?”  

 

We do investigation into these questions and present an extensive analysis between 1D-LDA and 

2D-LDA in theory and in experiments. This is, to the best of our knowledge, the first of such 

attempt with comprehensive study. The contributions of this paper are summarized as follows: 

1) Extensive theoretical comparisons between 1D-LDA and 2D-LDA are presented, and we 

have the following findings: 

a) From the statistical point of view, 2D-LDA would also be confronted with the 

“Heteroscedastic Problem” and the problem would be more serious for 2D-LDA than 

the one for 1D-LDA [40]. 

b) Mathematical equalities are formulated to explore the relationship between 1D-LDA 

and 2D-LDA. It gives a novel way to show that 2D-LDA loses the covariance 

information among different local geometry structures in the image such as rows or 
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columns, while 1D-LDA could preserve those relations for feature extraction. It then 

breaks the appearance view that 2D-LDA is able to utilize the global geometry structure 

of an image. Interestingly, we further find that 1D-LDA is able to achieve higher Fisher 

score than 2D-LDA in some extreme case as shown in the paper. 

c) The sufficient conditions when 2D-LDA is Bayes optimal for two-class classification 

problem are given and proved. They could help give an interpretation what 2D-LDA is 

expected ideally. Moreover further discussions between 1D-LDA and 2D-LDA are 

presented when those sufficient conditions are satisfied or not. 

2) Extensive experiments are conducted to compare 1D-LDA with 2D-LDA. The experimental 

results break the existing view and indeed show that 2D-LDA would not always be superior 

to 1D-LDA when the number of training samples for each class is small or when the number 

of discriminant features used is small. 

 

Though this paper focuses on (Fisher’s) linear discriminant analysis, however, the analysis could 

be useful for other similar algorithms. The remainder of this paper is outlined as follows. In 

section 2, a brief review of 1D-LDA and 2D-LDA is given. In section 3, theoretical analysis 

between 1D-LDA and 2D-LDA is presented. In section 4, extensive experiments are conducted. 

Finally, we have a summarization in section 5. 

 

 

2.   Reviews 

 

2.1.   Notations 

 

Suppose )},,(,),,,(,),,,(,),,,{( 111
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1
1
1

1
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CCCC
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XxXxXxXx LLL  are image samples from L  classes. 

The n-dimensional vector nk
i Rx ∈  is the thi  sample of the thk  class kC  and colrowk

i
×∈RX  is its 

corresponding colrow×  image matrix, where kNi ,,1 L=  and kN  is the number of training 

samples of class kC . Let j
L
j NN 1=∑=  be the total sample size. Define k

i
N
iNk

k

k
xu 1

1
=∑=  as the mean 

vector of samples of class kC  and k
i

N
iNk

k
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XU 1
1

=∑=  as its corresponding mean matrix. Let kN

NL
k
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be the mean vector of all samples and kN

NL
k

k UU 1=∑=  be its corresponding mean matrix. 

 

 

2.2.   1D-LDA (One-Dimensional LDA) 
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1D-LDA aims to find the discriminative vector optw  such that: 
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are between-class scatter matrix, within-class scatter matrix and within-class scatter matrix  of 

class kC  respectively. In practice, due to the curse of high dimensionality, wS  is always singular. 

So far, some well-known standard variations of 1D-LDA have been developed to overcome this 

problem, such as Fisherface [5] and its further developments [41][43], Nullspace LDA 

[11][13][14], Direct LDA [12], LDA/QR [16][15] and Regularized LDA [17][10][9][2][42] etc. 

Thereof, Regularized LDA is always implemented as follows: 

0,
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Other efforts are also made for obtaining more discriminative and robust 1D-LDA algorithms in 

the small sample size case, such as constraint-based LDA algorithm [18][19], weight-based LDA 

algorithm [51], mixture model based LDA [58], Locally LDA [49] and Oriented LDA [50] etc. 

 

2.3.   2D-LDA (Two-Dimensional LDA) 

 

2D-LDA directly performs discriminant feature analysis on an image matrix rather than on a 

vector. 2D-LDA tries to find the optimal vector d
opt
2w  such that 
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scatter matrix and within-class scatter matrix respectively. An alternative approach of 2D-LDA 

could be driven by the following criterion: 
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Equality (Criterion) (3) or (4) is called as Unilateral 2D-LDA [30]. As aforementioned, a 

generalization of 2D-LDA called Bilateral 2D-LDA (B-2D-LDA) [30][38] finds a pair 

discriminant vectors ( d
optl

2
−w , d

optr
2
−w ) satisfying: 



PAGE 7 DRAFT   2007-11-26 

 

d
l

T
k

k
i

Td
r

d
rk

k
i

Td
l

N
i

L
kN

d
l

T
k

Td
r

d
rk

Td
lN

NL
kd

optr
d
optl

k

k

d
r

d
l 2222

11
1

2222
1

),(
22

)()(

)()(
maxarg),( 22

wUXwwUXw

wUUwwUUw
ww

ww
−−∑∑

−−∑
=

==

=
−− . (5) 

 

 

3.   1D-LDA versus 2D-LDA: Theoretical Analysis 

 

In this part, to compare with 1D-LDA, we first mainly focus on 2D-LDA in terms of equality (3). 

