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Abstract. We propose a novel unsupervised transfer learning frame-
work that utilises unlabelled auxiliary data to quantify and select the
most relevant transferrable knowledge for recognising a target object
class from the background given very limited training target samples.
Unlike existing transfer learning techniques, our method does not as-
sume that auxiliary data are labelled, nor the relationships between tar-
get and auxiliary classes are known a priori. Our unsupervised trans-
fer learning is formulated by a novel kernel adaptation transfer (KAT)
learning framework, which aims to (a) extract general knowledge about
how more structured objects are visually distinctive from cluttered back-
ground regardless object class, and (b) more importantly, perform selec-
tive transfer of knowledge extracted from the auxiliary data to minimise
negative knowledge transfer suffered by existing methods. The effective-
ness and efficiency of the proposed approach is demonstrated by per-
forming one-class object recognition (object vs. background) task using
the Caltech256 dataset.

1 Introduction

Object recognition in unconstrained environments is a hard problem largely due
to the vast intra-class diversities in object forms and appearance. Consequently,
to learn a classifier for recognition, one typically needs hundreds or even thou-
sands of training samples in order to account for the visual variability of objects
within each class [1]. However, labelling large number of training samples is not
only expensive but also not always viable because of difficulties in obtaining data
samples for rare object classes. Inspired by human’s ability to learn new object
categories with very limited samples [2], recent studies have started to focus on
transfer learning [3–8], with which a model is designed to transfer object class
knowledge from previously learned models to newly observed images of either
the same object class or different classes. The overall aim of transfer learning is
to maximise available information about an object class given very sparse train-
ing samples by utilising shared and relevant knowledge from other object classes
and/or the same class of significant intra-class appearance variation. Two non-
trivial challenges surface: how to quantify and compute ‘shared relevant’ inter-
and intra-class object appearance knowledge, and under what assumptions.

In this paper, we consider the object transfer learning for the extensively
studied one-class recognition [9, 7, 3], which learns a model that is able to detect
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different and unknown object categories (target categories) against cluttered
background. We assume that only very limited target training samples but a
number of unlabelled images of other non-background object categories (auxil-
iary categories) are available, where the “unlabelled” means the exact labels of
auxiliary data and the relationships such as the hierarchical category structure
between the auxiliary and target categories are unknown.

The proposed model addresses two significant limitations of existing transfer
learning methods. First, most existing methods require that auxiliary classes are
labelled and the relationships between target and auxiliary classes are known a
priori, e.g. cross-domain but from the same categories [10–13] or cross-category
but relevant using hierarchy category structure [9] (e.g. detecting giraffes using
other four-leg animals as auxiliary data). However, identifying the relationships
between a target category and auxiliary categories is non-trivial and not al-
ways possible – relevant object categories with shared knowledge to the target
class may not be available in the auxiliary data. Although a few recent studies
demonstrate that this assumption can be relaxed [7, 3], these methods are fully
supervised so the problem is somewhat averted rather than solved as they all
require a costly exhaustive labelling of all the auxiliary data to mitigate un-
known relationships. However, exhaustive labelling is not always available nor
viable. Second, no measures are taken by existing transfer learning techniques to
avoid negative knowledge transfer [14, 13], which reduces rather than enhances
the performance of an object recogniser learned from target class samples alone.
Clearly there is a need for quantifying the usefulness of auxiliary knowledge and
therefore explicitly selecting the relevant one in order to significantly alleviate
negative transfer.

To overcome these limitations of existing models, we propose an unsupervised
transfer learning model capable of 1) identifying automatically transferrable
knowledge to be extracted if both class labels of the auxiliary data and any
relationships between the auxiliary and target object classes are unknown, and
2) more important, quantifying and selecting the most effectively relevant aux-
iliary knowledge (not all are relevant) and combining them with target specific
knowledge learned from very limited training samples in constructing optimal
target object recognisers. To that end, our unsupervised transfer learning is
formulated in a novel Kernel Adaptation Transfer (KAT) learning framework.
For the first objective, we exploit an observation that regardless how dissimilar
the auxiliary object categories may be from a target category, there is shared
general knowledge (structural characteristics) of objects, which are visually dis-
tinctive from less structured and more random background clutters. To extract
such general knowledge from unlabelled auxiliary data, we perform clustering
on the auxiliary data and the general knowledge is computed as an ensemble
of local auxiliary knowledge that distinguishes objects from each cluster from
cluttered background. For the second objective, we represent the extracted aux-
iliary knowledge using multiple kernel functions, and combine them with any
target specific knowledge represented by a kernel function learned directly from
a handful of target class samples. Critically, since the auxiliary data classes
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may be ineffective to the target class which we have no knowledge of a priori,
the usefulness of all auxiliary kernel functions is evaluated automatically and
only relevant kernels are selected by our transfer kernel adaptation framework,
in which a hypothesis constraint between the weight of target kernel and the
weights of auxiliary kernels and a partial sparsity constraint are introduced in
order to minimise negative knowledge transfer.

