LECTURE NOTE ON LINEAR ALGEBRA 7. LINEAR TRANSFORMATIONS

Wei-Shi Zheng, wszheng@ieee.org, 2011

September 27, 2011

1 What Do You Learn from This Note

We will introduce linear transformations here, including its definition and different types of linear transformations.

Basic concept: transformations(变换), linear transformations(线性变换), standard matrix (标准矩阵), onto/surjection(满射), one-to-one/injection(单设, 一对一映射), image (像), pre-image (原像), domain (定义域), codomain (对映域/余定义域/取值空间), range of *T*(值域)

2 Linear Transformations

Let A be an $m \times n$ matrix. Then for any $\vec{x} \in \mathbb{R}^n$, we can obtain another vector $\vec{y} = A\vec{x} \in \mathbb{R}^m$. Thus, we can create a rule using matrix A which associates each vector in \mathbb{R}^n to a unique vector in \mathbb{R}^m . For m = n = 1, this association turns out to be a linear function $\vec{y} = (a)\vec{x} = a\vec{x}$, which has been discussed extensively in school mathematics.

DEFINITION 1 (Transformations(变换)). In general, a function T from \mathbb{R}^n to \mathbb{R}^m is called a transformation (or map) from \mathbb{R}^n to \mathbb{R}^m , denoted by(记为)

 $T: \mathbb{R}^n \to \mathbb{R}^m, \quad \vec{y} = T(\vec{x}) \quad (or \ \vec{x} \mapsto T(\vec{x})),$

where \vec{y} is called the image (像) of \vec{x} (under T) and \vec{x} is called a pre-image (原像) of \vec{y} , and here \mathbb{R}^n is the called the domain (定义域) and \mathbb{R}^m is called

the codomain (对映域/余定义域/取值空间). In addition, all images $T(\vec{x})$ are called the range of T (所有像组合,即所有 $T(\vec{x})$ 的组合称为值域). Note that the pre-image of \vec{y} may not be unique.

In linear algebra, we focus on studying a special type of transformations which has the property called linearity and is defined as follows.

DEFINITION 2 (linear transformations(线性变换)). A transformation T: $\mathbb{R}^n \to \mathbb{R}^m$ is called linear if for any $\vec{v}, \vec{v}_1, \vec{v}_2 \in \mathbb{R}^n$ and $c \in \mathbb{R}$, 1. $T(\vec{v}_1 + \vec{v}_2) = T(\vec{v}_1) + T(\vec{v}_2)$; 2. $T(c\vec{v}) = cT(\vec{v})$.

Remarks:

1. A linear transformation T always maps zero vector to zero vector since $T(\vec{0}) = T(0 \cdot \vec{0}) = 0 \cdot T(\vec{0}) = \vec{0}$.

2. The linearity of T can be expressed in one equation, i.e. T is linear iff

$$T(c_1\vec{v}_1 + c_2\vec{v}_2) = c_1T(\vec{v}_1) + c_2T(\vec{v}_2)$$

for any vectors \vec{v}_1 , \vec{v}_2 and scalars c_1 , c_2 . The above equation can be generalised as

$$T(c_1 \vec{v}_1 + \dots + c_n \vec{v}_n) = c_1 T(\vec{v}_1) + \dots + c_n T(\vec{v}_n)$$

by an easy mathematical induction on n.

Examples: Textbook P85(见课程板书).

3 The Matrix of A Linear Transformation (线 性变换矩阵)

Example: Let A be any $m \times n$ matrix. Define $T_A : \mathbb{R}^n \to \mathbb{R}^m$, $T_A(\vec{x}) = A\vec{x}$. Then T_A is a linear transformation. Thus from the view of linear transformation, solving matrix equation $A\vec{x} = \vec{b}$ is exactly the same as computing the pre-images of \vec{b} under T_A . The next theorem shows that any linear transformation appears in the form of matrix linear transformation. THEOREM 3. For any linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$, there is a unique $m \times n$ matrix A such that $T(\vec{x}) = A\vec{x}$.

Proof. Let $\vec{e_i} \in \mathbb{R}^n$ be such that the entries of $\vec{e_i}$ are 0 except the *i*-th one which is 1. Thus, for any $\vec{x} \in \mathbb{R}$, $\vec{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = x_1 \vec{e_1} + \cdots + x_n \vec{e_n}$. Define $A = (T(\vec{e_1}) \cdots T(\vec{e_n})).$

(Existence,存在性) We have $T(\vec{x}) = A\vec{x}$ since

$$T(\vec{x}) = T(x_1\vec{e}_1 + \dots + x_n\vec{e}_n)$$

= $x_1T(\vec{e}_1) + \dots + x_nT(\vec{e}_n)$
= $(T(\vec{e}_1) + \dots + T(\vec{e}_n))\vec{x}$
= $A\vec{x}.$

(Uniqueness,唯一性) Suppose that $A' = (\vec{a}'_1 \cdots \vec{a}'_n)$ and $T(\vec{x}) = A'\vec{x}$. We shall show A' = A. Since for all i = 1, ..., n, we have

$$T(\vec{e}_i) = A'\vec{e}_i$$

= $(\vec{a}'_1 \cdots \vec{a}'_n)\vec{e}_i$
= $0 \cdot \vec{a}'_1 + \cdots + 1 \cdot \vec{a}'_i + \cdots + 0 \cdot \vec{a}'_n$
= \vec{a}'_i

So $A' = (\vec{a}'_1 \cdots \vec{a}'_n) = (T(\vec{e}_1) \cdots T(\vec{e}_n)) = A.$

Matrix $A = (T(\vec{e_1}) \cdots T(\vec{e_n}))$ appearing in the above theorem is called the standard matrix (标准矩阵) for T.

