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Abstract

This paper proposes a novel robust sparse representation
method, called the two-stage sparse representation (TSR), for
robust recognition on a large-scale database. Based on the
divide and conquer strategy, TSR divides the procedure of
robust recognition into outlier detection stage and recogni-
tion stage. In the first stage, a weighted linear regression
is used to learn a metric in which noise and outliers in im-
age pixels are detected. In the second stage, based on the
learnt metric, the large-scale dataset is firstly filtered into a
small set according to the nearest neighbor criterion. Then a
sparse representation is computed by the non-negative least
squares technique. The sparse solution is unique and can be
optimized efficiently. The extensive numerical experiments
on several public databases demonstrate that the proposed
TSR approach generally obtains better classification accuracy
than the state-of-the-art Sparse Representation Classification
(SRC). At the same time, by using the TSR, a significant re-
duction of computational cost is reached by over fifty times
in comparison with the SRC, which enables the TSR to be
deployed more suitably for large-scale dataset.

1 Introduction

Automatically classifying image-based object has wide ap-
plications in computer vision and machine learning. An
image-based recognition system compares a query image
with prototypical images recorded in a database and output
the category label of the image. Two major concerns in de-
signing a recognition system are that (1) the query images
are subject to changes in illumination as well as occlusion
(Sanja, Skocaj, and Leonardis 2006); and (2) the number
of the prototypical images is often tens of thousands. For
these concerns, we have to address two basic issues: (1) how
to yield a robust representation of an object and (2) how to
classify a query image as efficient as possible.

Recently, the sparse representation has proven to be
robust and discriminative for machine learning problems
(Wright et al. 2009a). Typically, the sparse technique is
casted into an l1 minimization problem, which is an equal
approximation of the l0 minimization problem under some
conditions (Candes and Tao 2005; Donoho 2006). Along
this line, a sparse representation classifier (SRC) for robust
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face recognition was proposed in (Wright et al. 2009b)
and impressive results were reported against many well-
known face recognition methods(Turk and Pentland 1991;
He et al. 2005). However, the sparse assumption of noise
in SRC makes it computationally expensive (Wright et al.
2009b).

In order to tackle the above two basic issues in a unified
framework, we propose a two-stage sparse representation
(TSR) framework based on the divide and conquer strategy.
The procedure of robust recognition is divided into outlier
detection stage and recognition stage. In the first stage, to
deal with varying illumination as well as occlusion, a ro-
bust linear regression method is proposed to learn a met-
ric in which noise and outliers in image pixels are detected.
Different from SRC which assumes that the noisy item has
a sparse representation, the robust metric in TSR is derived
from a robust function which is robust to non-Gaussian noise
and large outliers. In the second stage, to reduce the compu-
tational cost, we filter the large-scale dataset 1 into a small
subset according to the nearest neighbor criterion based on
the learnt metric. Then we harness the technique of non-
negative least squares to compute a sparse representation on
the filtered subset to further improve recognition rate. This
non-negative sparse solution is unique and can be optimized
efficiently. Extensive experiments on recognition tasks cor-
roborate above claims about robustness and sparsity, and
demonstrate that the proposed TSR framework significantly
reduces the computational cost and meanwhile achieve bet-
ter performance as compared to SRC.

The remainder of this paper is outlined as follows: in
Section 2, we begin with a brief review of the SRC. Then
we present the two-stage sparse representation (TSR) frame-
work in Section 3. Comparison results between the proposed
framework and the state-of-the-art are reported in Section 4.
Finally, we draw the conclusions and discuss the future work
in Section 5.

2 Sparse Representation by l
1 minimization

Let Xc
.
= [xc

1, x
c
2, . . . , x

c
nc

] ∈ R
d×nc be a matrix and each

column of which is the training samples of the c-th class,
where c = 1, · · · , k, and y ∈ R

d×1 be a new test sample.

1Here, we specify that large scale dataset contains nearly ten
thousand images.
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Let xc
ij and yj be the j-th entry of xc

i and y respectively. By
concatenating the training samples of all k classes, we get a
new matrix X for the entire training set as :

X
.
= [X1, X2, ..., Xk] = [x1

1, x
1
2, ..., x

k
nk

] ∈ R
d×n (1)

where n =
∑k

c=1 nc. A test sample y then can be expressed
as a linear combination of all training samples: y ≈ Xβ
where the coefficient vector β ∈ R

n.
The Sparse representation classifier (SRC) (Wright et al.