In summary, the proposed unsupervised kernel adaptation transfer learning
model makes two main contributions: (1) it provides a novel way of extracting
general auxiliary knowledge from unlabelled auxiliary categories; (2) it signifi-
cantly alleviates negative transfer due to its ability of quantifying and selecting
transferrable knowledge. Our results on Caltech256 dataset [15] demonstrate
that: (a) Our method is able to extract selectively useful transferrable knowl-
edge from unlabelled auxiliary data to improve the recognition performance of
each individual target object model trained by very limited samples. The selec-
tion is different for different target classes. (b) Our unsupervised transfer learn-
ing model outperforms existing unsupervised transfer learning model in terms
of recognition performance, robustness to negative transfer and computational
cost; and is comparable to or better than supervised transfer learning with fully
labelled auxiliary data.

2 Related Work

Most existing transfer learning methods for object recognition are supervised
(i.e. they require labelled auxiliary data), and make the assumption that the
auxiliary classes must be related to each target object class. In [9], hierarchical
category structure is needed for selecting auxiliary classes. Similarly, Stark et
al. [6] transfer the variance of object shape from closely related object classes
using a generative model inspired by Constellation model [16]. Alternatively, in
[4, 5] a model-free approach is taken for which common attribute information has
to be specified manually. In comparison, our KAT model does not assume any
relationship between auxiliary object classes and a target class, and the knowl-
edge learned and transferred by our method can be extracted from auxiliary
object classes unrelated (i.e. not similar) to the target class.

There have been a number of attempts to transfer general knowledge about
object visual appearance using unrelated object categories. Fei-Fei et al. [7] for-
mulated an one-shot Bayesian learning framework based on Constellation mod-
els. Models are learned from labelled auxiliary categories and the model param-
eters are averaged and used in the form of a prior probability density function
in the parameter space for learning a target object class. As pointed out by
Bart and Ullman [3], since only one prior distribution is used, this approach
can be biased by the dominant or common auxiliary categories, and the method
is unable to detect and prevent this from happening. The feature adaptation
method proposed by Bart and Ullman [3] overcomes this problem by learning a
set of discriminative features from each labelled auxiliary category and selecting
the features extracted from target category samples towards those discriminative
auxiliary features. The adaptation is meaningful even if only one of 100 auxiliary
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categories is related to the target class. Similar to [3], our method can avoid the
problem of bias towards dominant auxiliary categories. The difference is that we
do not need to assume the availability of any related auxiliary categories since
the knowledge transferred by our method is concerned with how objects in gen-
eral can be distinguished from background. Moreover, no labelling is required
for auxiliary data using our model.

The most closely related work is the self-taught learning (STL) method pro-
posed by Raina et al. [17] which also does not require labelling of auxiliary data,
even though another unsupervised transfer learning method was also proposed
recently [18]. The method in [18] is transductive and requires testing data to
be involved in the training stage which may be considered less desirable. As
compared to STL, our KAT model is superior in three ways. (1) The knowledge
extracted by STL is a set of feature bases that best describe how objects look
alike. In contrast our KAT model extracts the general knowledge about how ob-
jects are distinguishable from cluttered background. It is thus more suitable for
the one-class object recognition task. This is supported by our experimental re-
sults shown in Section 5. (2) Most importantly, the feature bases learned by STL
from auxiliary data are trusted blindly and used for target category sample rep-
resentation without discrimination. In contrast, our kernel adaptation method
provides a principled way of quantifying and selecting the most useful auxiliary
information relevant to different target categories for discrimination. As a result,
our KAT model is more robust against negative knowledge transfer. (3) The STL
model is computationally much more expensive than our KAT model, especially
on high-dimensional features, as l1-norm based optimisation is required.

Our kernel adaptation transfer (KAT) is a multiple kernel learning (MKL)
method. KAT differs from the non-transfer MKL [19, 20] in that it is specially
designed with two proposed constraints for unsupervised cross-category transfer
learning to fuse a target kernel with a number of auxiliary kernels built based on
lots of auxiliary data that may be irrelevant to target category. Though several
work on kernel function learning has been exploited before for transfer learn-
ing [21, 13, 10, 11], KAT is formulated for unsupervised cross-category transfer
learning, whilst [21, 13, 10, 11] assume that the target class data and auxiliary
data are from different domains of the same category (e.g. news video footage
from different countries) and they can neither be applied directly to nor easily
extended for our cross-category unsupervised transfer learning task.