4 Advanced Linear Transformations

DEFINITION 4 (onto/surjection(满射)). A transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is said to be onto (or surjective) iff

$$\forall \, \vec{y} \in \mathbb{R}^m \, \exists \, \vec{x} \in \mathbb{R}^n \quad T(\vec{x}) = \vec{y}$$

in other words, for any $\vec{y} \in \mathbb{R}^m$, \vec{y} has **at least** one pre-image. ($\mathbb{P}\mathbb{R}^m$ 中的 任意值都可以在定义域中找到原像;但这隐含了多对一的映射,即定义域 中不同的值经过变换后可能是同一个值) DEFINITION 5 (one-to-one/injection(单设, 一对一映射)). A transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is said to be one-to-one (or injective) iff

$$\forall \vec{x}_1 \vec{x}_2 \in \mathbb{R}^n \quad T(\vec{x}_1) = T(\vec{x}_2) \to \vec{x}_1 = \vec{x}_2,$$

in other words, for any $\vec{y} \in \mathbb{R}^m$, \vec{y} has **at most** one pre-image.($\mathbb{P}\mathbb{R}^m$ 中的任意值至多在定义域中有一个原像;但这隐含可能不是满射,即不是 \mathbb{R}^m 的所有值都会在定义域中有原像)

DEFINITION 6 (bijection(双射)***仅需掌握概念***). A linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is said to be bijective iff it is both injective and surjective.

The following theorem gives sufficient and necessary conditions for injective and surjective linear transformations.

THEOREM 7. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and $A = (\vec{a}_1 \cdots \vec{a}_n)$ be the standard matrix for T. Then

1. T is injective iff (if and only if, 当且仅当) $A\vec{x} = \vec{0}$ has only one solution, that is $\vec{0}$;

2. T is injective iff $\vec{a}_1, \ldots, \vec{a}_n$ are linearly independent;

3. T is subjective iff $\text{Span}\{\vec{a}_1,\ldots,\vec{a}_n\} = \mathbb{R}^m$.

Proof. 1. Suppose that T is injective. Then $A\vec{x} = T(\vec{x}) = \vec{0}$ certainly has only one solution by the definition of injection.

Conversely, suppose that $A\vec{x} = \vec{0}$ has only one solution and $T(\vec{x}_1) = T(\vec{x}_2)$ for some $\vec{x}_1, \vec{x}_2 \in \mathbb{R}^n$. Then

$$A(\vec{x}_1 - \vec{x}_2) = T(\vec{x}_1 - \vec{x}_2) = T(\vec{x}_1) - T(\vec{x}_2) = \vec{0},$$

which means $\vec{x}_1 - \vec{x}_2$ is a solution of $A\vec{x} = \vec{0}$. So by uniqueness, $\vec{x}_1 - \vec{x}_2 = 0$, that is $\vec{x}_1 = \vec{x}_2$.

2. This is obvious since $A\vec{x} = \vec{0}$ has only one solution is equivalent to $\vec{a}_1, \ldots, \vec{a}_n$ are linearly independent.(这里把 $A\vec{x} = 0$ 展开成 $x_1\vec{a}_1 + \cdots + x_n\vec{a}_n = 0$ 来看)

3. Suppose that T is surjective. Then for any $\vec{y} \in \mathbb{R}^m$, there exists $\vec{x} \in \mathbb{R}^n$ such that $\vec{y} = T(\vec{x}) = A\vec{x} = (\vec{a}_1 \cdots \vec{a}_n)\vec{x}$, that is $\vec{y} \in \text{Span}\{\vec{a}_1, \dots, \vec{a}_n\}$. So $\mathbb{R}^m \subseteq \text{Span}\{\vec{a}_1, \dots, \vec{a}_n\}$. Obviously, $\mathbb{R}^m \supseteq \text{Span}\{\vec{a}_1, \dots, \vec{a}_n\}$. So $\mathbb{R}^m = \text{Span}\{\vec{a}_1, \dots, \vec{a}_n\}$.

Conversely, suppose that $\text{Span}\{\vec{a}_1, \ldots, \vec{a}_n\} = \mathbb{R}^m$. Then for any $\vec{y} \in \mathbb{R}^m$, there exists $\vec{x} \in \mathbb{R}^n$ such that $\vec{y} = (\vec{a}_1 \cdots \vec{a}_n)\vec{x}$, that is $\vec{y} = A\vec{x} = T(\vec{x})$. So T is surjective.

Reference

David C. Lay. Linear Algebra and Its Applications (3rd edition). Pages $73{\sim}90$

Putti with Birds, by Boucher