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1 What Do You Learn from This Note

We still observe the unit vectors we have introduced in Chapter 1:

e⃗1 =

 1
0
0

 , e⃗2 =

 0
1
0

 , e⃗3 =

 0
0
1

 . (1)

Question: Have you tried to compute the inner product like e⃗1 · e⃗2,
e⃗1 · e⃗3 and e⃗2 · e⃗3?

You will actually find that e⃗1 · e⃗2 = 0, e⃗1 · e⃗3 = 0 and e⃗2 · e⃗3 = 0. That is
the three standard basis vectors are orthogonal, more precisely orthonormal.
We have a special name for such a type of basis called orthogonal (or-
thonormal) basis. We will comprehensively introduce this in this lecture
note.

Basic Concept：orthogonal set (正交集), orthogonal basis (正交基), Or-
thogonal Matrix (正交矩阵), Orthogonal Projection (正交投影), Gram–
Schmidt Process (格拉姆-施密特正交化)

2 Orthogonal Basis

2.1 Definition

Definition 1 (orthogonal set (正交集)). Let S = {v⃗1, . . . , v⃗r} ⊂ Rn −
{⃗0}. We say S is an orthogonal set iff for any i, j = 1, . . . , r and i ̸= j, we
have v⃗i⊥v⃗j. Furthermore, if v⃗1, . . . , v⃗r are all unit vectors then S is called an
orthonormal set.
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Example: Textbook P.384.

Definition 2 (orthogonal basis (正交基)). A basis B of Rn which is
also orthogonal is called an orthogonal basis. Furthermore, B is called an
orthonormal basis if it is orthonormal.

Example: The standard basis E = {e⃗1, . . . , e⃗n} is an orthonormal basis of Rn.

Example: Textbook P.389.

2.2 Some Properties

Connection between orthogonal set & linearly independent:

Theorem 3. Let S = {v⃗1, . . . , v⃗r} be an orthogonal set. Then S is linearly
independent.

Proof. Let c1, . . . , cr be scalars. Suppose that 0⃗ = c1v⃗1+ · · ·+ crv⃗r. Then for
each i = 1, . . . , r, we have

0 = v⃗i · 0⃗ = v⃗i · (c1v⃗1 + · · ·+ crv⃗r) = c1(v⃗i · v⃗1) + · · ·+ cr(v⃗i · v⃗1) = ci(v⃗i · v⃗i).

Since v⃗i · v⃗i ̸= 0, we must have ci = 0 and the result follows.

Orthogonal Matrix (正正正交交交矩矩矩阵阵阵):

Theorem 4. Let U = (v⃗1 · · · v⃗r) ∈ Rn×r. Then
1. {v⃗1, . . . , v⃗r} is orthogonal iff UTU is invertible and diagonal;
2. {v⃗1, . . . , v⃗r} is orthonormal iff UTU = Ir.

Proof. 1.

{v⃗1, . . . , v⃗r} is orthogonal.

⇐⇒
[
UTU

]
ij
= v⃗Ti v⃗j = v⃗i · v⃗j =

{
||v⃗i|| ̸= 0 if i = j;
0 otherwise.

⇐⇒ UTU is invertible and diagonal.

2. Similar to 1..
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Definition 5 (orthogonal matrix). A matrix U ∈ Rn is said to be
orthogonal iff UTU = In (or UT = U−1).

Example: For any θ ∈ R,
(

cos θ − sin θ
sin θ cos θ

)
is orthogonal.

Theorem 6.
1. In is orthogonal.
2. If U ∈ Rn is orthogonal then so is U−1.
3. If U1 and U2 ∈ Rn are orthogonal then so is U1U2.
(So the set of orthogonal matrices of size n is a group under multiplication.)

Proof. Easy, left as an exercise.

Why is orthogonal basis useful?

Theorem 7. Let B = {⃗b1, . . . , b⃗n} be an orthogonal basis of Rn. Then for
any v⃗ ∈ Rn we have

[v⃗]B =

(
(v⃗ · b⃗1)
(⃗b1 · b⃗1)

· · · (v⃗ · b⃗n)
(⃗bn · b⃗n)

)T

.

So if B is orthonormal, then

[v⃗]B =
(
(v⃗ · b⃗1) · · · (v⃗ · b⃗n)

)T
.

