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Abstract

Recently, segmentation neural networks have been significantly improved by demon-
strating very promising accuracies on public benchmarks. However, these models are
very heavy and generally suffer from low inference speed, which limits their applica-
tion scenarios in practice. Meanwhile, existing fast segmentation models usually fail
to obtain satisfactory segmentation accuracies on public benchmarks. In this paper, we
propose a teacher-student learning framework that transfers the knowledge gained by a
heavy and better performed segmentation network (i.e. teacher) to guide the learning of
fast segmentation networks (i.e. student). Specifically, both zero-order and first-order
knowledge depicted in the fine annotated images and unlabeled auxiliary data are trans-
ferred to regularize our student learning. The proposed method can improve existing
fast segmentation models without incurring extra computational overhead, so it can still
process images with the same fast speed. Extensive experiments on the Pascal Context,
Cityscape and VOC 2012 datasets demonstrate that the proposed teacher-student learning
framework is able to significantly boost the performance of student network.

1 Introduction

Recently, segmentation performance has been lamdrastically improved in deep learning era,
where end-to-end segmentation networks [3, 21, 39] are developed to generate high-fidelity
segmentation maps on challenging real-world images [4, 5, 22]. For example, deeper and
higher-capacity ConvNets [8, 21, 40] are adopted in Fully Convolutional Network (FC-
N) to enhance its segmentation accuracies. Some researchers are dedicated to aggregating
informative contexts for local feature representation, which leads to advancement of seg-
mentation network architectures for boosting the segmentation accuracies. Meanwhile, a
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large body of research works focus on refining local segmentation results to obtain non-
trivial performance enhancement of segmentation networks. Some representative works in-
clude DeepLab-v2 [3], DilatedNet [36], CRF-CNN [16], DAG-RNN [29], PSPNet [39], etc.
In addition, some researchers also explore refining the low-level segmentation details (e.g.
sharper object boundaries and better segmentation accuracies for small-size objects) by ei-
ther adopting fully connected CRF as a post-processing module [3, 40] or by learning a
deconvolutional network on top of coarse prediction maps [23]. It’s interesting to see that
segmentation accuracies are progressively improved on public benchmarks, however, these
models become less likely to be applicable in real-world scenarios where short latency is
essential and computational resources are limited.

With the above concerns in mind, recent researchers start to ingest the recent advance-
ment of network architectures, and integrate them to develop faster segmentation networks.
Representative examples are ENet [24] and SegNet [2]. Although promising, their seg-
mentation accuracies are still bounded by the model capacity. In general, they fail to obtain
comparable segmentation accuracies compared to heavy and deep segmentation networks.
In this paper, we propose a novel framework to improve the performance of fast segmenta-
tion network without incorporating extra model parameters or incurring extra computational
overhead, and thus can keep the inference speed of the fast segmentation network to be un-
changed. To this end, we propose a novel teacher-student learning framework to make use
of the knowledge gained in a teacher network. Specifically, our framework intend to regular-
ize the student learning by the zero-order and first-order knowledge obtained from teacher
network on fine annotated training data. To distill more knowledge from teacher, we further
extend our framework by integrating the teacher-student learning on fine annotated training
data and unlabeled auxiliary data. Our experiments show that the proposed teacher-student
learning framework can boost the performance of student network by a large margin.

Our contribution is three-fold: (1) a novel teacher-student learning framework for im-
proving fast segmentation models, with the help of an auxiliary teacher network; (2) a joint
learning framework for distilling knowledge from teacher network based on both fine anno-
tated data and unlabeled data; and (3) extensive experiments on three segmentation datasets
demonstrating the effectiveness of the proposed method.

