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Abstract

In this paper, we study the problem of robust feature
extraction based on l2,1 regularized correntropy in both
theoretical and algorithmic manner. In theoretical part,
we point out that an l2,1-norm minimization can be justi-
fied from the viewpoint of half-quadratic (HQ) optimiza-
tion, which facilitates convergence study and algorithmic
development. In particular, a general formulation is ac-
cordingly proposed to unify l1-norm and l2,1-norm mini-
mization within a common framework. In algorithmic part,
we propose an l2,1 regularized correntropy algorithm to
extract informative features meanwhile to remove outliers
from training data. A new alternate minimization algorithm
is also developed to optimize the non-convex correntropy
objective. In terms of face recognition, we apply the pro-
posed method to obtain an appearance-based model, called
Sparse-Fisherfaces. Extensive experiments show that our
method can select robust and sparse features, and outper-
forms several state-of-the-art subspace methods on large-
scale and open face recognition datasets.

In the pattern recognition and computer vision com-
munity, feature selection is a fundamental and important
method, which aims to select a subset of relevant fea-
tures meanwhile remove irrelevant and redundant ones out
of high-dimensional features. Feature selection can im-
prove generalization capability and speed up learning pro-
cess [11]. It also helps people better understand about data
properties from the curse of dimensionality.

In the past decades, various feature selection methods
have been developed [6], among which sparsity regular-
ization is recently considered as one of the most popular
ones due to its effectiveness, robustness and efficiency. In
l1-SVM (Support Vector Machine), an l1-norm regulariza-
tion is incorporated in SVM to perform feature selection
[2]. To form a more structured regularization, Wang et al.
[16] propose a hybrid huberized SVM (HHSVM) by com-
bining both l1-norm and l2-norm. Since HHSVM is only

Figure 1. A general framework for robust feature selection. First
row: for a corrupted data matrix, we alternately remove outliers
and redundant features. Second row: an illustration on the PEAL
dataset. If two outliers corrupted by sunglasses are removed from
the dataset, features in the white box will be the most discrimina-
tive to classify different individuals.

for binary classification, Argyriou et al. [1] further develop
a similar l2,1 regularized model to deal with feature selec-
tion problem in multi-task learning. Recently, Nie et al.
[11] propose a robust feature selection method by impos-
ing joint l2,1-norm minimization on both loss function and
regularization. A new iterative method is also proposed to
efficiently optimize the l2,1-norm minimization. Based on
[11], Gu et al. [5], Hou et al. [9], and Yang et al. [20] ap-
ply the joint l2,1-norm minimization into subspace learning,
sparse regression, and discriminative feature selection re-
spectively. Although different methods based on l2,1-norm
minimization are proposed, the relationship between the op-
timal procedure in [11] and other methods (such as itera-
tively reweighted least squares and half-quadratic optimiza-
tion) remains unclear. Further theoretical analysis is thus
necessary.

Toward this end, this paper presents both theoretical ex-
ploration and algorithmic development on l2,1-norm mini-
mization. First, a half-quadratic analysis is given for l2,1-
norm minimizations. Based on this analysis, we can easily
extend an l2,1-norm loss function to other loss functions and
develop new algorithms. Then we present a general frame-
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work to unify l1-norm or l2,1-norm regularized robust learn-
ing methods. Considering that there are outliers in training
data, an l2,1 regularized correntropy algorithm is accord-
ingly proposed to extract informative features meanwhile to
remove outliers. A new alternate minimization algorithm is
also developed to solve the non-convex correntropy objec-
tive. Fig. 1 shows the alternate procedure of our method. In
each iteration, our method firstly removes outliers and then
selects informative features. Finally, we apply the proposed
method to face recognition, leading to an appearance-based
model, named Sparse-Fisherface (S-Fisherface). Extensive
experimental results demonstrate that the proposed method
can not only select robust and sparse features, but also per-
form better than other state-of-the-art subspace methods on
large-scale and open face recognition datasets.

Main contributions of this work lie in three-folds:
1) A general framework is proposed for regularized ro-

bust learning. It unifies previous l1 or l2,1 regularized ro-
bust methods into a general formulation and provides a pre-
limary platform to develop new methods.