It does not mean the comparison would lose the generality. It is because equality (4) would 

become equality (3) if the input matrices are transposed first, and also so far it is hard to obtain a 

closed form solution but a practical solution [38][57][30] is popular and always found for 

equality (5). Analysis will be extended to the variations of 2D-LDA in terms of equalities (4)~(5) 

in section 3.4. 
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As indicated in [30][32], it is easy to verify the followings: 

d
colb

d
b

T
kk

col
jN

NL
k

d
b jjjjk 2

,
2

1,11
2 ))()())(()(( SSUUUUS ++=−−∑∑= == L , (6) 

d
colw

d
w

T
k

k
ik

k
i

col
j

N
i

L
kN

d
w jjjjk 2

,
2

1,111
12 ))()())(()(( SSUXUXS ++=−−∑∑∑= === L , (7) 

where 

coljjjjj T
kkN

NL
k

d
jb

k ,,1,))()())(()((1
2

, L=−−∑= = UUUUS ,  

coljjjjj T
k

k
ik

k
i

N
i

L
kN

d
jw

k ,,1,))()())(()((11
12

, L=−−∑∑= == UXUXS .  

 

 

3.1.   Heteroscedastic Problem 

 

First the 2D-LDA criterion in terms of equality (3) could be equivalently written as: 
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It can be found that the between-class information of 2D-LDA in terms of equality (3) is 

modeled by averaging all between-class scatter matrices d
jb

2
,S  with respect to different column 

indexes and models the within-class information similarly by averaging all d
jw

2
,S . From the 

statistical point of view, both d
b
2S  and d

w
2S  are “plug-in” estimates according to equalities (6)~(7). 

However, if columns with different indexes of images are heteroscedastic in essence, i.e., 

jid
ib

d
jb ≠∀≠ ,2

,
2

, SS  or jid
iw

d
jw ≠∀≠ ,2

,
2

, SS , then those “plug-in” estimates d
b
2S  and d

w
2S  would be 

inappropriate if the differences between d
jb

2
,S  or the differences between d

jw
2

,S  are significantly 

large. In such case the heteroscedastic problem [40] has to be addressed. We note that 1D-LDA 

would also be confronted with the heteroscedastic problem when the covariance matrices of 

different classes, i.e., k
wS , Lk ,,1 L= , are not equal [40], and it breaks the assumption of LDA that 

within-class covariance matrices of all classes are equal. However, the problem for 2D-LDA is 

different from the one for 1D-LDA in the following aspects. It is observed that samples learned 

by 2D-LDA in terms of equality (3) are actually the columns of images according to equalities 

(6)~(7), while columns are always obviously different if they are not coherent. Hence, on one 

hand, for the estimation of within-class scatter information, columns with different indexes of 

images within the same class could be heteroscedastic (i.e., d
jw

2
,S  are not equal), even if the image 

samples in vector form are not heteroscedastic (i.e., k
wS  are equal). On the other hand, the 

heteroscedastic problem in 1D-LDA is mainly due to the unequal within-class covariance 

matrices of different classes, but such a problem could additionally happen to d
b
2S  in 2D-LDA 

for the estimation of between-class scatter information, because it is formulated by averaging all 

d
jb

2
,S . Therefore, it would be expected that the heteroscedastic problem in 2D-LDA could be more 

serious than that in 1D-LDA. However such a seriously potential problem in 2D-LDA has not 

been pointed out before. 

 

3.2.   Relationship between 1D-LDA and 2D-LDA 

 

Let TT
col

T ],,[ 1 www
)

L
)

=  be any n-dimensional vector, where 1×∈ row
i Rw

)
. To explore the relationship 

between 1D-LDA and 2D-LDA, we first have the following lemma, where its proof can be found 

in Appendix-1. 
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Lemma 1. If colww
)
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= 44 344 21 L 22 ,,~ www . (11) 

 

 

2D-LDA is apparently indicated to preserve the global geometric information of image since it 

directly lies on samples represented in image matrix form. However, the above lemma reveals 

that unlike 1D-LDA, it may lose the covariance information among different local geometry 

structures, such as the columns here. This is because in equalities (9) and (10), the summation of 

the covariance information of data after a 2D-LDA transform and the eliminated covariance 

information by 2D-LDA between different local geometry structures is just the covariance 

information of data after a special 1D-LDA transform, where dd
b

Td 222 wSw  is the between-class 

covariance information and dd
w

Td 222 wSw  is the within-class covariance information induced by the 

2D-LDA transform d2w . Hence 2D-LDA does not completely utilize the global geometric 

information of an image. Though w~  is a special colrow ⋅ (=n) dimensional vector, however 

equalities (9)~(10) suggest 1D-LDA could preserve those information. 

