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1 What Do You Learn from This Note

In the last lecture, we have introduced the concept of determinant, but
we should ask ourselves the following questions (I think many of you are
already on this right track):

1. Why do we need to formulate determinant?

2. How can it be used for solving a matrix equation?

3. Any geometric interpretation about determinant?

We are now going to address all these questions.

注：对于理解上面问题的第三，现在看来有难度，所以本lecture note的
重点是掌握前两点，了解第3点。

Basic concept：adjugate of A(矩阵A的共轭)
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2 Adjugate of A(矩矩矩阵阵阵A的的的共共共轭轭轭)

We first clarify a notation. Let A = (⃗a1 · · · a⃗i · · · a⃗n) be a n× n square

matrix and b⃗ ∈ Rn. Then write Ai(⃗b) for the matrix (⃗a1 · · · b⃗ · · · a⃗n), that

is, Ai(⃗b) is resulted from A by replacing the i–th column of A by b⃗.

2.1 A formula for the inverse of a square matrix

Let A be the n × n square matrix. Define adjA, the adjugate of A(矩
阵A的共轭), to be the square matrix such that [adjA]ij = Cji (recall that
Cji is the (j, i)–th cofactor of A), i.e. Cji = (−1)j+i detAji. That is:

adjA =


C11 C21 · · · Cn1

C12 C22 · · · Cn2

· · · · · · · · · · · ·
C1n C2n · · · Cnn

 大家这里小心看看C的下标分布.

Let us compute the product (adjA)A. We have

[(adjA)A]ij =
n∑

k=1

[adjA]ikakj =
n∑

k=1

akjCki = detAi(⃗aj) =

{
detA if i = j
0 otherwise

That is

(adjA)A =

 detA · · · 0
...

. . .
...

0 · · · detA

 = (detA)In.

Similarly, AadjA = (detA)In. So for the case that A is invertible, we have(
1

detA
(adjA)

)
A = A

(
1

detA
(adjA)

)
= In.

Thus we obtain that A−1 = 1
detA

(adjA), which is a formula for computing
A−1.

Remark: This formula is used only in theoretical study in mathematics. It is
impractical to use it in practical computation of A−1, in which we normally
use the method introduced in Linear Algebra 8.

Example: Textbook P.203.
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2.2 Cramer’s Rule

We use the formula derived in the last section to give another formula
for the solution of Ax⃗ = b⃗ where A is a n × n matrix and is invertible, and
b⃗ ∈ Rn. Since A is invertible, we know that the equation Ax⃗ = b⃗ has a unique
solution, namely vecx = A−1⃗b. So

x⃗ = A−1⃗b =
1

detA
(adjA)⃗b.

Consider (adjA)⃗b, we have

[(adjA)⃗b]i =
n∑

j=1

[adjA]ijbj =
n∑

j=1

bjCji = detAi(⃗b),

which leads to

xi =
[(adjA)⃗b]i
detA

=
detAi(⃗b)

detA
.

Thus we obtain the so called Cramer’s Rule:

x⃗ = A−1⃗b =
1

detA

 detA1(⃗b)
...

detAn(⃗b)

 ,

which is only useful in theoretical study but not practical computation.

注：上面定理也就是说把b替换矩阵A的每一列，然后分别计算这些
矩阵的行列式，并把这些行列式的值按顺序构建出向量，最后对该向量
除detA即是矩阵方程的解。
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2.3 Determinants as Area(面面面积积积) and Volume(体体体积积积)

注：本节理解难度较大，以了解为主。
We shall give a geometric interpretation on determinants of matrices.

Theorem 1.
Let A = (⃗a1 a⃗2) be a 2 × 2 square matrix and S(A) denote the area of the
parallelogram determined by vertices 0⃗, a⃗1, a⃗2. Then

S(A) = | detA|.

Proof. The proof is again done by factorizing A into elementary matrices.

1. A is not invertible: Then a⃗1, a⃗2 are linearly dependent. The paral-
lelogram is degenerated to a line segment or a point. In this case,
S(A) = | detA| = 0.

2. A is invertible. Firstly, it is easy to verify that for any 2 × 2 square
matrix A and any elementary matrix E of size 2, we have

S(EA) = | detE|S(A).

(见板书解释和lecture note 11 定理7)
Now A is invertible means A = El · · ·E1 where E1, . . . , El are elemen-
tary matrices. So

S(A) = S(El · · ·E1 · I2)
= S(El−1 · · ·E1 · I2)| detEl|

· · ·
= | detEl| · · · | detE1|S(I2)
= | detEl| · · · | detE1| [Obviously, S(I2) = 1]

= | detEl · · · detE1|
= | detEl · · ·E1|
= | detA|.

Example: Find the area of the parallelogram with vertices a⃗0, a⃗1, a⃗2.
Solution S = S (⃗a1 − a⃗0 a⃗2 − a⃗0) = | det(⃗a1 − a⃗0 a⃗2 − a⃗0)|.
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For parallelepiped in R3, we have

Theorem 2.
Let A = (⃗a1 a⃗2 a⃗3) be a 3 × 3 matrix and V (A) denote the volume of the
parallelepiped determined by vertices 0⃗, a⃗1, a⃗2, a⃗3. Then

V (A) = | detA|.

The proof of Theorem 2 is almost identical to that of Theorem 1. We
shall omit it here.

Remark: The result of Theorem 1 can be generalized to Rn for any n ∈ Z+.
However, the concept of ‘volumn’ (or Lebesgue measure formally) in higher
dimensions need to be clarified in general. This is a big problem. Detailed
discussion will be found in Measure Theory.

2.4 Transformation and determinant

The determinant of the standard matrix for a linear transformation T :
R2 → R2 also gives a geometric property of T . We explain this fact as follows.

Let K denote a subset of R2 for which the area of K is well–defined. (e.g.
region bounded by triangle, parallelogram, circle, etc.). Let T : R2 → R2 be
linear with standard matrix A. Then the area of the image T (K) of K is
also well–defined and satisfies

S(T (K)) = | detA|S(K).

The general proof of this result is out of the scope of this course. However,
the special case where K is the region bounded by the parallelogram deter-
mined by vertices a⃗0, a⃗1 and a⃗2 can be shown using the result of Theorem 1
in the last section. Let us detail it in the following.

We obverse that the image T (K) of K under T is also a region bounded
by the parallelogram determined by vertices T (⃗a0), T (⃗a1) and T (⃗a2). So

S(T (K)) = S(T (⃗a1)− T (⃗a0), T (⃗a2)− T (a0))

= S(Aa⃗1 − Aa⃗0, Aa⃗2 − Aa⃗0)

= S(A(⃗a1 − a⃗0, a⃗2 − a⃗0))

= | detA(⃗a1 − a⃗0, a⃗2 − a⃗0)|
= | detA|| det(⃗a1 − a⃗0, a⃗2 − a⃗0)|
= | detA|S(K).
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Again this result can be generalised to any higher dimension. For in-
stance, for any subset K in R3 for which the volume of K is well–defined.
Then

V (T (K)) = | detA|V (K),

where T is any linear transformation from R3 to R3 and A the standard
matrix for T . Again, the proof is out of scope.

The Tower of Babel (通天塔), by Bruegel the elder
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