Proof. Suppose [v⃗]B = (c⃗1 · · · c⃗n)
T . Then for i = 1, . . . , n, we have

v⃗ · b⃗i = (c⃗1⃗b1 + · · ·+ c⃗n⃗bn) · b⃗i = c⃗1(⃗b1 · b⃗i) + · · ·+ c⃗n(⃗bn · b⃗i) = c⃗i(⃗bi · b⃗i).

So c⃗i =
(v⃗·⃗bi)
(⃗bi ·⃗bi)

.

Example: Textbook P.385.
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Theorem 8. Let B = {⃗b1, . . . , b⃗n} be an orthonormal basis of Rn. Then for
any u⃗, v⃗ ∈ Rn,
1. u⃗ · v⃗ = [u⃗]B · [v⃗]B;
2. ||v⃗|| = ||[v⃗]B||;
3. d(u⃗, v⃗) = d([u⃗]B, [v⃗]B).
This means the coordinate isomorphism with respect to B preserves dot
product, norm and distance, in other word, the geometric structure of Rn

is preserved.

Proof. 1.

[u⃗]B · [v⃗]B = (u⃗ · b⃗1)(v⃗ · b⃗1) + · · ·+ (u⃗ · b⃗n)(v⃗ · b⃗n)
=

(
u⃗ · (v⃗ · b⃗1)⃗b1

)
+ · · ·+

(
u⃗ · (v⃗ · b⃗n)⃗bn

)
= u⃗ ·

(
(v⃗ · b⃗1)⃗b1 + · · ·+ (v⃗ · b⃗n)⃗bn

)
= u⃗ · v⃗

2. and 3. are derived from 1. directly.

Theorem 9. (u⃗1 · · · u⃗n) is orthogonal iff {u⃗1, . . . , u⃗n} is an orthonormal
basis.

Theorem 10.
Let B be an orthonormal basis. Then B′ is an orthonormal basis iff [B′]B is
orthogonal.

Proof. Suppose that B′ = {b′1, . . . , b′n}. Then

B′ is orthonormal. ⇔ {b′1, . . . , b′n} is orthonormal.

⇔ {[b′1]B, . . . , [b′n]B} is orthonormal.

[by Theorem 8]

⇔ ([b′1]B · · · [b′n]B) is orthogonal.
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3 Orthogonal Projection (正正正交交交投投投影影影)

注：下面的要求大家完全掌握证明。

Theorem 11 (The Orthogonal Decomposition Theorem). Let W be s sub-
space of Rn. Then each y⃗ in Rn can be written uniquely in the form

y⃗ = ˆ⃗y + z⃗,

where ˆ⃗y is in W and z⃗ is in W⊥. In fact, if {u⃗1, · · · , u⃗p} is any orthogonal
basis of W , then

ˆ⃗y =
y⃗ · u⃗1

u⃗1 · u⃗1

u⃗1 + · · ·+ y⃗ · u⃗p

u⃗p · u⃗p

u⃗p

and
z⃗ = y⃗ − ˆ⃗y.

Proof. Sketch of the proof:

1. Prove ˆ⃗y ∈ W (Linear combination of all basis in W )

2. Prove z⃗ ∈ W⊥ (z⃗⊥u⃗i, for all u⃗i)

3. Prove the uniqueness of the decomposition.

Definition 12 (orthogonal projection). We say the orthogonal projection of
y⃗ onto a subspace W is

projW y⃗ =
y⃗ · u⃗1

u⃗1 · u⃗1

u⃗1 + · · ·+ y⃗ · u⃗p

u⃗p · u⃗p

u⃗p

where {u⃗1, · · · , u⃗p} is any orthogonal basis of W .

Theorem 13. If {u⃗1, · · · , u⃗p} is any orthonormal basis of a subspace W of
Rn, then

projW y⃗ = (y⃗ · u⃗1)u⃗1 + · · ·+ (y⃗ · u⃗p)u⃗p.

If U = [u⃗1, · · · , u⃗p] then
projW y⃗ = UUT y⃗.

If we replace the subspace W in the above theorem by a special subspace
L = span{u⃗}, we can still have:
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Theorem 14. For any vector y⃗ ∈ Rn, we can have

projLy⃗ =
y⃗ · u⃗
u⃗ · u⃗

,

and z⃗ is orthogonal to u⃗ in Rn.
We call projLy⃗ the orthogonal projection of y onto L.