 

Although some recent studies [30][32] have indicated that 2D-LDA is a special block-based 

algorithm, however the relationship between 1D-LDA and 2D-LDA has not been further 

explored theoretically as shown in equalities (9) and (10) before. Based on them, we here 

provide a new way to reveal that those part-based local geometric structures are considered 

separately and show the covariance information between them is not taken into account by 2D-

LDA in theory. 

 

Furthermore, the relationship formulated by lemma 1 could in fact provide a more in-depth 

insight view. The following theorem then tells such an interesting issue. 
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Theorem 1. 1D-LDA can have higher Fisher score than 2D-LDA if the following cases are valid: 

0UUUU =−−∑∑ ≠===
T

kk
col

hjhjN

NL
k hhjjk ))()())(()((,1,11 , (12) 

0UXUX =−−∑∑∑ ≠====
T

k
k
ik

k
i

col
hjhj

N
i

L
kN

hhjjk ))()())(()((,1,111
1 . (13) 

 

Proof: In such a case, the following relations hold: 
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Since w~  is just a special n-dimensional vector, hence it is valid that: 
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That is, 1D-LDA can obtain higher Fisher score than 2D-LDA.                                                 □ 

 

One situation when equalities (12) and (13) are valid is the case that columns with different 

indexes of image matrices are statistically independent. A further interpretation of equality (16) 

in such case could be provided from another point of view in next section. 

 

3.3.   2D-LDA: A Bayes Optimal Feature Extractor under Sufficient Conditions 

 

It is known that for two-class classification problem 1D-LDA will be Bayes optimal if data are 

normally distributed with equal covariance matrices within each class [1][2]. Then what is the 

situation for 2D-LDA? The analysis here attempts to seek the sufficient conditions when 2D-

LDA would be Bayes optimal for two-class classification. Finally the differences between 1D-

LDA and 2D-LDA will be discussed when those sufficient conditions are satisfied or not. 

  

Suppose )](,),1([ colXXX L=  is a random colrow×R  matrix, where rowj RX ∈)( , colj ,,1L= . Let )(Xp  and 

))(( jp X  be the probability density functions of X  and )( jX  respectively, and let )|( kCp X and 

)|)(( kCjp X  be the class-conditional probability density functions of class kC . Then it is valid that: 

))(,),1(()( colpp XXX L= , )|)(,),1(()|( kk CcolpCp XXX L= . 

If )(,),1( colXX L  are independent, we then have: 

))(()( 1 jpp col
j XX =∏= , )|)(()|( 1 k

col
jk CjpCp XX =∏= . (17) 
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Given two classes 1C  and 2C , to classify X  using Bayesian decision principle, it is said X 1C∈  if 

and only if )|()|( 21 XX CpCp >  else X 2C∈ . Note that 
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In practice, utilizing the maximum likelihood principle, )( jkM  and j
kΣ  could be estimated as: 
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where )( jk
iX  is the  j

th
 column of the i

th
 sample matrix of class Ck as defined previously.  

 

Then, based on equalities (17)~(23), the following theorem first gives the sufficient conditions 

when 2D-LDA would be Bayes optimal for two-class classification problem. Its proof can be 

found in Appendix-2. 

 

Theorem 2. For two-class classification problem, 2D-LDA in terms of equality (3) is Bayes 

optimal if the following conditions hold: 

(1) Columns with different indexes of image matrices are independent, i.e., equality (17); 

(2) Columns with the same index of image matrices within each class are normally distributed, 

i.e., equality (20), and the covariance matrices are equal as follows: 
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(24) 

                                                 
1 This condition could be strict and a discussion will be given at the end of this section. 
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(3) Differences between any two columns with the same index of two class mean matrices are 

equal except some scalar scaling, i.e., there exist colisi ,,1,0 L=≠ , such that 

coljijijjsiis ji ,,1,,)),()(())()(( 2121 L=≠∀−=−=∆ UUUUU  (25) 
 

 

Those sufficient conditions could help understand some findings presented. It is because if 

condition (1) is satisfied then it is true why 2D-LDA in terms of equality (3) eliminates the 

relations between different columns, and if conditions (2)~(3) are valid it would be interpretable 

that why 2D-LDA estimates its between-class scatter matrix by averaging the between-class 

scatter matrices over all column indexes and also model the within-class scatter matrix by 

averaging the within-class scatter matrices over all column indexes. 

 

Being Bayes optimal, 2D-LDA presented above however requires more conditions than 1D-LDA. 