2) An l2,1 regularized correntropy model is defined for
robust feature selection. Different from the method in
[11] that recovers corrupted regression targets, the pro-
posed method removes corrupted samples during learning
as shown in Fig. 1.

3) A new appearance-based method (S-Fisherface) is
proposed for robust face recognition, which combines fea-
ture selection into discriminant subspace learning. As
shown in Fig. 3, S-Fisherface learns informative and sparse
features against traditional appearance models.

The rest of this paper is organized as follows. We first
give a theoretical analysis of l2,1 minimization from the
view point of HQ, and present a HQ framework for robust
feature selection in Section 1. In Section 2, we propose an
l2,1 regularized correntropy model and examine its applica-
tion to face recognition. Section 3 provides experimental
results, prior to summery of this paper in Section 4.

1. l2,1-norm Minimization

This section starts with the study from the half-quadratic
analysis for l2,1-norm, followed by a general half-quadratic
framework for robust feature selection, which unifies l1-
and l2,1-norm minimization based robust learning methods.
We follow the notations in [11]. Matrices are written as
boldface uppercase letters, and vectors are written as bold-
face lowercase letters. For a matrix M = (mij), its i-th row
is denoted by mi.

1.1. Half-quadratic Analysis for l2,1-norm

In l2,1-norm based feature selection methods [11][5],
one often aims to solve the following constrained l2,1-norm

minimization problem,

min
U

||U||2,1 s.t. XT U = Y (1)

where ‖.‖2,1 is an l2,1-norm, projection matrix U ∈ Rd×c,
data matrix X ∈ Rd×n, and label matrix Y ∈ Rn×c. n is
the number of training samples, d is the number of feature
dimension, and c is the number of classes. Since the mini-
mizer function of l2,1-norm is unpredictable near the origin
as shown in Fig. 2 (b), the following objective is often used,

min
U

∑d

i

√
ε + ‖ui‖2

2 s.t. XT U = Y (2)

where ε is a smoothing term. If a decreasing value of ε
is used, it can be justified that the algorithm to solve (2)
converges to the global solution of (1) [5].

If we define φ(x) =
√

ε + x2, we obtain a general for-
mulation of (2),

min
U

∑d

i
φ(

∥∥ui
∥∥

2
) s.t. XT U = Y (3)

In this work, we consider a general case of φ that satisfies,

x → φ(x) is convex on R,

x → φ(
√

x) is concave on R+,

φ(x) = φ(−x), ∀x ∈ R, (4)

φ(x) is C1 on R,

φ
′′
(0+) > 0, lim

x→∞φ(x)/x2 = 0.

It is easy to prove that φ(x) =
√

ε + x2 satisfies all con-
ditions in (4). The following Lemma 1 founds the base for
optimizing φ(.) in a half quadratic way [12].

Lemma 1. Let φ(.) be a function satisfying all conditions
in (4), there exists a conjugate function ϕ(.) (or named dual
potential function in [12]), such that

φ(
∥∥ui

∥∥
2
) = inf

p∈R

{
p

∥∥ui
∥∥2

2
+ ϕ(p)

}
(5)

where p is determined by the minimizer function δ(.) with
respect to φ(.).

To solve the general constrained optimization problem in
(3), we firstly introduce Lagrange multipliers Λ, giving the
following Lagrangian function,

L(U) =
∑d

i=1
φ(

∥∥ui
∥∥

2
) − Tr(ΛT (XT U − Y)) (6)

where Tr(.) is the matrix trace operator. Using (5) on each
φ(

∥∥ui
∥∥

2
) for i, the augmented cost-functionJ of (6) reads,

J (U,q) = Tr(UT QU) − Tr(ΛT (XT U − Y)) (7)
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Figure 2. Potential loss functions and their corresponding minimizer functions in Half-quadratic optimization.

where q ∈ Rd is an auxiliary vector, and Q = diag(q).
The operator diag(.) puts a vector q on the main diagonal
of Q. According to Lemma 1, it can be drawn immediately
that for a fixed U, L(U) = minq J (U,q). Based on the
Half-quadratic optimization, J (U,q) can be solved by the
following alternate minimization way,

qt
i = δ(

∥∥ui
∥∥

2
) (8)