2 Related work
In the following, we review the literatures that are most relevant to our work, including
researches of architecture evolvement for semantic segmentation and knowledge distillation.
Accuracy Oriented Semantic Segmentation. This line of research covers most of pub-
lished literatures in semantic segmentation. In a nutshell, the goal is to significantly improve
the segmentation accuracy on public segmentation benchmarks. Following the definition of a
general segmentation network architecture in Shuai et al. [30], we categorize the literatures
to three aspects that improve the segmentation performance. In one aspect, performance
enhancement is largely attributed to the magnificent progress of pre-trained ConvNet [15]
[32] [31][8] [12], which is simply adapted to be the local feature extractor in segmentation
networks. The core of this progress is to obtain better ConvNet model on large-scale image
datasets (e.g. ImageNet [27] ) by training deeper or more complicated networks. Mean-
while, many researchers are dedicated to developing novel computational layers that are
able to effectively encode informative context into local feature maps. This research direc-
tion plays a significant role to enhance the visual quality of prediction label maps as well
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as to boost the segmentation accuracy. Representative works, such as DPN [20], CRF-CNN
[16] , DAG-RNN [30], DeepLab-v2 [3] , RecursiveNet [28], ParseNet [19], DilatedNet [36]
, RefineNet [17], PSPNet [39] formulated their computational layers to achieve effective
context aggregation, and they can significantly improve the segmentation accuracy on Pascal
VOC benchmarks. In addition, research endeavours have also been devoted to recovering
the detailed spatial information by either learning a deep decoder network [2][23] [34] or
applying a disjoint post-processing module such as fully connected CRF [14] [3][40]. These
techniques have collectively pushed the segmentation performance saturating on Pascal VOC
benchmarks1. The steady progress also calls for the unveiling of new and more challenging
benchmarks (e.g. Microsoft COCO [18] dataset). Although significant progress has been
made regarding to the visual quality of segmentation predictions, these models are usual-
ly computationally intensive. Thus, they are problematic to be directly applied to resource
constrained embedded devices and can not be used for real-time applications.

Fast Semantic Segmentation. Recently, another line of research emerges as of state-of-
the-art models achieve saturating segmentation accuracies on urban street images [4]. Its
goal is to develop fast segmentation models that has the potential to be applied in real-world
scenarios. For example, Paszke et al.[24] adopted a light local feature extraction network in
their proposed ENet, which can be run in real-time for moderate sized images (e.g. 500 x
500). Zhao et al. [38] developed the ICNet that only fed the heavy model with downsampled
input images, so the inference speed of ICNet remains competitively fast. One problem
of these works are that the performance of these models are not satisfactory due to their
lower capacity. In this paper, we propose to improve the performance of fast segmentation
networks by regularizing their learning with the knowledge learned by a heavy and accurate
teacher model. In this regard, this line of research is orthogonal and complementary to our
teacher-student learning framework.

Knowledge Distillation via Teacher-Student Learning. In image classification commu-
nity, knowledge distillation [6, 9, 13, 35, 37] has been widely adopted to improve the per-
formance of fast and low-capacity neural networks. Hinton et al. [9] pioneered to propose
transfer the “dark knowledge” from an ensemble of networks to a student network, which
leads to a significant performance enhancement on ImageNet 1K classification task [27].
Romero et al. [25] further extended the knowledge transfer framework to allow it happens
in intermediate feature maps. Their proposed FitNet[25] allowed the architecture of student
network to go deeper and more importantly to achieve better performance. Huang et al. [13]
proposed to regularize the student network learning by mimicking the distribution of acti-
vations of intermediate layers in a teacher network. In addition, knowledge distillation has
also been sucessfully in pedestrian detection [11] and face recognition [33] as well. Recent-
ly, Ros et al. [26] explored and discussed different knowledge transfer framework based on
the output probability of a teacher deconvolutional network, and they observed segmentation
accuracy improvement of student networks. Our methods differ from it in the following as-
pects: (1) both zero-order and first-order knowledge from teacher models are transferred to
student; and (2) unlablled auxiliary data are used to encode the knowledge of teacher models,
which is further transferred to the student models and improve their performance.

1 More than 85% mean IOU has been achieved by state-of-the-art segmentation models.
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3 Approach
Our approach involves two kind of deep networks: student network and teacher network.
The student network is a deep network for segmentation with a shallower architecture. Thus
it can segment images with a fast speed. In contrast, the teacher network is a deeper network
with more complex architectures. Thus, it typically performs better than the student network
in the term of segmentation accuracy, but has a slower segmentation speed. In this work,
we propose a teacher-student learning framework to improve the student learning with the
guidance of a teacher network. The proposed overall framework is summarized in Figure 1.
In the following, we discuss it in detail.