Then, what are the differences between 1D-LDA and 2D-LDA when those conditions in theorem 

2 are satisfied or not satisfied? We finally give a discussion below. First, we note that for any 

given )](,),1([ colXXX L= , its vector form is TTT col ])(,,)1([ XXx L= . Then it is true that: 

)()])(,,)1(([]))(,,)1(([)])(,),1(([)( xXXXXXXX pcolpcolpcolpp TTTTT ==== LLL , (26) 

)|()|( kk CpCp xX = , (27) 

)|()|( xX kk CpCp = . (28) 

Hence the declaration “ X 1C∈  if and only if )|()|( 21 XX CpCp > , else X 2C∈ ” is equivalent to the 

one “ X 1C∈  if and only if )|()|( 21 xx CpCp > , else X 2C∈ .” Therefore for two-class classification 

problem, we could have the following: 

(1) If those sufficient conditions (1)~(3) in theorem 2 are satisfied, both 1D-LDA and 2D-LDA 

are Bayes optimal. The vector-form sample TTT col ])(,,)1([ XXx L=  is then normally distributed 

with equal covariance matrix within each class under conditions (1)~(2), and the covariance 

matrix of x  within class kC  is indicated by equality (29) below under condition (1): 
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where the estimations of [ ]k

T

kk CCjjCjj |])|)([)(])(|)([)(( XEXXEXE −− , colj ,,1L= , 2,1=k  are equal 

under on condition (2). 
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(2) If only conditions (1)~(2) are satisfied, 1D-LDA could be Bayes optimal, while there is no 

guarantee for 2D-LDA being Bayes optimal. Hence one could recall equality (16) which 

indicates that why 1D-LDA is better than 2D-LDA in such case, i.e., condition (1). 

(3) If )(,),1( colXX L  are not independent, then 2D-LDA in terms of equality (3) loses 

discriminative information in the covariance information between different columns of an image. 

Generally speaking, condition (1) is not required for 1D-LDA to be Bayes optimal. 

(4) If conditions (2)~(3) are not satisfied, then the heteroscedastic problem for 2D-LDA 

discussed can not be avoided. 

(5) Finally, we see that if vector sample TTT col ])(,,)1([ XXx L=  is normally distributed with equal 

class covariance matrices, then 1D-LDA is Bayes optimal, but those conditions (1)~(3) for 2D-

LDA can not be implied in such case. 

 

3.4.   Why Is 2D-LDA Sometimes Superior? 

 

The above analysis on 2D-LDA is based on the equality (3). Actually some similar conclusions 

could also be obtained for its variations. First, we see that if the image matrices are first 

transposed, equality (4) would become equality (3). Even though Bilateral 2D-LDA (B-2D-LDA) 

has combined both approaches, however, it is hard to obtain a close form solution. So far there 

are at least two ways to find a practical solution of B-2D-LDA. One way is to drive an iterative 

algorithm that finds the optimal value for d
optl

2
−w  while fixing d

optr
2
−w  and finds the optimal value 

for d
optr

2
−w  while fixing d

optl
2
−w [38][57]. Another way is to calculate them independently and then 

combine them [30]. Hence the potential drawbacks of 2D-LDA discussed above are embedded in 

each process for computation of Bilateral 2D-LDA. 

 

However, why has 2D-LDA been recently reported superior to some 1D-LDA based algorithms 

experimentally? The reasons may be the followings: 

(1) The dimensionality of the optimal feature d
opt
2w  extracted by 2D-LDA is much smaller than 

the one optw  extracted by 1D-LDA, while the number of samples learned for d
opt
2w  is actually 

much larger than the one for optw , because for 2D-LDA each column or each row of an 

image is a training sample, while for 1D-LDA only the whole image is a training sample. 
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Therefore, the number of parameters estimated for d
opt
2w  is much less than the one for optw  

and the bias of the estimation of d
opt
2w  could be smaller than the estimation of optw . 

(2) 1D-LDA is always confronted with the singularity problem. For 1D-LDA, the strategy to 

overcome such problem is crucially important. So far some standard approaches are 

proposed [5][9][10][11][12][13][14][15][16][17]. It is known that most of the dimension 

reduction techniques for 1D-LDA would lose discriminant information, such as Fisherface 

and Nullspace LDA. In contrast, 2D-LDA would always avoid the singularity problem. 

However, some well-known standard approaches of 1D-LDA, such as Nullspace LDA and 

Regularized LDA, have been presented to be effective and powerful in practice, but previous 

experimental results have rarely reported the comparison of 2D-LDA with them, especially 

Regularized LDA which is almost a pure LDA except the additional regularization term. 

Thus this paper would like to include them for comparison. 

(3) The dataset selected for comparison is important. Also, in the experiment, we would find 

that the final classifier is indeed an impact in evaluating the performances of 1D-LDA and 

2D-LDA. However it is also not suggested before. 