Ut = arg min
U

J (U,qt) (9)

where δ(.) is the minimizer function with respect to φ(.).
Setting the derivative of J (U,q) with respect to U to

zero, we obtain

∂J (U,q)
∂U

= 2QU− XΛ = 0 (10)

Left multiplying both sides of (10) by XT Q−1, and using
the equality constraint XT U = Y , we have:

2XT U − XT Q−1XΛ = 0
⇒ 2Y − XT Q−1XΛ = 0
⇒ Λ = 2(XT Q−1X)−1Y (11)

Then we obtain the analytic solution of (9):

U∗ = Q−1X(XT Q−1X)−1Y (12)

Algorithm 1: Feature Selection via l2,1-norm

Input: X ∈ Rd×n and Y ∈ Rn×c.
Output: U ∈ Rd×c

1: U ← 0 and t ← 1.
2: repeat
3: Compute the auxiliary vector pt according to (8).
4: Compute Ut according to (12).
5: until Converges

We summarize our proposed alternate minimization al-
gorithm to optimize (3) in Algorithm 1. The HQ formu-
lation facilities the convergence proof of l2,1 minimization

procedure. Proposition 1 confirms that the sequences of Al-
gorithm 1 will converge. Since the proof is trivial, we omit
it from this paper due to page limit. The experimental anal-
ysis in [12] shows that HQ based methods potentially run
faster than quasi-Newton and steepest descent schemes.

Proposition 1. Denote J t = J (Ut,qt), the sequences
{J t, t = 1, 2, . . .}, {Ut, t = 1, 2, . . . } and {qt, t =
1, 2, . . .} generated by (8) and (12) converge.

Fig. 2 (a) shows three potential functions of φ(.) that
are used in compressed sensing as an approximation of
l0-norm. Fig. 2 (b) shows their corresponding minimizer
functions. In robust regression and iteratively reweighted
least squares (IRLS) [22][10], minimizer function is often
called weighting function. Note that the absolute function
φ1(x) = |x| =

√
x2 in l1-norm has not a minimizer func-

tion in HQ optimization but only has a weighting function
in IRLS. Since its weighting function is unpredictable near
the origin, φ2(x) =

√
ε + x2 is often used as an approxi-

mation of |x| [5]. Function φ3(x) = 1−exp(−2x2) is used
in correntropy as an approximation of l0-norm [14].

Comparing curves of three potential functions, we see
that within the range [−1, 1], functions φ2(.) and φ3(.) can
be treated as an approximation of φ1(.). But the minimizer
functions of φ2(.) and φ3(.) are predicable near the origin.
When |x| > 1, things become different. Function φ3(.)
gives the same loss value (i.e., φ3(x) = 1) whereas the other
two functions do not. This character makes the minimizer
function of φ3(.) in Fig.2 (b) has value 0 when |x| > 1.5,
which may be helpful in optimization to solve real-world
problems.

1.2. A General Half-quadratic Framework for Ro-
bust Feature Selection

Robust learning has drawn much attention in machine
learning and computer vision [17]. Many methods have
been developed to deal with outliers in training or testing
sets. Considering the HQ analysis for l2,1-norm mentioned
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Function Variable Objective Method

φo = φR = x2 u ∈ Rd,y ∈ Rn min
u

∥∥XTu + y
∥∥2

2
+ λ ‖u‖2

2 Rigid regression [3]

φo = x2, φR = |x| u ∈ Rn,y ∈ Rd min
u

‖Xu + y‖2
2 + λ ‖u‖1 LASSO [15][17]

φo = φ(x), φR = x2 u ∈ Rd,y ∈ Rn min
u

∑
i φo((XTu + y)i) + λ ‖u‖2

2 Robust regression [22][10][21]

φo = φ(x), φR = |x| u ∈ Rn,y ∈ Rd min
u

∑
i φo((Xu + y)i) + λ ‖u‖1 Robust sparse representation [7][8][19]

φo = φR =
√

x2 U ∈ Rd×m min
U

∥∥XTU + Y
∥∥

2,1
+ λ ‖U‖2,1 Robust feature selection [11][9][20][5]

Table 1. Summary of some special cases of our proposed framework. These cases have been widely used in computer vision and machine
learning. φ(.) is the potential function that satisfies (4) .