3.1 Teacher-student learning for fine annotated data
Here, we describe how to facilitate the learning of student network with the help of a teacher
network based on the provided fine annotated training data. Let’s denote the student network
and teacher network as S and T , respectively. In order to transfer enough informative knowl-
edge from teacher network for learning a robust student network, we formulate the objective
function for our student-teacher learning as

L = LS + r(S,T ) (1)

where LS indicates the traditional segmentation (cross entropy) loss for the employed student
network. r(S,T ) is a function indicating the knowledge bias between the learned student
network and teacher network. It serves as a regularization term for regularizing our student
learning. In this term, the student and teacher networks are connected together and the
knowledge can be distilled from teacher network T to student network S by minimizing L.
Here, we define r(S,T ) as

r(S,T ) = αLp(S,T )+βLc(S,T ) (2)

Lp is the probability loss defined as Lp(S,T ) = ∑i=1,2,...,I ∑x∈G ‖pi
S(x)−pi

T (x)‖2
2, where

I is the batch size of model’s input and pi
S(x),p

i
T (x) ∈ Rn are the probability outputs of the

student and teacher network at pixel x in the image region G. It is defined in the way such
that the probability output of the student network is similar with that of the teacher network.
This function can capture the zero-order knowledge between different segmentation outputs.

In complement to Lp, term Lc is used to capture the first-order knowledge between out-
puts of student and teacher network. We formulate it as ∑i=1,2,...,I ∑x∈G ‖ci

S(x)− ci
T (x)‖2

2,
where I is the batch size of model’s input and the consistence map c is defined as ci

·(x) =
∑y∈B(x) ‖l(y)− l(x)‖2

2. Here, B(x) indicates the 8-neighborhood of pixel x and l is the logits
output of the corresponding network. This term is employed to ensure that the segmented
boundary information obtained by student and teacher networks can be closed with each
other. By this way, the teacher network provides some useful fist-order knowledge for regu-
larizing our student network learning.

Overall, the above two loss terms (i.e., Lp and Lc) constrain the student network learn-
ing from different perspectives. They complement well with each other for improving the
learning of shallowed student network. Our scheme has the following characteristics for seg-
mentation. First, it can improve the student segmentation network without incurring extra
computational overhead. Second, both the zero-order and first-order knowledge are trans-
ferred from teacher to guide our student learning.
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Figure 1: The detailed architecture of our teacher-student learning framework. In the frame-
work optimization, only the student networks are updated by back-propagation (indicated
by red dashed lines) and the teacher network are fixed. For transferring zero-order and first-
order knowledge, we generate the probability maps and consistency maps using the logits
output of the teacher and student networks.

3.2 Teacher-student learning with unlabeled data
In addition to the fine annotated images in the training set, we can also obtain a large number
of unlabeled images from the Internet for the network training. However, it is unrealis-
tic to annotate all the available images as manually annotating image for segmentation in
a pixel-level is quite time consuming. Here, we illustrate that our teacher-student learning
framework can be easily extended to make use of these unlabeled images for further im-
proving the learning of student network. In the framework, we treat the segmentation results
obtained by the teacher network as the ground truth segmentations for the unlabeled images
and then conduct our teacher-student learning on the unlabeled data. Therefore, here we have
a total of two teacher-student learning, one is conducted on the manually labeled training set
with fine annotations and the other is conducted on the unlabeled data with noisy annotations
generated by the teacher network. Both the teacher-student learning can be learned jointly.
Specifically, the objective function for our teacher-student learning with both labeled and
unlabeled data can be formulated as

L = LLabeledData +λLunlabeledData (3)

where LLabeledData is the loss for the teacher-student learning on the fine annotated training
data. LunlabeledData indicates the loss for the teacher-student learning on the unlabeled data.
Here, we use parameter λ to control the balance of teacher-student learning for different
data. Finally, our teacher-student learning with unlabeled data is achieved by minimizing the
loss L defined in (3).