 

 

4.  1D-LDA versus 2D-LDA: Experimental Comparison 

 

Besides theoretical comparison, a comprehensive experimental comparison between 1D-LDA 

and 2D-LDA is also performed here. The main goal is to compare them under the case when the 

number of training samples for each class is limited or when the number of discriminant features 

used is small. Some existing views will be broken. Experimental results will report on FERET 

[56] and CMU [55] databases. As either 2D-LDA or 1D-LDA is actually used for discriminant 

feature extraction, a final classifier is employed for classification in the feature space. Two such 

classifiers, namely nearest neighbor classifier (NNC) and nearest class mean classifier (NCMC) 

are employed to evaluate the performances. They are always popularly used for evaluation of the 

LDA based algorithms and it will be shown that the final classifier would have an impact on the 

performances of some algorithms. Note that in almost all published papers regarding 2D-LDA 

only NNC is selected as the final classifier [33][35][37][38][52][53]. 

 

We compare some standard 1D-LDA based algorithms with some standard 2D-LDA based 

algorithms. The compared 1D-LDA based algorithms involve Fisherface, Nullspace LDA and 
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Regularized LDA. For comparison, they are renamed as “1D-LDA, Fisherface”, “1D-LDA, 

Nullspace LDA” and “1D-LDA, Regularized LDA”. Regularized LDA is implemented by 

equality (2) setting 005.0=λ . For 2D-LDA, we have implemented its three standard algorithms, 

i.e., equalities (3), (4) and (5). For comparison, they are also renamed as “Unilateral 2D-LDA, 

Left” (equality (3)), “Unilateral 2D-LDA, Right” (equality (4)), and “Bilateral 2D-LDA” 

(equality (5)), where the number of iteration in “Bilateral 2D-LDA” is set to be ten. Noting that 

Regularized LDA is almost a pure 1D-LDA except the regularization term added to the within-

class scatter matrix, hence it is valuable to take it into comparison. 

 

4.1.   Introduction to Databases and Subsets Used 

 

A large subset of FERET [56] is established by extracting images from four different sets, 

namely Fa, Fb, Fc and duplicate. It consists of 255 persons, and for each individual there are 4 

face images undergoing expression variation, illumination variation, age variation etc. 

 

Three subsets of CMU PIE [55] are also established, called “CMU-NearFrontalPose-Expression”, 

“CMU-Illumination-Frontal” and “CMU-11-Poses”. The subset “CMU-NearFrontalPose-

Table 1. Brief Descriptions of Databases and Subsets Used 
Database / Subset Number of 

Persons 

Number of Faces 

(per Person) 

Database/Subset Size Image Size 

FERET 255 4 1020 11292×  

CMU-NearFrontalPose-Expression 68 15 1020 8060×  

CMU-Illumination-Frontal 68 43 2924 8060×  

CMU-11-Poses 68 11 748 8060×  

 

 
(a) FERET 

 
(b) CMU-Illumination-Frontal 

 
(c) CMU-NearFrontalPose-Expression 

 
(d) CMU-11-Poses 

Fig. 1. Illustrations of Some Face Images (images are resized to show) 
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Expression” is established by selecting images under natural illumination for all persons from the 

Frontal View, 1/4 Left\right Profile and Below\Above in Frontal view. For each view, there are 3 

different expressions, namely natural expression, smiling and blinking [55]. Hence there are 15 

face images for each object. The subset “CMU-Illumination-Frontal” consists of images with all 

illumination variations in Frontal view under the background light off and on. The subset “CMU-

11-Poses” consists of images across 11 different poses of each person, including 3/4 Right 

profile, Half Right profile, 1/4 Right profile, Frontal View, 1/4 Left Profile, Half Left Profile, 3/4 

Left Profile, Below in Frontal view, Above in Frontal view and two Surveillance Views, and all 

images are under natural illumination and natural expression. 

 

The datasets used are briefly summarized in Table 1 and some face images are illustrated in Fig. 

1. Please note that all images are linearly stretched to full range of pixel values of [0, 1]. 

 

4.2.   Comparison 

 

For each data set, the comparisons involve two parts. In the first part, the number of training 

samples for each class is fixed, and the average recognition rates of an algorithm with respect to 

different numbers of discriminant features are presented. Based on these results, we then 

illustrate the best average recognition rates of an algorithm with respect to different numbers of 

training samples for each class in the second part. Results are reported based on NCMC and 

NNC respectively. Additionally, for an algorithm tested on a dataset, if the number of 

discriminant features used is fixed and there are TNum_  training samples for each class, then the 

test procedure will be repeated 10 times. For each time, TNum_  samples are randomly selected 

from each class to establish the training set and the rest are for testing. The average recognition 

rate is got finally. 

 

4.2.1.   Recognition Rate vs.  Number of Discriminant Features 

This section first presents the experimental results to show how the average recognition rates of 

the LDA-based algorithms change depending on the number of extracted discriminant features 

used when the number of training samples for each class is fixed. In table 2, the range of the 

variation of the number of training samples for each class is indicated. Since the experimental 

analysis would like to focus on comparing different LDA algorithms in the small sample size 

case that is when the training sample size for each class is limited, so the average recognition 
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rates are not reported when the number of training samples for each class is more than 8 over 

three CMU subsets. Solving the small sample size problem is a strong motivation for many 

proposed LDA algorithms in the past several years, including the compared ones in this paper. 