2009a; 2009b) aims to seek the sparsest solution, i.e.,

min ||β||0 s.t. y = Xβ (2)

where the l0-norm ||.||0 counts the number of nonzero en-
tries in a vector. Originally inspired by theoretical results
(Candes and Tao 2005; Donoho 2006) that the solution of
the l0 minimization problem is equal to the solution of the l1

minimization problem if the solution is sparse enough, SRC
seeks an approximate solution of β by solving the following
convex relaxation:

min ||β||1 s.t. y = Xβ (3)

where ||β||1 =
∑n

i= |βi|. Here, we denote the algorithm
that solves Eq. (3) by SRC0.

Normally, the Lasso solution (Tibshirani 1996) can be de-
fined as an unconstraint minimizer of Eq.(3):

min ||y − Xβ||2 + λ||β||1 (4)

where λ can be viewed as an inverse of the Lagrange mul-
tiplier in Eq.(3). To deal with occlusions and corruptions,
Wright et al. further proposed a robust linear model as:

y = Xβ + e (5)

where e ∈ R
d is a vector of errors. Assuming that the noisy

vector e has a sparse representation, SRC seeks the sparsest
solution to the robust system of Eq.(5):

min ||β||1 + ||e||1 s.t. y = Xβ + e (6)

We denote the algorithm that solves Eq.(6) by SRC1.
Although SRC1 can effectively deal with the occlusion

and corruption problems, its computational cost is very high.
It will take nearly 100 seconds for SRC1 to process a test
image stacked in a 700-D vector (Wright et al. 2009b).

3 Two-stage Sparse Representation

The key point of our two-stage Sparse Representation (TSR)
framework is to learn a robust metric to detect the outliers
and then to harness the non-negative sparse representation
to perform classification.

3.1 Learn A Robust Metric

In real-world face recognition, facial images are often cor-
rupted by noise or outliers, that is, some pixels that do not
belong to the facial images are depicted. One expects to
learn a metric M by which the outliers are efficiently de-
tected and rejected so that any classifier can work on the un-
corrupted subsets of pixels of facial images. Generally, the
M is assumed to be a diagonal matrix (Xing et al. 2002).

To deal with the outliers, we define the metric M as a
function of a test sample y, a subspace U ∈ R

m×d that mod-
els variation of the dataset X 2, and a projection coefficient
β ∈ R

m×1, i.e.,

M
∆
= M(U, y, β) (7)

where Mjj
∆
= g(yj−

∑m

i=1 Uijβi) and g(x) = exp(− ||x||2

2σ2 )
is a Gaussian kernel function. We wish to find a metric that
has the maximum matrix norm,

M∗ = argmax
M(y,U,β)

||M(y, U, β)||1 (8)

where ||M ||1 ∆
=

∑d

i=1

∑d

j=1 |Mij |. Then we obtain the

following optimization problem,

M∗ = arg max
M(y,U,β)

d∑

j=1

g(yj −
m∑

i=1

Uijβi) (9)

The optimization problem in Eq.(9) is actually a max-
imum Correntropy problem (Liu, Pokharel, and Principe
2007) and the kernel function g(x) is a robust M-estimator
(Liu, Pokharel, and Principe 2007; Yuan and Hu 2009) that
can efficiently deal with non-Gaussian noise and large out-
liers. The problem in Eq. (9) can be optimized in an alterna-
tive maximum way (Yuan and Hu 2009; Yang et al. 2009):

M t
jj = g(yj −

m∑

i=1

Uijβ
t−1
i ) (10)

βt = arg max
β

(y − Uβ)T (−M t)(y − Uβ) (11)

The optimization problem in Eq. (11) is a weighted lin-
ear regression problem, and its analytical solution can be
directly computed by

βt = (UT M tU)−1UT M ty (12)

Algorithm 1: Learning a robust metric

Input: Subspace U , a test visual data y ∈ R
m×1, and a

small positive value ε
Output: M

1: repeat
2: Initialize converged = FALSE.
3: Update M according to Eq. (10).
4: Update β according to Eq. (11).
5: if the entropy delta a is smaller than ε then
6: converged = TRUE.
7: end if
8: until converged==TRUE

aThe entropy delta is the difference of the entropy objective be-
tween two iterations. In practice, we actually set the maximum it-
eration to 20 instead of selection of an ǫ. We find that the algorithm
always sufficiently converges for 20 iterations.