4 Experiments

4.1 Ablation study
In this section, we perform ablation studies on Pascal Context [22] to justify the effective-
ness of our technical contributions in Section 3. We adopt state-of-the-art segmentation
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architecture DeepLab-v2[3] as our teacher and student network in the ablation analysis. In
detail, DeepLab-v2 is a stack of two consecutive functional components: (1), a pre-trained
ConvNet for local feature extraction (feature backbone network); and (2), Atrous Spatial
Pyramid Pooling (ASPP) network for context aggregation. In general, the model capaci-
ty of DeepLab-v2 largely correlates with that of feature backbone network. Thus in our
ablation experiments, we instantiate our teach network with a higher capacity feature back-
bone network – ResNet-101 [8], and employ a recent more computational efficient network
MobileNet[10] in student network.2

Dataset:Pascal Context [22] has 10103 images, out of which 4998 images are used for
training. The images are from Pascal VOC 2010 datasets, and they are annotated as pixelwise
segmentation maps which include 540 semantic classes (including the original 20 classes).
Each image has approximately 375× 500 pixels. Similar to Mottaghi et al. [22], we only
consider the most frequent 59 classes in the dataset for evaluation.

Implementation Details: The segmentation networks are trained by batch-based s-
tochastic gradient descent with momentum (0.9). The learning rate is initialized as 0.1, and
it is dropped by a factor of 10 after 30, 40 and 50 epoches are reached (60 epoches in total).
The images are resized to have maximum length of 512 pixels, and they are zero padded to
have square size to allow for batch processing. Besides, general data augmentation methods
are used in network training, such as randomly flipping the images, randomly performing
scale jitter (scales are between 0.5 to 1.5 ), etc. α and β in Equation 2 are empirically set
to 4 and 0.4 respectively.we have validate that alpha and beta need to make the probability
loss,consistency loss and crose entropy on the same order of magnitude. We randomly take
10k unlabeled images from COCO unlabel 2017 dataset[18], and use the teacher segmenta-
tion network to generate their pseudo ground truth pixelwise maps. To reduce noises, pixels
will not be annotated if their corresponding class likelihood is less confident than 0.7. We im-
plement the proposed network architecture in Tensorflow [1] framework and the algorithms
are run on a GPU 1080Ti device.

Results: The results of ablation studies are shown in Table 1, where we can observe
that the teacher network achieves 48.5% mIoU 3 at 16.7 fps and the student network yields
40.9% mIoU at 46.5 fps. Not surprisingly, teacher network significantly outperforms its stu-
dent counterpart in terms of segmentation accuracy. In contrast, student network can run in
real-time, and it has the potential to be applied in real-time application scenario. They are a
reasonably appropriate teacher-student setting in our ablation experiments. As expected, the
segmentation accuracy of our student network is improved by 1.4% to 42.3% mIOU if we
transfer the possibility knowledge from teacher network by only considering Lp loss in Equa-
tion 2 i.e., the case of α = 4.0,β = 0. It demonstrates that the probability distribution output
by teacher network indeed carry informative knowledge for improving the learning of our
student network. We can observe another promising 0.5% mIOU gain if the consistency loss
Lc is further included. This encouraging result indicates that the proposed consistency loss
is able to positively guiding the student network learning. Finally, when we use the 10K un-
labeled images to further facilitate our teacher-student learning, we can observe a significant
mIOU improvement (1.0%). This demonstrates that the knowledge gained by the teacher
network can be embedded in unseen data, via which the knowledge is implicitly distilled to

2This simply represents a typical teacher-student pair, where teacher is a heavy and accurate segmentation
network and student, in the contrary, is an efficient and less-accurate network.

3We note that the reported mIoU (48.5%) is much higher than that in [3] (44.7%). This is because that our
model has been pre-trained on the MS-COCO dataset. We also find that freezing the batch normalization statistics
can benefit our model training significantly, which mainly contributes to the performance superiority.