 

Table 2. Range of the Number of Training Samples for Each Class 

Database Range 

FERET [2 : 1 : 3] 

CMU-NearFrontalPose-Expression [2 : 1 : 8]
 a
 

CMU-Illumination-Frontal [2 : 1 : 8] 

CMU-11-Poses [2 : 1 : 8] 
a[2 : 1 : 8] means the number of training samples for each class ranges from 2 to 8 with step 1. 

 

For an algorithm, suppose its maximum number of discriminant features is AFNum_ . Then its all 

features are ordered according to their corresponding eigenvalues in a descendant order, since the 

eigenvalue of each feature could be treated as a measurement of the discriminative ability. 

Finally, the top FNum_  features are selected to evaluate the recognition performance, where we 

would let AFNumFNum _,,20,15,10,5_ L= . Additionally, the scheme for “Bilateral 2D-LDA” is 

explained as follows. “Bilateral 2D-LDA” has bilateral projections, while the maximum numbers 

of features with respect to two different side projections are always different. Hence, if there are 

FNum_  features selected for “Bilateral 2D-LDA”, it means the top FNum_  features are selected 

for both its projections respectively. If the value FNum_  has exceeded the maximum number of 

features of one of the projections, then all features of that projection would be used. 

 

Due to the limited length of the paper, only some figures describe the experiment results could 

be illustrated. For FERET database, we present the results when the number of training samples 

for each class is three (Fig. 2); for “CMU-NearFrontalPose-Expression” and “CMU-11-Poses”, it 

is 2 and 7 in Fig. 3 and Fig. 5; for “CMU-Illumination-Frontal” it is 3 and 7 in Fig. 4. Such kind 

of setting is also notified at the title of each figure. The sample size for FERET is limited so we 

only present the case when the number of training samples for each class is three; for “CMU-

Illumination-Frontal” the result when the number of training samples for each class is 3 rather 

than 2 is presented, because the performance of Fisherface increases notably as observed later in 

Fig. 7 when NCMC is used. The best average recognition rates with respect to different numbers 

of training samples for each class will be totally reported in the next section. 
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(a) Final Classifier: NCMC (b) Final Classifier: NNC 

Fig. 2. Recognition Rate vs. Number of Discriminant Features on FERET; training number is three for each class 
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(a) Final Classifier: NCMC 

 

(b) Final Classifier: NNC 
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(c) Final Classifier: NCMC (d) Final Classifier: NNC 

Fig. 3. Recognition Rate vs. Number of Discriminant Features on “CMU-NearFrontalPose-Expression”; training 

number is two for each class in (a)~(b) and training number is seven for each class in (c)~(d) 
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(a) Final Classifier: NCMC 

 

(b) Final Classifier: NNC 
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(c) Final Classifier: NCMC (d) Final Classifier: NNC 

Fig. 4. Recognition Rate vs. Number of Discriminant Features on “CMU-Illumination-Frontal”; training number is 

three for each class in (a)~(b) and training number is seven for each class in (c)~(d) 
 

From the experimental results above, it could observed that the 2D-LDA based algorithms 

always achieve their best performances when the number of discriminant features is retained 

appropriately small while the performances of them would sometimes degrade if more features 

are used. Interestingly, the 1D-LDA based algorithms may also achieve their best performances 

sometimes when an appropriately small set of features is retained. However, sometimes their 

performances would first descend and then ascend as more features are used. Such scenario 

could be obviously observed in Fig.3 (a)~(b) and Fig.5. A recent developed theory on LDA by A. 

M. Martínez and M. Zhu has told the fact that not all discriminant features are good for 

classification [44]. Hence a small set of features would sometimes get its best accuracy. Of 

course it is not always the case, since the 2D-LDA based algorithms do not degrade too much in 

Fig.3 (c)~(d) when more features are used and the 1D-LDA based algorithms perform better and 
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better in Fig.4 when more features are used. However, it could be found that if all features of the 

1D-LDA based algorithms are used, the performances are always almost the same as their best 

ones acquired, but it is not always the case for the 2D-LDA based algorithms. Therefore, the 

experimental results indicate how to select the proper number of features would potentially be a 

more serious problem for the 2D-LDA based algorithms than that for the 1D-LDA based 

algorithms. 

 

The experiments have also broken the existing viewpoint that 2D-LDA could always achieve 

better performance than 1D-LDA when only fewer discriminant features are used [33][37], since 

it is also found that Regularized LDA and Nullspace LDA could achieve their best performances 

and perform better than the 2D-LDA based algorithms on datasets FERET (Fig. 2), “CMU-
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(a) Final Classifier: NCMC 

 

(b) Final Classifier: NNC 
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(c) Final Classifier: NCMC (d) Final Classifier: NNC 

Fig. 5. Recognition Rate vs. Number of Discriminant Features on “CMU-11-Poses”; training number is two for each 

class in (a)~(b) and training number is seven for each class in (c)~(d) 
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NearFrontalPose-Expression” (Fig. 3) and “CMU-11-Poses” (Fig. 5 (c)~(d)) when fewer features 

are used. Note that even Fisherface could perform better than some 2D-LDA based algorithms if 

a little more discriminant features are employed sometimes. 