above, we regard a general robust learning problem, i.e.,

min
U

d∑
i=1

φo(
∥∥(AU + B)i

∥∥
2
) + λ

d∑
i=1

φR(
∥∥ui

∥∥
2
) (13)

where φo(.) and φR(.) satisfy all of conditions in (4). Ac-
cording to HQ minimization, we can solve (13) by the fol-
lowing alternate minimization way,

pt
i = δo(

∥∥(AU + B)i
∥∥

2
) (14)

min
U

{
d∑

i=1

pt
i

∥∥(AU + B)i
∥∥2

2
+ λ

d∑
i=1

φR(
∥∥ui

∥∥
2
)
}

(15)

where δo(.) is the minimizer function of φo(.) in HQ opti-
mization. According to HQ optimization, the above itera-
tive procedure monotonously decreases until it converges.

Table 1 lists some special cases of (13), which are com-
monly used in the recent literature. We firstly consider the
matrix variable U as a vector variable u. When φo(x) =
x2, the objective in (13) becomes the standard regularized
least squares problem. When φR(.) = x2 and φR(.) = |x|,
the objectives become rigid regression and LASSO respec-
tively. The former is widely used in spectral regression [3];
and the later is widely used in sparse representation [17].

The third and fourth rows of Table 1 show the objec-
tives used for robust regression and robust sparse repre-
sentation respectively, where φ(.) satisfies (4) and also be-
longs to M-estimators. Both of the objectives are solved via
the iterative procedure in (14) and (15). In robust regres-
sion [22][10][21], ones firstly calculate weights according
to (14), and then solve a weighted least squares problem in
(15). In robust sparse representation, ones firstly calculate
weights (or select informative features) according to (14),
and then solve a weighted l1 minimization problem in (15).

When U is a matrix and φo = φR =
√

x2, the objec-
tive in (13) becomes the objective used in robust feature
selection, as shown in the fifth row of Table 1. Our half-
quadratic analysis for l2,1 minimization in Section 1.1 can
be viewed as a complement of [11]. From the HQ view-
point, robust feature selection in [11] can be viewed as an
extension of robust sparse representation in [7][8][19] from

vector variable to matrix variable. Both of these two cate-
gories of methods harness the minimizer function of HQ to
select informative features, and then perform learning.

2. l2,1 Regularized Correntropy for Robust
Feature Selection

In this section, we firstly propose an l2,1 regularized cor-
rentropy model for robust feature selection. Different from
the method in [11] that estimates the errors in label ma-
trix target Y , our method iteratively removes outliers in the
training set by reweighting. Then we apply the proposed
model in appearance based face recognition.

2.1. l2,1 Regularized Correntropy

Correntropy is proposed in information theoretic learn-
ing to process non-Gaussian noise and impulsive noise [10],
and is widely used in computer vision and signal process-
ing. It is directly related to the Renyi’s quadratic entropy,
and has a close relationship with Welsch M-estimators.
Considering that correntropy tends to control outliers better
than other M-estimators [10][7], we develop an l2,1 regular-
ized correntropy model for robust feature selection. Fig. 1
shows our basic motivation. By applying correntropy and
l2,1 regularization in (13), we obtain the following corren-
tropy objective,

min
U

{1 −
n∑

k=1

exp(−
∥∥(XT U − Y)k

∥∥2

2

σ2
) + ‖U‖2,1} (16)

where σ is the kernel size that controls all properties of cor-
rentropy. In the objective, the correntropy is used to remove
outliers and the l2,1 regularization is used to select robust
and informative features.

According to the HQ in Section 1.2, the above objective
can be solved in an alternate minimization way as follows,

pt
k = exp(− ∥∥(XT U − Y)k

∥∥2

2
/σ2) (17)

qt
i = 1/(2

∥∥ui
∥∥

2
) (18)
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Figure 3. Energy faces (the left most column), Eigenfaces (the first row), Fisherfaces (the second row), and S-Fisherfaces (the third
row) calculated from face images on the FRGC database. Since there are positive and negative values in Eigenfaces, Fisherfaces and
S-Fisherfaces, we show their absolute values here. The energy faces is computed by (21). The first row: absolute Eigenfaces (PCA). In
energy face of Eigenfaces, the ratio of maximum absolute value and minimum one is 2.31. The second row: absolute Fisherfaces (LDA).
In energy face of Fisherfaces, the ratio of maximum absolute value and minimum one is 2.99. The third row: absolute S-Fisherfaces (l2,1

regularized correntropy). In energy face of S-Fisherfaces, the ratio of maximum absolute value and minimum one is 13.57.