Citation
Citation
{Chen, Papandreou, Kokkinos, Murphy, and Yuille} 2018

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, and Adam} 2017

Citation
Citation
{Mottaghi, Chen, Liu, Cho, Lee, Fidler, Urtasun, and Yuille} 2014

Citation
Citation
{Mottaghi, Chen, Liu, Cho, Lee, Fidler, Urtasun, and Yuille} 2014

Citation
Citation
{Lin, Maire, Belongie, Hays, Perona, Ramanan, Doll{á}r, and Zitnick} 2014

Citation
Citation
{Abadi, Agarwal, Barham, Brevdo, Chen, Citro, Corrado, Davis, Dean, Devin, etprotect unhbox voidb@x penalty @M  {}al.} 2016

Citation
Citation
{Chen, Papandreou, Kokkinos, Murphy, and Yuille} 2018



XIE ET. AL: IMPROVING FAST SEGMENTATION WITH TEACHER-STUDENT LEARNING 7

Model mIOU(%) speed (FPS)

ResNet-101-DeepLab-v2 (teacher) [3] 48.5 16.7

MobileNet-1.0-DeepLab-v2 40.9 46.5
MobileNet-1.0-DeepLab-v2 (Lp ) 42.3 46.5
MobileNet-1.0-DeepLab-v2 (Lp +Lc ) 42.8 46.5
MobileNet-1.0-DeepLab-v2 (Lp +Lc+UnlabeledData) 43.8 46.5

FCN-8s [21] 37.8 N/A
ParseNet [20] 40.4 N/A
UoA-Context + CRF [16] 43.3 < 1
DAG-RNN [30] 42.6 9.8
DAG-RNN + CRF [30] 43.7 < 1

Table 1: Comparison results on Pascal Context dataset. ’MobileNet-1.0-DeepLab-v2 (Lp)’
indicates that probability loss is considered in the loss for knowledge transfer; ’MobileNet-
1.0-DeepLab-v2 (Lp +Lc)’ indicates that probability loss and consistency loss are both used
for knowledge transfer; ’MobileNet-1.0-DeepLab-v2 (Lp +Lc+UnlabeledData)’ represents
that the unlabeled images are used in the knowledge transfer.

Figure 2: Evaluation on the influence of parameter λ .

the student network. Overall, the performance of student has been largely improved after di-
gesting the knowledge from teacher with the proposed teacher-student learning framework.
In comparison with state-of-the-arts, our enhanced student networks achieve very competi-
tive results both in terms of inference efficiency as well as segmentation accuracy. We also
experimentally find that our system is quite robust to the setting of some parameters like the
rate of LunlabeledData in equation 3. For example, if we set λ to 0.1 or 1, the performance will
only drop slightly (no more than 0.1%), which is illustrated in Figure 2.

In Figure 3, we present several interesting qualitative results. We can easily observe that
additionally considering the information bias r(S,T ) in student loss function significantly
improves the segmentation quality of student network. Specifically, the semantic predictions
for "stuff" classes are smoother, and boundaries for "thin" classes (e.g. objects) are slightly
shaper. Moreover, those prediction errors can be further decreased when more unlabeled
images are incorporated into student network training.
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Figure 3: Some qualitative results on the Pascal Context dataset. The results illustrate that
the proposed teacher-student learning framework can efficiently mine informative knowl-
edge from teacher network to guide the learning of student network, and thus improve the
performance of student network for segmenting objects. The figure is best viewed in color.

Backbone (Student) Base(mIOU(%)) Enhanced(mIOU(%)) speed (FPS)

MobileNet-0.5 36.7 41.1 77.7
MobileNet-0.75 39.2 43.0 61.7
MobileNet-1.0 40.9 43.8 46.5

Table 2: Results of using different student networks on Pascal Context validation dataset.
The same teacher network (ResNet-101-DeepLab-v2) is used to all three student networks.

4.2 More evaluations on the student network.
Given a pair of teacher and student networks, our teacher-student learning framework aims
at mining informative knowledges from teacher network to improve the student learning.
Here, we provide some experimental clues on how the students affects our teacher-student
learning. Thus, we fix the teacher network, and instantiate three student networks whose
performances (segmentation accuracy and speed) are significantly different. Specifically,
three different DeepLab-v2 instances with MobileNet-1.0, MobileNet-0.75, and MobileNet-
0.5 as the backbone are employed to form the student networks.