 

4.2.2.   Recognition Rate vs. Number of Training Samples 

This section shows how the best average recognition rate of an algorithm changes depending on 

the number of training samples for each class. Except the FERET database, all experimental 

results are presented in figures. In all tables and figures, the best average recognition rates for 

fixed number of training samples for each class are reported. For each algorithm, the best 

average recognition rate is the highest one among the corresponding average recognition rates 

with respect to different numbers of discriminant features, which are reported in the last section. 

It would be a fair comparison, as the number of discriminant features used has an obvious impact 

on the performance of an algorithm as observed in the first part. 

 

From the experiments, it could be observed that the 2D-LDA based algorithms almost always 

perform better than Fisherface except the experiment on “CMU-Illumination-Frontal” (Fig. 7) 

where Fisherface performs the best by using NCMC there when the number of training samples 

for each class is larger than three. Though it is known that Fisherface loses discriminant 

information [11-13][45], however it has also been known that Fisherface was first proposed to 

handle various illuminations [5] for face recognition, while images in “CMU-Illumination-

Frontal” are just corrupted by illuminations and no other variations exist there. The performance 

of Fisherface would dramatically reduce if other variations, such as pose or expression, are 

involved. However, we observe that Regularized LDA and Nullspace LDA always obtain 

superior performances than the 2D-LDA based algorithms on some data sets. This could be 

obviously found from the experiments on the datasets FERET (table 3), “CMU-NearFrontalPose-

Expression” (Fig. 6) and “CMU-11-Poses” (Fig. 8). Note that Nullspace LDA would perform the 

same no matter NCMC or NNC is used. It is because the projection on the nullspace of the 

within-class scatter matrix has already transformed each training sample to its class center [14]. 

Other than Nullspace LDA, the superiority of Regularized LDA is more notable no matter which 

final classifier is used. It may be because Regularized LDA only adds a small regularization to 

the within-class scatter matrix and it is almost a purely naive Fisher’s LDA algorithm while 

Nullspace LDA still discards some discriminant information [45]. Actually, some 2D-LDA 
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based algorithms do not perform well over some challenging datasets. For instance, both 

“Unilateral 2D-LDA, Left” and “Unilateral 2D-LDA, Right” do not have satisfied performances 

on “CMU-NearFrontalPose-Expression” and “CMU-11-Poses” no matter if NCMC or NNC is 

used, and “Unilateral 2D-LDA, Right” does not perform well over “CMU-Illumination-Frontal” 

using NCMC. However, “Bilateral 2D-LDA” would perform more stable. It outperforms some 

1D-LDA based algorithms on “CMU-Illumination-Frontal” dataset, and it performs the best 

especially when only two samples for each class are used for training as shown in Fig. 5 (a)~(b) 

and Fig. 8.  

 

From the experimental results, it is found that the performance of 2D-LDA is sometimes 

sensitive to the final classifier. As indicated by table 3 and Fig. 6~Fig.8, most 2D-LDA based 

algorithms could improve their recognition performances obviously if NNC rather than NCMC is 

used. In contrast, the 1D-LDA based algorithms are less sensitive. For Fisherface, NCMC may 

be more preferred, but for regularized LDA, using NNC would be a little better. However, it does 

not mean the 2D-LDA based algorithms would outperform the 1D-LDA based algorithms if 

NNC is employed 

Table 3. Best Average Recognition Rate on FERET 

Final Classifier NCMC NNC 

Number of Training Samples for Each Class 2 3 2 3 

1D-LDA, Fisherface 63.51% 76.20% 63.59% 71.61% 

1D-LDA, Nullspace LDA 76.10% 85.10% 76.10% 85.10% 

1D-LDA, Regularized LDA 77.35% 87.53% 77.37% 88.27% 

Bilateral 2D-LDA 75.84% 83.33% 76.29% 87.14% 

Unilateral 2D-LDA, Right 65.63% 70.12% 68.78% 81.18% 

Unilateral 2D-LDA, Left 73.51% 81.29% 72.51% 83.10% 
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(a) Final Classifier: NCMC (b) Final Classifier: NNC 

Fig. 6. Recognition Rate vs. Number of Training Samples on “CMU-NearFrontalPose-Expression” 
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(a) Final Classifier: NCMC (b) Final Classifier: NNC 

Fig. 7. Recognition Rate vs. Number of Training Samples on “CMU-Illumination-Frontal” 
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(a) Final Classifier: NCMC (b) Final Classifier: NNC 

Fig. 8. Recognition Rate vs. Number of Training Samples on “CMU-11-Poses” 
 

 

Hence there is no convinced evidence that the 2D-LDA based algorithms could always 

outperform the 1D-LDA based algorithms if the number of training samples for each class is 

small, and it also breaks the existing view on this issue [30][37]. 