Theorem 15 (The Best Approximation Theorem). Let W be a subspace of
Rn, y⃗ be any vector in Rn. Then projW y⃗ is the closet point in W to y⃗, in the
sense that

||y⃗ − projW y⃗|| 6 ||y⃗ − v⃗||

for all v⃗ in W distinct from ˆ⃗y.

Proof. Since
y⃗ − v⃗ = y⃗ − projW y⃗ + projW y⃗ − v⃗,

and y⃗ − projW y⃗ ∈ W⊥ and projW y⃗ − v⃗ ∈ W , so

||y⃗ − v⃗||2 = ||y⃗ − projW y⃗||2 + ||projW y⃗ − v⃗||2.

That is
||y⃗ − v⃗||2 > ||y⃗ − projW y⃗||2
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4 Where to use the Best Approximation The-

orem

Question: We just do nothing when the matrix equation Ax⃗ = b⃗
has no solution in real scenarios?

NO!!!NO!!!NO!!!! Let A ∈ Rm×n and b⃗ ∈ Rm. If there is no solution
for the matrix equation Ax⃗ = b⃗, we are still required to find x⃗ ∈ Rn such
that Ax⃗ is the best approximation of b⃗ in some sense. A feasible approach
to this problem is to find x⃗ such that the distance between b⃗ and Ax⃗ is as
small as possible. We formulate this idea as follows:

Definition 16 (the least–squares solution (version 1)). Let A ∈
Rm×n and b⃗ ∈ Rm. Then a least–squares solution of Ax⃗ = b⃗ is an ˆ⃗x ∈ Rn

such that
||⃗b− Aˆ⃗x|| 6 ||⃗b− Ax⃗||

for all x⃗ ∈ Rn. The distance d(⃗b, Aˆ⃗x) = ||⃗b−Aˆ⃗x|| is called the least–squares

error of Ax⃗ = b⃗.

Define W = Col(A). Notice that w⃗ = Ax⃗ for some x⃗ ∈ Rn iff w⃗ ∈ W

and by Theorem 15, the closest vector to b⃗ among all vectors in W is the
orthogonal projection b⃗W of b⃗ onto W , which is unique. So Definition 16
can be recast equivalently as

Definition 17 (the least–squares solution (version 2)). Let A ∈
Rm×n and b⃗ ∈ Rm. Then a least–squares solution of Ax⃗ = b⃗ is an ˆ⃗x ∈ Rn

such that
Aˆ⃗x = b⃗W ,

where W = Col(A).

7



Question: How to compute the least-square solution?

The least–squares solution set of a matrix equation over R is identified
completely as follows:

Theorem 18. Let A ∈ Rm×n and b⃗ ∈ Rm. Then the least–squares solution
set of the equation Ax⃗ = b⃗ is precisely the solution set of the equation

ATAx⃗ = AT b⃗.

Proof. Define W = Col(A). Then

Aˆ⃗x = b⃗W . ⇐⇒ b⃗− Aˆ⃗x ∈ W⊥.

⇐⇒ b⃗− Aˆ⃗x ∈ Nul(AT ) [since W⊥ = Nul(AT )].

⇐⇒ AT (⃗b− Aˆ⃗x) = 0⃗.

⇐⇒ ATAˆ⃗x = AT b⃗.

So the result follows.

Examples: Textbook P.411, P.412, P.413.

Remark: If {a⃗1, . . . , a⃗n} is an orthogonal set then

b⃗W =
b⃗ · a⃗1
a⃗1 · a⃗1

a⃗1 + · · ·+ b⃗ · a⃗n
a⃗n · a⃗n

a⃗n.

So ˆ⃗x can be written down directly as

ˆ⃗x =

(
b⃗ · a⃗1
a⃗1 · a⃗1

· · · b⃗ · a⃗n
a⃗n · a⃗n

)T

.

Example: Textbook P.414.
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Question: What is the case when ATA is invertible?

If ATA is invertible then the matrix equation Ax⃗ = b⃗ has a unique least–
squares solution, namely (ATA)−1AT b⃗. But this is not always the case. The
next theorem gives a sufficient and necessary condition for ATA being invert-
ible.