The detailed evaluation results are presented in Table 2, where the evaluated three teacher-
student network settings have different performance gaps (7.6%, 9.3% and 11.8% mIoU). As
expected, transferring knowledge from teacher network always improve the performances of
students. Specifically, the segmentation accuracies of these three students are non-trivially
improved by 2.9%, 3.8% and 4.4% mIOU, respectively. We can observe that the larger per-
formance gaps between the teacher and student is, the more knowledge is gained, and thus
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Model mIoU (%) speed (FPS)

SegNet [2] 56.3 19.6
ResNet-DeepLab-v2 [3] 70.9 7.4
PSPNet [39] 80.1 6.6

MobileNet-1.0-DeepLab-v2 67.3 20.6
MobileNet-1.0-DeepLab-v2 (Enhanced) 71.9 20.6

Table 3: Comparison with state-of-the-arts on Cityscapes validation set. ALL the inference
speeds on this set are evaluated for the segmentation of 1024×512-sized images.

the higher performance improvement is observed for the student network. This observation
suggests that the performance of a student network (e.g. MobileNet-1.0-DeepLab-v2) can
be further improved by using a stronger teacher model.

4.3 Comparison with state-of-the-arts
To further demonstrate the effectiveness of the proposed teacher-student learning approach,
we test our methods on Cityscape dataset and Pascal VOC2012 dataset. In the following
experiments, we use MobileNet-1.0-DeeplabV2 and ResNet-101-Deeplab-v2 as our student
and teacher, respectively. It’s important to note that our learning framework is versatile to
different teacher and student models, so the reported results can be simply improved by using
either a stronger teacher or a better student model.

4.3.1 Experiments on Cityscapes dataset

The Cityscapes[4] is a large-scale dataset for semantic segmentation. This set is captured
from the urban streets distributed in 50 cities for the purpose of understanding urban streets.
The captured images have a large resolution of 2048×1024. For evaluation, a total of 5000
images are selected to be annotated in a fine scale and 20000 images are selected to be
annotated coarsely. We follow the evaluation protocol in [4], where 2975, 500, and 1525 of
the fine annotated images are selected to train, validate and test the model, respectively.

The detailed comparison results are presented in Table 3. As expected, by employing
the proposed teacher-student learning framework, the performance of student network is im-
proved to 71.9% mIoU, which is about 4.6% mIoU higher than the original student network.
We can also note that the student network enhanced by our teacher-learning algorithm can
even perform better than the employed teacher network (71.9 vs. 70.9), which demonstrates
the effectiveness of our proposed teacher-student learning framework for mining informa-
tive knowledge to guide the learning of student network. We also observe that the enhanced
student network can segment images at a fast speed with a good accuracy and it outperforms
the SegNet [2] in terms of segmentation accuracy and speed.

4.3.2 Experiments on Pascal VOC2012

The Pascal VOC2012 dataset [5] consists 4369 images of 21 objects classes and a back-
ground class. For evaluation, the whole dataset is divided into training, validation, and test
sets, each of which has 1446, 1449, and 1456 images, respectively. Following the experiment
setup in SDS [7], the training set are extended to a set with 10,582.
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Model mIoU(%) speed (FPS)

CRF-RNN[40] 72.9 7.6
Multi-scale[36] 73.9 16.7
ResNet-101-DeepLab-v2[3] 75.2 16.7

MobileNet-1.0-DeepLab-v2 67.3 46.5
MobileNet-1.0-DeepLab-v2 (Enhanced) 69.6 46.5

Table 4: Comparison with state-of-the-arts on VOC 2012 validation set.

The detailed comparison results are presented in Table 4. As can be seen, the student
model enhanced by the proposed teacher-student learning framework can obtain a mIoU of
69.6% on this set, which outperforms the original student network by a margin of 2.3%. As
compared with other state-of-the-arts [36, 40], our enhanced model has large advantage in
terms of speed.

5 Conclusion
In this paper, we have proposed a teacher-student learning framework for improving the
performance of existing fast segmentation models. In the framework, both the zero-order
and first-order knowledges gained by a teacher network is distilled to regularize our stu-
dent learning through both fine annotated and unlabeled data. Our experiments show that
the proposed learning framework can largely improve the accuracy of student segmentation
network without incurring extra computational overhead. The proposed framework mainly
mine knowledge from one single teacher network for the student learning. In the future, we
would explore multiple teachers based teacher-student learning framework.
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