 

In fact, some experimental results above also agree with some published results [30][33][37][38] 

that some 2D-LDA based algorithms like “Bilateral 2D-LDA” and “Unilateral 2D-LDA, Right” 

are reported to always get superior performance to Fisherface. However it is not always true due 

to the experimental results shown on “CMU-Illumination-Frontal”, in which images are only 

purely undergoing illumination. Compared with the published papers, more extensive 

comparisons have been provided between 1D-LDA and 2D-LDA, by comparing the 
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performances of them depending on the number of discriminant features used and the number of 

training samples for each class. Moreover, some existing views are broken. We also find that just 

a small regularization term could thoroughly enhance the performance of 1D-LDA like 

Regularized LDA. The comparison between Regularized LDA and the 2D-LDA based 

algorithms has not been reported before. 

 

 

5.   Summarization 

 

In order to investigate when vector-based linear discriminant analysis would be better, we 

present theoretical and experimental analyses between 1D-LDA and 2D-LDA. The findings are 

briefly listed below: 

(1) It is found that 2D-LDA would also be confronted with the heteroscedastic problem, and it 

would be more serious for 2D-LDA than 1D-LDA. 

(2) Relationship between 1D-LDA and 2D-LDA are explored and modeled in equalities. It gives 

a new way to find 2D-LDA actually loses the covariance information between different local 

structures, while 1D-LDA could preserve such information. It is further found that the Fisher 

score of 1D-LDA is higher than the one gained by 2D-LDA in the extreme case. 

(3) For two-class classification problem, the sufficient conditions for 2D-LDA being Bayes 

optimal are given. Discussions between 1D-LDA and 2D-LDA are also presented when those 

sufficient conditions are satisfied or not, supporting the other findings in this paper. 

(4) Existing views are broken in the experiment and it is found there is no convinced evidence 

that 2D-LDA would always outperform 1D-LDA when the number of training samples for each 

class is small or when the number of discriminant features used is small. Sometimes 1D-LDA, 

especially Regularized LDA, performs the best. Besides the choice of final classifier, it is also 

found that selecting the appropriate number of features would be a more serious problem in 2D-

LDA than that in 1D-LDA. 

 

However, it is known that 2D-LDA could always avoid the singularity problem of within-class 

scatter matrix while 1D-LDA would be always confronted with it in practice. Moreover, for 2D-

LDA each column or each row of an image could be treated as a training sample while only the 

whole image could be a sample for 1D-LDA. Hence, from the bias estimation point of view, 2D-

LDA might be more stable since more samples are actually used for learning. 
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Finally, it is stressed that this paper does not aim to declare which algorithm is the best. We 

investigate into the question by presenting a fair comparison between 1D-LDA and 2D-LDA in 

both theoretical and experimental sense. The goal of the extensive comparisons is to explore the 

properties of 2D-LDA, present its disadvantages and some inherent problems, and find when 1D-

LDA would be better. Even though some 2D-LDA based algorithms do not perform as well as 

some standard 1D-LDA based algorithms in the experiments, it still does not mean 2D-LDA is 

not effective sometimes. 

 

In conclusion, our findings indicate that using the matrix-based feature extraction technique 

would not always result in a better performance than using the traditional vector-form 

representation. The traditional vector-form representation is still useful. 

 

 

Appendix-1: Proof of Lemma 1 

As indicated at the beginning of section 3, we note that TTk
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Using equalities (6)~(7) and equalities (8), (11), the lemma is then proved.                                □ 

 

 

Appendix – 2: Proof of Theorem 2 
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Based on equalities (21)~(23), substituting the estimates of the means and the covariance 

matrices and eliminating the ineffective ingredients that do not affect the classification result in 

formula (21) would yield the following Bayes classifier: 
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Finally, under the condition (3) in the theorem, i.e., ))()(())()(( 2121 jjsiis ji UUUUU −=−=∆ , 

coljiji ,,1,, L=≠∀ , we then obtain the declaration that X 1C∈  if and only if 
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else X 2C∈ . 

Next, the following shows why 2D-LDA in terms of equality (3) would be a Bayes optimal 

feature extractor for two-class classification problem under the conditions indicated in theorem 2. 
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Secondly it is known that the optimal feature of 2D-LDA in terms of equality (3) for two-class 

classification problem would satisfy 0,)( 22122 >= −
opt

d
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optopt λλ wSSw . Hence we have: 
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Furthermore, it is easy to verify w
d

w col SS
~2 ⋅= . Comparing with equality (A.6), we then have 
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d
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It means the discriminant feature of 2D-LDA is in proportion to the Bayes optimal feature 

obtained in equality (A.6). They are the same except some scalar scaling under the conditions 

indicated by the theorem.                                                                                                               □ 
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