U t = argmin
U

Tr((XT U − Y)T P(XT U− Y))

+ λTr(UT QU) (19)

Where p and q are auxiliary variables of correntropy and
l2,1-norm respectively. And P = diag(p) and Q =
diag(q). The analytic solution of (19) is given by,

U∗ = (XPXT + λQ)−1XPY (20)

To save computational cost, the optimal solution of (20)
can be computed via solving the linear system problem
(XPXT + λQ)U = XPY.

Algorithm 2: Correntropy Induced Robust Feature Se-
lection (CRFS)

Input: X ∈ Rd×n and Y ∈ Rn×c.
Output: U ∈ Rd×c

1: U ← 0 and t ← 0.
2: repeat
3: Compute pt

k = exp(− ∥∥(XT U − Y)k
∥∥2

2
/σ2)

4: Compute qt
i = 1/(2

∥∥ui
∥∥

2
)

5: Compute Ut by solving the linear system:
(XPXT + λQ)U = XPY.

6: until Converges

Algorithm 2 summarizes the alternate minimization pro-
cedure to optimize (16). In step 3, we compute the auxiliary
vector pt. If there are outliers in the training set, they will
receive small values in pt due to the robustness of corren-
tropy. In step 4, we compute the auxiliary vector qt that
corresponds to l2,1-norm and plays a role in feature selec-
tion. In step 5, we find the optimal solution U∗. According
to HQ optimization, the objective function is minimized in
each step. The correntropy objective is bounded, and hence

Algorithm 2 will decrease (16) step by step until it con-
verges.

2.2. S-Fisherface (Sparse Fisherface)

In this subsection, we apply l2,1 regularized correntropy
algorithm to appearance based face recognition. A face im-
age can be mapped into the learned subspace U and then is
classified. We can display the projection vectors in U as im-
ages. Considering that linear discriminant analysis can be
treated as a multi linear regression [3][18], we call these im-
ages as sparse Fisherfaces (S-Fisherfaces). Using the FRGC
face database as the training set, we show the absolute value
of S-Fisherfaces in Fig. 3, together with Eigenfaces and
Fisherfaces.

It is interesting to see that S-Fisherfaces are somehow
similar to Fisherfaces. This may be due to the fact that they
are all related to linear regression. However, the intensity of
most areas in S-Fisherfaces is darker. A darker value indi-
cates a smaller value. Hence S-Fisherfaces are sparser than
Fisherfaces and Eigenfaces. To further analyze different ap-
pearance methods, we introduce the concept of energy face.

Give a set of Eigenfaces (or Fisherfaces) U ∈ Rd×m in
which each column is a Eigenface, the energy face is de-
fined as a vector e whose item is computed as follows,

ei =
∑m

j=1
U2

ij (21)

Fig. 3 shows these energy faces of the three appearance
methods. We see that in S-Fisherfaces more features are se-
lected around eyes and nose. We consider this phenomenon
as a coincidence with that the features in face recognition
around two eyes and nose are often discriminative.

In energy faces, the ratio of maximum absolute value and
minimum one for Eigenface, Fisherface, S-Fisherface are
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2.31, 2.99, and 13.57 respectively. A larger ratio indicates a
sparser solution. We see that Eigenface and Fisherface have
similar sparsity whereas S-Fisherface is sparser. This is due
to the l2,1-norm regularization in the correntropy objective.