2In this paper, the subspace U is composed of the eigen vec-
tors computed by principal component analysis (Sanja, Skocaj, and
Leonardis 2006)
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Algorithm 1 outlines the optimal procedure. According
to the half-quadratic optimization framework (Yuan and Hu
2009), Algorithm 1 alternatively maximizes the objective by
Eq. (10) and Eq. (11) until Algorithm 1 converges. Since
the outliers are significantly far away from the uncorrupted
pixels, the M-estimator will punish the outliers during alter-
native maximum procedure. When the algorithm converges,
we obtain a robust metric in which the diagonal entries cor-
responding to the outliers would have small values (Yuan
and Hu 2009).

3.2 Non-negative Sparse Representation

In face recognition, we find that if there is no occlusion or
corruption, the sparse coefficients computed by SRC method
are often non-negative. Inspired by this observation, we aim
to achieve a non-negative sparse representation (Vo, Moran,
and Challa 2009; Ji, Lin, and Zha 2009) for robust object
recognition problem.

Firstly, we filter the database into a small subset according
to the nearest neighbor criterion in the learnt robust metric.
We denote the number of the nearest neighbor by nknn

3 and
let nknn < min(n, d). The motivation of this filtering step
is three folds: 1) it ensures that the the optimization problem
in Eq. (14) has a unique solution; 2) it plays as a similar
role as λ in Lasso to remove some samples corresponding
to small coefficients 4; 3) it significantly reduces the compu-
tational cost so that TSR can deal with large-scale problem.
The efficiency of this filtering step will be further corrob-
orated in the experiment section 4.4 and 4.6 . Unless
otherwise stated, we set nknn to 300 throughout the paper.

Secondly, a non-negative representation (Ji, Lin, and Zha
2009) is computed on the subset by imposing a non-negative
constraint on Eq. (4),

min ||y − Xβ||2 + λ||β||1 s.t. β ≥ 0 (13)

Instead of using second-order cone programming (Boyd
and Vandenberghe 2004) to solve the non-negative l1-
regularized least squares problem in Eq. (13), we simply
set λ = 0 (Vo, Moran, and Challa 2009). Then we have

min ||y − Xβ||2 s.t. β ≥ 0 (14)

We denote the method to solve Eq. (14) by non-negative
sparse representation (NSR). If the matrix X is of full col-
umn rank (rank(X) = n), the matrix XT X is positive def-
inite and thus the strictly convex programming in Eq. (14)
has a unique solution for each vector y (Bjorck 1988). In our
implementation, Eq. (14) is minimized using an active set
algorithm for linear programming based on (Bjorck 1988;
Portugal, Judice, and Vicente 1994)

Inspired by the sparse classifier proposed in (Wright et
al. 2009b), we classify a test sample y as follows. For each
class c, let δc : R

n → R
nc be a function which selects

3The nknn is the k in KNN.
4The active set algorithm (Black and Jepson 1996; Sanja, Sko-

caj, and Leonardis 2006) to solve Eq. (17) selects the sample that
can significantly reduce the objective step by step. The lastly se-
lected samples often correspond to smallest coefficients and are
faraway from the query y.

the coefficients belonging to class c, i.e. δc(β) ∈ R
nc is a

vector whose entries are the entries in β corresponding to
class c. Utilizing only the coefficients associated to class c,
the given sample y is reconstructed as ŷc = Xcδc(β). Then
y is classified based on these reconstructions by assigning it
to the class that minimizes the residual between y and ŷc:

min
c

rc(y)
.
= ||y − ŷc||2 (15)

3.3 Algorithm of TSR

Algorithm 2 summarizes the procedure of the two-stage
sparse representation (TSR). In step 1, we make use of the
Algorithm 1 to learn a robust metric M . And then we set

X̂ =
√

MX and ŷ =
√

My so that we can perform a more
robust classification in the metric space induced by M in the
following steps. In step 2, to reduce the computational cost,

the large-scale dataset X̂ is filtered into a small subset X̂1.
In step 3, a sparse representation is computed by NSR on

X̂1. In step 4, considering that each object class often has
several instances, i.e., nc ≥ 1, we select all instances of the
most competitive classes that correspond to the nonzero co-
efficients in step 4. In step 5, the query image y is classified
according to the computed residuals.