Lemma 19. Let A ∈ Rm×n. Then
1. Nul(A) = Nul(ATA);
2. rank(A) = rank(ATA).

Proof. 1. Suppose that x⃗ ∈ Nul(A), namely Ax⃗ = 0⃗. Then ATAx = AT 0⃗ = 0⃗.
So x⃗ ∈ Nul(ATA), that is Nul(A) ⊆ Nul(ATA).

Conversely, suppose that x⃗ ∈ Nul(ATA), namely ATAx = 0⃗. Then

(Ax⃗) · (Ax⃗) = (Ax⃗)T (Ax⃗) = ||Ax⃗||2 = 0,

which forces that Ax⃗ = 0⃗. So x⃗ ∈ Nul(A) and Nul(ATA) ⊆ Nul(A).
2. By the rank & nullity Theorem,

rank(A) = n− dimNul(A) = n− dimNul(ATA) = rank(ATA).

Theorem 20. Let A = (⃗a1 · · · a⃗n) ∈ Rm×n. Then ATA is invertible iff
{a⃗1, . . . , a⃗n} is linearly independent.

Proof. Notice that ATA ∈ Rn. Then

ATA is invertible. ⇐⇒ rank(ATA) = n.

⇐⇒ rank(A) = n [by Lemma 4].

⇐⇒ dimCol(A) = dimSpan{a⃗1, . . . , a⃗n} = n.

⇐⇒ {a⃗1, . . . , a⃗n} is linearly independent.
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5 Constructing Orthogonal Basis by Gram–

Schmidt Process (格格格拉拉拉姆姆姆-施施施密密密特特特正正正交交交化化化)

Question: We have seen the usefulness of orthonormal/orthogonal
basis. But how can we generate them?

注：这里告诉我们怎样从一组向量集中构造正交基

We shall show this by the means of the Gram–Schmidt process.

Theorem 21 (the Gram–Schmidt process). Let {w⃗1, . . . , w⃗r} ⊆ Rn

be a linearly independent set. Then we can construct an orthogonal set
{v⃗1, . . . , v⃗r} ⊆ Rn such that

Span{v⃗1, . . . , v⃗r} = Span{w⃗1, . . . , w⃗r}.

Furthermore, by normalising {v⃗1, . . . , v⃗r}, we obtain an orthonormal set
{u⃗1, . . . , u⃗r} ⊆ Rn such that

Span{u⃗1, . . . , u⃗r} = Span{w⃗1, . . . , w⃗r}.

Proof. We shall prove the first part of the theorem by induction on r(下面，
我们用数学归纳法证明).

1. STEP 1: r = 1. Then we can take v⃗1 = w⃗1 and the result is trivial.

2. STEP 2: Inductive Hypothesis. Assume the result holds for r−1.

3. STEP 3: Inductive Step. Since {w⃗1, . . . , w⃗r−1} is linearly indepen-
dent, so by Inductive Hypothesis, we can construct an orthogonal
set {v⃗1, . . . , v⃗r−1} such that

Span{v⃗1, . . . , v⃗r−1} = Span{w⃗1, . . . , w⃗r−1}.

Now, v⃗i ̸= 0⃗, for all i = 1, . . . , r − 1, so

v⃗r = w⃗r −
w⃗r · v⃗1
v⃗1 · v⃗1

v⃗1 − · · · − w⃗r · v⃗r−1

v⃗r−1 · v⃗r−1

v⃗r−1

is well–defined. It is obvious that

Span{v⃗1, . . . , v⃗r} = Span{w⃗1, . . . , w⃗r},
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so v⃗r ̸= 0⃗. Also for i = 1, . . . , r − 1, we have

v⃗r·v⃗i = w⃗r·v⃗i−
w⃗r · v⃗1
v⃗1 · v⃗1

v⃗1·v⃗i−· · ·− w⃗r · v⃗r−1

v⃗r−1 · v⃗r−1

v⃗r−1·v⃗i = w⃗r·v⃗i−
w⃗r · v⃗i
v⃗i · v⃗i

v⃗i·v⃗i = 0.

Therefore {v⃗1, . . . , v⃗r} is an orthogonal set.

Finally, for i = 1, . . . , r, define u⃗i =
v⃗i
||v⃗i|| . Then {u⃗1, . . . , u⃗r} is orthonormal

and
Span{u⃗1, . . . , u⃗r} = Span{w⃗1, . . . , w⃗r}.