In the energy face of S-Fisherfaces, we observe that most
features are around the eyes and nose. The features around
mouth are significantly affected by expression variation
such that they are less discriminative. Since S-Fisherfaces
computed by Algorithm 2 involve robust feature selection
during learning, they only contain most informative and dis-
criminative features. Irrelevant and redundant facial fea-
tures are removed during the alternate minimization. As
a result, S-Fisherfaces are potentially better than previous
appearance-based methods,

3. Experiments

In this section, several experiments on a couple of large-
scale face recognition datasets are carried out to show that
our proposed CRFS method (Algorithm 2) has more dis-
criminating power than previous appearance based meth-
ods and be less sensitive to outliers. Since real-world face
recognition is an open set problem, we make use of training
set, probe set, and gallery set to evaluate different meth-
ods [13]. Three appearance methods (principal component
analysis (PCA), linear discriminant analysis (LDA), and lo-
cality preserving projections (LPP) 1) and two robust meth-
ods( Renyis entropy discriminant analysis (REDA) [21] and
robust feature selection (RFS) [11]) are compared. The
nearest neighbor algorithm based on the Euclidean distance
is used as classifier [3].

3.1. Results on the FRGC Database

In this subsection, we evaluate different methods on the
large-scale and challenging FRGC database. We collect fa-
cial images from a subset of the most challenging FRGC
version 2 face database [13]. There are 8014 images of 466
subjects in the query set for the FRGC experiment 4. These
uncontrolled images contain variations of illumination, ex-
pression, time, and blurring. We take the first 20 facial im-
ages if the number of facial images is not less than 20. Then
we obtain 3720 facial images of 186 subjects. Each facial
image is in 256 gray scales per pixel and cropped into size
of 64 × 64 pixels by fixing the positions of two eyes.

In this first experiment, the first 60 subjects are used
as the training set, and the remaining 126 subjects are ex-
ploited as the gallery set and the probe set. Then we take
the first 10 facial images of each person in the last 126 sub-
jects as the gallery set and the remaining 10 images as the
probe set. In the second experiment, the first 120 subjects
are used as the training set, and the remaining 66 subjects
are exploited as the gallery set and the probe set. There-

1http://www.zjucadcg.cn/dengcai/Data/data.html

Number PCA LPP LDA REDA RFS CRFS

60 26.9 21.9 12.5 18.8 11.3 11.2
120 26.2 16.8 7.4 13.3 7.1 6.7

Table 2. Recognition error rates with different number of training
subjects on FRGC dataset. The numbers 60 and 120 indicate that
60 and 120 subjects are used in training set respectively.
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Figure 4. ROC curves of different methods on the FRGC dataset.

fore, the set of persons for training is different from that for
testing.

Table 2 shows recognition error rates of different meth-
ods in these two experiments. We see that the methods can
be ordered in descending error rates as PCA, LPP, REDA,
LDA, RFS, and CRFS. RFS and CRFS perform better than
the remaining three methods. And CRFS slightly outper-
forms RFS. This may be due to that both of them are based
on similar objectives. But CRFS can greatly reduce compu-
tational cost, compared with RFS as shown in Section 3.3.
We also observe that LPP and REDA perform worse than
LDA. This may be because that the set of persons for train-
ing is different from that for testing.

Fig. 4 further shows the receiver operator characteris-
tic (ROC) curves of different methods. As expected, CRFS
achieves the highest ROC curve. CRFS slightly outper-
forms RFS. When there are no outliers that are signifi-
cantly different from other samples, CRFS and RFS seem
to achieve similar recognition accuracy.

3.2. Results on the PEAL Database

In this experiment, we evaluate the robustness of dif-
ferent methods on the challenging CAS-PEAL database
[4]. The CAS-PEAL database is a large-scale Chinese face
database, which contains 99,594 images of 1040 individu-
als with varying Pose, Expression, Accessory, and Lighting
(PEAL). We select all frontal facial images under expres-
sion and lighting variations, where all frontal facial images
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Scenario LPP REDA LDA RFS CRFS

original dataset 56.1 44.0 28.8 23.7 21.4
sunglasses (10%) 56.4±0.3 44.3±0.3 31.4±0.2 24.0±0.1 21.9± 0.1
hat (20%) 58.3±0.2 44.5±0.5 32.5±0.3 24.6±0.1 22.2±0.1
mislabeling (20%) 68.0±1.0 47.6±0.9 39.7±0.5 25.9±0.6 23.5±0.5

Table 3. Recognition error rates under different types of outliers on the PEAL datasets.
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Figure 5. ROC curves of different methods on the PEAL dataset.

whose pose degrees are less than or equal to 22o. Then
the whole dataset contains 7448 images of 1038 individu-
als. All the selected images are cropped with dimension
32× 32, and are enhanced by using histogram equalization.