Algorithm 2: Two-stage sparse representation(TSR)

Input: data matrix X = [X1, X2, ..., Xk] ∈ R
m×n for

k classes, a test sample y ∈ R
m×1, the number

of the nearest neighbor nknn

Output: identity(y)
1: Compute a robust diagonal metric M according to

Algorithm 1, and set X̂ =
√

MX and ŷ =
√

My.

2: Compute a nearest subset I1 in X̂ to ŷ according to the

nearest neighbor criterion, and set X̂1 = {xi|i ∈ I1}.
3: Solve the non-negative least squares problem:

β
∗

= arg min
β

||X̂1
β − ŷ|| s.t. β ≥ 0 (16)

4: Set I2 = {i|βi > 0 and i ∈ I1} and X̂2 = {X̂c|
x̂i ∈ X̂c and i ∈ I2}, solve the non-negative least
squares problem:

β∗ = argmin
β

||X̂2β − ŷ|| s.t. β ≥ 0 (17)

5: Compute the residuals rc(ŷ) = ||ŷ − X̂2δc(β
∗)||2, for

c = 1, . . . , k
6: identity(y) = arg minc rc(ŷ)

4 Experimental Verification
In this section, the proposed method is systematically com-
pared with the state-of-the-art methods: reconstructive and
discriminative subspace method (LDAonK) (Sanja, Skocaj,
and Leonardis 2006), linear regression classification (LRC)
(Naseem, Togneri, and Bennamoun 2009) and sparse repre-
sentation based classification (SRC) (Wright et al. 2009b).
All of the algorithms were implemented in MATLAB.
The experiments were performed on an AMD Quad-Core
1.80GHz Windows XP machine with 2GB memory.
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4.1 Experimental setting and databases

Database. Three image databases are selected to evaluate
different methods. All images are converted to grayscale
and the facial images are aligned by fixing the locations of
two eyes. The descriptions of three databases are following:

1) AR Database (Martinez and Benavente 1998): The AR
database consists of over 4,000 facial images of 126 sub-
jects (70 men and 56 women). For each subject, 26 facial
images are taken in two separate sessions. We select a
subset of the dataset consisting of 65 male subjects and
54 female subjects. The dimension of the cropped images
is 112 × 92.

2) Extended Yale B Database (Georghiades, Belhumeur, and
Kriegman 2001) : The Extended Yale B database con-
sists of 2,414 frontal-face images of 38 subjects. The
cropped 192 × 168 face images were captured under var-
ious laboratory-controlled lighting conditions and with
different facial expressions. For each subject, half of the
images are randomly selected for training (i.e., about 32
images per subject), and the left half for testing.

Figure 1: Some of the objects in COIL database.

3) COIL Database (Nene, Nayar, and Murase 1996):
Columbia Object Image Library (COIL-100) is a database
consists of 7,200 color images of 100 objects (72 images
per object). All images are resized to 32 × 32. Some of
them are shown in the first row of Fig.1. For each object,
2 images are randomly selected for testing, and the left
70 images are used for training. Hence, there are 7000
images in training set.

Algorithm Setting. The details of compared techniques are:

1) SRC: we compare its two robust models, which are differ-
ent in the aspects of robustness and computational strat-
egy (Wright et al. 2009b).

SRC1: the implementation minimizes the l1-norm in
Eq.(18) via a primal-dual algorithm for linear program-
ming based on (Boyd and Vandenberghe 2004; Candes
and Romberg 2005). 5

min ||β||1 + ||e||1 s.t. ||y − Xβ + e||2 ≤ ε (18)

where ε is a given non-negative error tolerance. The algo-
rithm’s setting is the same as that in (Wright et al. 2009b).