The Gram–Schmidt Process:
According to the proof of the above theorem, we can write down v⃗1, . . . , v⃗r

and u⃗1, . . . , u⃗r directly as follows:

v⃗1 = w⃗1,

v⃗2 = w⃗2 −
w⃗2 · v⃗1
v⃗1 · v⃗1

v⃗1,

...

v⃗i = w⃗i −
w⃗i · v⃗1
v⃗1 · v⃗1

v⃗1 − · · · − w⃗i · v⃗i−1

v⃗i−1 · v⃗i−1

v⃗i−1,

...

v⃗r = w⃗r −
w⃗r · v⃗1
v⃗1 · v⃗1

v⃗1 − · · · − w⃗r · v⃗r−1

v⃗r−1 · v⃗r−1

v⃗r−1,

u⃗1 =
v⃗1
||v⃗1||

, u⃗2 =
v⃗2
||v⃗2||

, . . . , u⃗r =
v⃗r
||v⃗r||

.

This process of writing down v⃗1, . . . , v⃗r and u⃗1, . . . , u⃗r is called the Gram–
Schmidt process, which can be used to creating an orthonormal basis for
any subspace of Rn.

Examples: Textbook P.402, P.405.
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QR Decomposition: Application of Gram–Schmidt:

An application of Gram–Schmidt is for decompose a matrix A whose
columns are linearly independent into the following forms:

A = QR,

where Q is a matrix whose columns form an orthonormal basis for ColA
and R is an upper triangular invertible matrix with positive entries onits
diagonal. More specifically, we have the following theorem:

Theorem 22 (QR factorization (QR分解)). Let A = (w⃗1 · · · w⃗r) ∈ Rm×r

and rank(A) = r. Then A can be factorised as A = QR, where Q ∈ Rm×r

such that the columns of Q form an orthonormal basis of Col(Q) and R ∈
Rr×r is an upper triangular matrix such that diagonal entries are positive.

Proof. The rank of A is r indicates that {w⃗1, . . . , w⃗r} is linearly indepen-
dent. So by Theorem 1, we can construct orthogonal set {v⃗1, . . . , v⃗r} and
orthonormal set {u⃗1, . . . , u⃗r} such that for i = 1, . . . , r,

w⃗i =
w⃗i · v⃗1
v⃗1 · v⃗1

v⃗1 + · · ·+ w⃗i · v⃗i−1

v⃗i−1 · v⃗i−1

v⃗i−1 + v⃗i, v⃗i = ||v⃗i||u⃗i,

That is

(w⃗1 · · · w⃗r) = (v⃗1 · · · v⃗r)


1 w⃗2·v⃗1

v⃗1·v⃗1 · · · w⃗r·v⃗1
v⃗1·v⃗1

0 1 · · · w⃗r·v⃗2
v⃗2·v⃗2

...
...

. . .
...

0 0
... 1


and

(v⃗1 · · · v⃗r) = (u⃗1 · · · u⃗r) diag(||v⃗1||, ||v⃗2||, . . . , ||v⃗r||).

So

(w⃗1 · · · w⃗r) = (u⃗1 · · · u⃗r)


||v⃗1|| 0 · · · 0
0 ||v⃗2|| · · · 0
...

...
. . .

...
0 0 · · · ||v⃗r||




1 w⃗2·v⃗1
v⃗1·v⃗1 · · · w⃗r·v⃗1

v⃗1·v⃗1
0 1 · · · w⃗r·v⃗2

v⃗2·v⃗2
...

...
. . .

...
0 0 · · · 1



= (u⃗1 · · · u⃗r)


||v⃗1|| w⃗2 · u⃗1 · · · w⃗r · u⃗1

0 ||v⃗2|| · · · w⃗r · u⃗2
...

...
. . .

...
0 0 · · · ||v⃗r||
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Take Q = (u⃗1 · · · u⃗r) and R =


||v⃗1|| w⃗2 · u⃗1 · · · w⃗r · u⃗1

0 ||v⃗2|| · · · w⃗r · u⃗2
...

...
. . .

...
0 0 · · · ||v⃗r||

 and the

result follows.

Example: Textbook P.406.
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