In the first experiment, for the training set, we select
2226 images of 261 individuals that correspond to the in-
dividuals with sunglasses. We take the half facial images of
each person in the remaining 777 individuals as the gallery
set, the remaining images as the probe set. Therefore, the
set of persons for training is different from that for testing.
In the second experiment, we introduce three types of out-
liers. (1) For outliers, we randomly selected 223 images
from the sunglasses occluded images of the 261 individu-
als. The level of noise is 10%. (2) We randomly select 445
images from the hat occluded images of the 261 individuals.
The level of noise is 20%. (3) We randomly mislabel 20%
labels of the images in the training set. All experiments are
repeated 20 times, and mean and deviation are reported.

Table 3 lists the recognition error rates of different meth-
ods under different types of outliers on the PEAL dataset.
The first row of Table 3 gives recognition rates on the train-
ing set without outliers. CRFS significantly outperforms its
four competitors. The improvements of CRFS against RFS
and LDA are 9.7% and 25.7% respectively. The error rates
of LPP and REDA are very high. This may be because the
number of the images per person is different in the train-
ing set. The local structure of LPP may be inaccurate due
to noise such that LPP fails to reflect the true structure on

the probe and gallery set. Fig. 5 further shows the ROC
curves of different methods on the uncorrupted training set.
Both RFS and CRFS significantly perform better than other
methods. Due to the same reason discussed above, the ROC
curves of LPP and REDA are even lower than that of PCA.
But we consider this phenomenon as an agreement with this
PEAL data set.

For hat and sunglasses occlusions, error rates of all meth-
ods increase. We observe that the increment of the error
rate of LDA is larger than those of other methods. This is
because LDA calculates intra-class and inter-class matrices
during training. Hat or sunglasses occlusions significantly
change face appearance and hence they affect the computa-
tion of the two matrices. As a result, the error rates of LDA
increase larger than those of other methods.

When there is mislabeling noise, the performance of all
methods decrease significantly. In particular, the error rates
of two non-robust methods LPP and LDA increase rapidly.
Since discriminative LPP is based on a local structure which
depends on label information, it is sensitive to mislabeling
noise. We also observe that the error rates of three robust
methods (REDA, RFS, and CRFS) increase slowly. This
is due to that they are based on robust M-estimators and
detect outliers in each iteration. As expected, CRFS obtains
the lowest recognition rates among all compared methods.

3.3. Computational Cost

In many vision problems, there are often tremendous
classes in training set. For example, in face recognition,
the number of classes is equal to that of persons. When the
number of classes tends to be larger, label matrix Y will be
very large. Since RFS iteratively estimates an error matrix
E that has the same size as Y, the computational cost of
RFS will tend to be large. Different from RFS, our CRFS
makes use of a weighting strategy to deal with outliers. In
each iteration, it only computes auxiliary vector p ∈ Rn.
Hence it can speed up learning procedure.

Table 4 tabulates computational costs of different meth-
ods. When the number of subjects in the training set is 120,
the methods can ordered in descending computational costs
as RFS, CRFS, LPP, LDA, REDA, and PCA. We observe
that CRFS can significantly reduce the computational cost
as compared with RFS, especially when the number of sub-
jects is large.
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Number PCA LPP REDA LDA RFS CRFS

60 4.8 6.9 5.9 5.7 6.8 5.8
120 5.5 8.4 6.8 7.2 33.3 10.4

Table 4. Computation time (s) on the FRGC dataset.

4. Conclusion

This paper has studied l2,1-norm minimization from the
viewpoint of HQ optimization, and proposes a general for-
mulation to unify l1- and l2,1- regularized robust learning
methods. Based on the HQ analysis, an l2,1 regularized cor-
rentropy algorithm has been further presented to extract in-
formative features meanwhile to remove outliers from the
training set. An alternate minimization algorithm has been
used to optimize the non-convex correntropy objective. Ap-
plying the proposed method to face recognition problem,
we have obtained a new appearance based face recognition
model - Sparse-Fisherface. Extensive experiments have val-
idated that our method can select robust and sparse features,
and outperforms other appearance-based methods on large-
scale and open face recognition datasets.
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