SRC2: the implementation minimizes the l1-norm in
Eq.(19) via an active set algorithm based on (Lee et al.
2006). 6

min ||y − Xβ + e||2 + λ(||β||1 + ||e||1) (19)

where λ is a given sparsity penalty. The λ is empirically
set to 0.005 to achieve the best results.

5The source code: http://www.acm.caltech.edu/l1magic/
6The source code: http://redwood.berkeley.edu/bruno/sparsenet/

2) TSR: The nknn in step 2 is set to 300. The subspace U in
Algorithm 1 is composed of the eigenvectors correspond-
ing to the 10 largest eigenvalues as suggested in (Black
and Jepson 1996; Sanja, Skocaj, and Leonardis 2006).
The kernel size σ in Gaussian kernel is estimated by Sil-
verman’s rule (Silverman 1986):

(σt)2 = 1.06 × min{σE , R/1.34}× (d)−
1

5 (20)

as suggested in the Correntropy (Liu, Pokharel, and
Principe 2007). The σE is the standard deviation and R
is the interquartile range. The implementation minimizes
the Eq. (14) via an active set algorithm based on (Bjorck
1988) (Portugal, Judice, and Vicente 1994). 7

3) LDAonK: The parameters of LDAonK are set by follow-
ing the suggestion in (Sanja, Skocaj, and Leonardis 2006).

Note that since the computational cost of SRC1 is very
high, we only give the experimental results in lower dimen-
sional feature space.

(a) (b) (c)

Figure 2: Illustrative images used in the experiments. (a) a
facial image with sunglasses in AR database. (b) 30% ran-
dom pixel corruption. (c) 70% random pixel corruption.

4.2 Recognition under Disguise

For training, we use 952 images (about 8 for each sub-
ject) of un-occluded frontal views with varying facial ex-
pression. And for testing, we use images with sunglasses.
Fig. 3 shows the recognition performance of different meth-
ods against different downsampled images of dimension, i.e.
161, 644 and 2576 (Wright et al. 2009b). Those numbers
correspond to downsampling ratios of 1/8, 1/4 and 1/2, re-
spectively.

We observe from the numerical simulations that the meth-
ods can be ordered in descending recognition accuracies as
TSR, SRC1, SRC2, LDAonK, and LRC. Three sparse repre-
sentation based methods outperform the rest two non-sparse
ones. If occlusions happen, it is unlikely that the test im-
age will be very close to the subspace of the same class, so
that LRC performs poorly. In this case, TSR significantly
performs better than the two SRC methods and achieves the
highest recognition rates. This is because that the outlier
detection stage of TSR can efficiently detect the sunglasses
occlusion.

4.3 Recognition under Random Pixel Corruption

In some scenarios, the query image y could be partially cor-
rupted. We testify the efficiency of TSR on the Extended
Yale B Face Database. For each subject, half of the images
are randomly selected for training, and the left half are for
testing. The training and testing set contain 1205 and 1209

7The MATLAB source code: http://www.mathworks.com/
matlabcentral/ fileexchange/10908
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Figure 3: Recognition rates under occlusion of sunglasses.

images respectively. All images are downsampled to 48 ×
42. Each test image is corrupted by replacing a percentage
of randomly selected pixels with random pixel value which
follows a uniform distribution over [0, 255]. The percentage
of corruption is from 10% to 80%.

Fig. 4 shows the recognition accuracies of five methods
under different levels of corruption. When the level of cor-
ruption trends to be high, three sparse methods begin to sig-
nificantly outperform the two non-sparse ones. Recognition
rates of the two SRC methods are very close. And the TSR
performs slightly worse than the SRC methods. Although
TSR only obtains similar recognition rates to the SRC meth-
ods, TSR can significantly reduce the computational cost.

Figure 4: Recognition rates under Random Pixel Corruption.

4.4 Recognition on large-scale dataset

To evaluate the performance of TSR on large-scale database,
we select the COIL dataset where there are 7000 images in
the training set. We denote the TSR without the filtering
steps (step 2 and step 3) by TSR1, that is the TSR1 directly
computes a non-negative sparse representation on the whole

dataset X̂ . Since the computational costs of other three
methods are very high, we only compare TSR with LRC on
COIL. We evaluate the performance of different methods in
two scenarios. In the first scenario, the images in testing set
are the original ones in COIL database. In the second sce-
nario, each image in the testing set is occluded by a white
square whose size and location are randomly determined for
each image and is unknown to the computer. Fig. 1 shows
some examples of the occluded objects.

