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1 What Do You Learn from This Note

We will introduce linear transformations here, including its definition and
different types of linear transformations.

Basic conceptµtransformations(C�), linear transformations(�5C�),
standard matrix (IOÝ
), onto/surjection(÷�), one-to-one/injection(ü
�§�é�N�), image (�), pre–image (��), domain (½Â�), codomain
(éN�/{½Â�/���m), range of T (��)

2 Linear Transformations

Let A be an m× n matrix. Then for any ~x ∈ Rn, we can obtain another
vector ~y = A~x ∈ Rm. Thus, we can create a rule using matrix A which
associates each vector in Rn to a unique vector in Rm. For m = n = 1, this
association turns out to be a linear function ~y = (a)~x = a~x, which has been
discussed extensively in school mathematics.

Definition 1 (Transformations(C�)). In general, a function T from Rn

to Rm is called a transformation (or map) from Rn to Rm, denoted by(P�)

T : Rn → Rm, ~y = T (~x) (or ~x 7→ T (~x)),

where ~y is called the image (�) of ~x (under T ) and ~x is called a pre–image
(��) of ~y, and here Rn is the called the domain (½Â�) and Rm is called
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the codomain (éN�/{½Â�/���m). In addition, all images T (~x)
are called the range of T (¤k�|Ü§=¤kT (~x)�|Ü¡���). Note
that the pre–image of ~y may not be unique.

In linear algebra, we focus on studying a special type of transformations
which has the property called linearity and is defined as follows.

Definition 2 (linear transformations(�5C�)). A transformation T :
Rn → Rm is called linear if for any ~v, ~v1, ~v2 ∈ Rn and c ∈ R,
1. T (~v1 + ~v2) = T (~v1) + T (~v2);
2. T (c~v) = cT (~v).

Remarks:
1. A linear transformation T always maps zero vector to zero vector since
T (~0) = T (0 ·~0) = 0 · T (~0) = ~0.
2. The linearity of T can be expressed in one equation, i.e. T is linear iff

T (c1~v1 + c2~v2) = c1T (~v1) + c2T (~v2)

for any vectors ~v1, ~v2 and scalars c1, c2. The above equation can be gener-
alised as

T (c1~v1 + · · ·+ cn~vn) = c1T (~v1) + · · ·+ cnT (~vn)

by an easy mathematical induction on n.

Examples: Textbook P85(��§�Ö).

3 The Matrix of A Linear Transformation (���

555CCC���ÝÝÝ


)

Example: Let A be any m× n matrix. Define TA : Rn → Rm, TA(~x) = A~x.
Then TA is a linear transformation. Thus from the view of linear transforma-
tion, solving matrix equation A~x = ~b is exactly the same as computing the
pre–images of ~b under TA. The next theorem shows that any linear transfor-
mation appears in the form of matrix linear transformation.
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Theorem 3. For any linear transformation T : Rn → Rm, there is a unique
m× n matrix A such that T (~x) = A~x.

Proof. Let ~ei ∈ Rn be such that the entries of ~ei are 0 except the i–th one

which is 1. Thus, for any ~x ∈ R, ~x =

 x1
...
xn

 = x1~e1 + · · · + xn~en. Define

A = (T (~e1) · · · T (~en)).

(Existence,�35) We have T (~x) = A~x since

T (~x) = T (x1~e1 + · · ·+ xn~en)

= x1T (~e1) + · · ·+ xnT (~en)

= (T (~e1) · · · T (~en))~x

= A~x.

(Uniqueness,��5) Suppose that A′ = (~a′1 · · · ~a′n) and T (~x) = A′~x. We
shall show A′ = A. Since for all i = 1, . . . , n, we have

T (~ei) = A′~ei

= (~a′1 · · · ~a′n)~ei

= 0 · ~a′1 + · · ·+ 1 · ~a′i + · · ·+ 0 · ~a′n
= ~a′i

So A′ = (~a′1 · · · ~a′n) = (T (~e1) · · · T (~en)) = A.

Matrix A = (T (~e1) · · · T (~en)) appearing in the above theorem is called
the standard matrix (IOÝ
) for T .

4 Advanced Linear Transformations

Definition 4 (onto/surjection(÷�)). A transformation T : Rn → Rm is
said to be onto (or surjective) iff

∀ ~y ∈ Rm ∃ ~x ∈ Rn T (~x) = ~y

in other words, for any ~y ∈ Rm, ~y has at least one pre–image. (=Rm¥�
?¿�Ñ�±3½Â�¥é���¶�ùÛ¹
õé��N�§=½Â�
¥ØÓ��²LC���U´Ó���)
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Definition 5 (one-to-one/injection(ü�§�é�N�)). A transforma-
tion T : Rn → Rm is said to be one-to-one (or injective) iff

∀ ~x1 ~x2 ∈ Rn T (~x1) = T (~x2)→ ~x1 = ~x2,

in other words, for any ~y ∈ Rm, ~y has at most one pre–image.(=Rm¥�?
¿��õ3½Â�¥k����¶�ùÛ¹�UØ´÷�§=Ø´Rm�¤
k�Ñ¬3½Â�¥k��)

Definition 6 (bijection(V�)***=IÝºVg***). A linear transforma-
tion T : Rn → Rm is said to be bijective iff it is both injective and surjective.

The following theorem gives sufficient and necessary conditions for injec-
tive and surjective linear transformations.

Theorem 7. Let T : Rn → Rm be a linear transformation and A =
(~a1 · · · ~an) be the standard matrix for T . Then
1. T is injective iff (if and only if§��=�) A~x = ~0 has only one solution,
that is ~0;
2. T is injective iff ~a1, . . . ,~an are linearly independent;
3. T is subjective iff Span{~a1, . . . ,~an} = Rm.

Proof. 1. Suppose that T is injective. Then A~x = T (~x) = ~0 certainly has
only one solution by the definition of injection.

Conversely, suppose that A~x = ~0 has only one solution and T (~x1) = T (~x2)
for some ~x1, ~x2 ∈ Rn. Then

A(~x1 − ~x2) = T (~x1 − ~x2) = T (~x1)− T (~x2) = ~0,

which means ~x1− ~x2 is a solution of A~x = ~0. So by uniqueness, ~x1− ~x2 = 0,
that is ~x1 = ~x2.
2. This is obvious since A~x = ~0 has only one solution is equivalent to
~a1, . . . ,~an are linearly independent.(ùprA~x = 0Ðm¤x1~a1 + · · ·+xn~an =
05w)
3. Suppose that T is surjective. Then for any ~y ∈ Rm, there exists ~x ∈ Rn

such that ~y = T (~x) = A~x = (~a1 · · · ~an)~x, that is ~y ∈ Span{~a1, . . . ,~an}.
So Rm ⊆ Span{~a1, . . . ,~an}. Obviously, Rm ⊇ Span{~a1, . . . ,~an}. So Rm =
Span{~a1, . . . ,~an}.

Conversely, suppose that Span{~a1, . . . ,~an} = Rm. Then for any ~y ∈ Rm,
there exists ~x ∈ Rn such that ~y = (~a1 · · · ~an)~x, that is ~y = A~x = T (~x). So
T is surjective.
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