Table 1 shows the experimental results of the two scenar-
ios. As expected, TSR still achieves the highest recognition

rate. Compared with LRC, TSR can significantly improve
the recognition accuracy when there is occlusion.

Table 1: Recognition rates (%) and cpu time (s) on COIL datase.

LRC TSR TSR1

original data 94.0 95.0 92.0

occluded data 23.0 84.0 80.0

We also observe that the recognition rate of TSR is higher
than that of TSR1. This means that using part of the dataset
can improve the recognition accuracy. We know that the
classification of TSR is based on the coefficients computed
by Eq.(17). Since discarding the faraway samples actually
is an approximation of discarding some samples correspond-
ing to small coefficients, the coefficients computed by TSR
may be more informative and discriminant, so that TSR out-
performs TSR1. Hence we consider this result as a coinci-
dence with this phenomenon.

4.5 Computational cost

The computation complexity of algorithm 2 mainly depends
on the knn filtering step. Since the computation complexity
of quick sort is O(nlog(n)), the computation complexity of
algorithm 2 is O(nlog(n)). Fig. 5 shows the overall com-
putational time of using various number of features on AR
database, with the same experiment setting as that in Section
4.2 . The feature dimension is 644-D. SRC1, SRC2, TSR1
and TSR take 56, 6.9, 0.43, and 0.13 seconds for each test
image respectively. (In (Wright et al. 2009b), SRC1 requires
about 75 seconds per test image on a PowerMac G5.) It is
clear to see the computational advantage of TSR over SRC1
and SRC2. Significant reduction of computational cost is
reached by TSR by over fifty times in comparison with the
SRC2. Since TSR works on a subset of training data, TSR
can further save more computational time as compared to
TSR1.

Figure 5: computational time on various feature spaces.

4.6 The Parameter nknn and Sparsity

The number of the nearest neighbor nknn is a key parameter
to control computational cost, recognition rates and num-
ber of bits (l0 norm) of coefficients. In this subsection, We
study how the nknn affects the performance of TSR. The ex-
periment setting is the same as that in Section 4.2 and the
feature dimension is 644-D.

Table 2 tabulates recognition rates and number of bits for
various number of the nearest neighbor. The total number
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of coefficients of SRC1 and SRC2 is 40 and 25 respectively.
We observe from the numerical simulations that TSR can
yield a sparse representation, and both recognition rates and
the total number of nonzero coefficients increase as the num-
ber of the nearest neighbor increases. It is also interesting to
observe that the recognition rate at 500 is even higher that
at 952. This is coincident with the results in section 4.4 .
Only using part of the facial images to compute a sparse
representation can yield a higher recognition rate. It also
corroborates that the filtering large-scale database in step 2
is reasonable.

In addition, the experimental results demonstrate that
even if a robust metric has been learned, a test image may
not be very close to the same class in training set. The non-
negative sparse representation is informative and discrimi-
nant for image based object recognition.

Table 2: Recognition rates (%) and the total number of nonzero
coefficients (l0 norm) for various number of nknn of TSR.

100 200 300 400 500 952

rate 84.03 84.03 86.55 87.39 88.24 86.55

l0 norm 19 22 23 24 25 28

5 Conclusion and Future Work

Sparse representation is a powerful tool for robust object
recognition. This paper divides the procedure of comput-
ing a robust sparse representation into two stages. In the
first stage, a robust metric is derived from a robust function
and is solved by a weighted linear regression method. In the
second stage, the large-scale dataset is firstly filtered into a
small subset in the learnt robust metric. Then a non-negative
sparse representation method based on non-negative least
squares technique is proposed to obtain a sparse represen-
tation for classification. Extensive experiments demonstrate
that the proposed framework not only significantly reduces
the computational cost but also can achieve better recogni-
tion performance as compared to the state-of-the-art SRC
method.

Although extensive experimental observations show that
without harnessing the l1-norm technique the non-negative
least squares technique can also learn a sparse representation
for image-based object recognition, a theoretical investiga-
tion needs to be further done to support the sparse idea and
discuss the relationship with the l1 minimization technique
in our future work.
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