3 Kernel Adaptation for Knowledge Transfer

Let us first describe in this section our general kernel adaptation transfer learning
framework before formulating a specific model for an object recognition problem
in the next section. Given a training dataset {xt

i, y
t
i}N

i=1 where yt
i ∈ {1,−1} is

the label of xt
i and we call yt

i = −1 the negative class (e.g. background) and
yt

i = 1 the target class (e.g. object). We wish to transfer knowledge extracted
from an unlabelled (and possibly also irrelevant) auxiliary dataset {xa

j } to the
target class data, where {xa

j } do not contain any samples of the target class.
We consider that the auxiliary knowledge is represented by a set of auxiliary



Unsupervised Selective Transfer Learning for Object Recognition 5

mappings fs, s = 1, · · · ,m which are learned from auxiliary data such that
fs(xt

i), s = 1, · · · ,m are the candidate transferrable knowledge for each training
target data xt

i. The form of the auxiliary mapping fs(xt
i) depends on the specific

transfer learning problem, for example a feature vector. Given any auxiliary
mappings extracted from unlabelled auxiliary data, our objective is to quantify
and select the transferrable ones and combine them with the data {xt

i, y
t
i}N

i=1

in order to get better recognition performance. More specifically, the problem
becomes learning a mapping g by combining fs(xt

i) and xt
i in order to generate

a new d-dimensional vector as follows:
g : (xt

i, {fs(xt
i)}m

s=1) −→ zt
i ∈ <d. (1)

In this paper, we learn such a g via kernel methods. It is motivated because
(a) rather than being explicitly defined, by formulating a kernel framework, g
can be implicitly induced by a Mercer kernel function, which we call the transfer
kernel function in this paper; (b) by optimising the transfer kernel, we obtain
a principled way for quantifying and selecting transferrable knowledge, which is
critical for minimising negative knowledge transfer.

We now show why and how a unsupervised transfer learning problem can
be formulated as a multi-kernel adaptation problem. From the statistical point
of view, by computing a Mercer kernel matrix K = (κ(xt

i,x
t
j))ij , each entry

κ(xt
i,x

t
j) can be considered to be proportional to the underlying pairwise distri-

bution of any two data points xt
i,x

t
j in the training dataset, that is,

p(xt
i,x

t
j) = C · κ(xt

i,x
t
j), (2)

where C is some distribution normalizer. Assuming for generating p(xt
i,x

t
j) there

is a latent function variable f with probability density distribution p(f), the
distribution p(xt

i,x
t
j) can then be expressed as:

p(xt
i,x

t
j) =

∮
f

[
p(xt

i,x
t
j , f)

]
=

∮
f

[
p(xt

i,x
t
j |f)p(f)

]
=

∮
f

[
p̃f (f(xt

i), f(xt
j))p(f)

]
≈

∑
fs,s=0,··· ,m

p̃fs
(fs(x

t
i), fs(x

t
j))P (fs),

(3)

where we define p̃
f
(f(xt

i), f(xt
j)) = p(xt

i,x
t
j |f) being a conditional density func-

tion with function f imposed on data, f0 is the identity function (i.e. f0(x) = x)
and fs, s = 1, · · · ,m are the auxiliary mappings. The discrete approximation
in Eqn. (3) is based on the assumption that the knowledge (fs(xt

i))) extracted
from target and auxiliary data can be used to infer the underlying density func-
tion p(xt

i,x
t
j). Note that since f0 is the identity function, we allow p̃

f0
(xt

i,x
t
j)

to be different from p(xt
i,x

t
j). This is because p̃

f0
(xt

i,x
t
j) is an approximation of

p(xt
i,x

t
j), which is the unknown intrinsic density function of target object class.

The above model provides a way to estimate the intrinsic density function
by transferring auxiliary knowledge for target class in the form of multi-kernel
adaptation. Specifically, we let

p̃
fs

(fs(xt
i), fs(xt

j)) = Cs · κs(fs(xt
i), fs(xt

j)), s = 0, · · · ,m (4)
for some distribution normalizer Cs with respect to kernel κs. Let bs = C−1 ·Cs ·
P (fs), s = 0, · · · ,m, then we can replace p(xt

i,x
t
j) in Eqn. (3) using Eqn. (2)
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and p̃
fs

(fs(xt
i), fs(xt

j)) using Eqn. (4). Eqn. (3) can thus be rewritten as:

κ(At
i,At

j) = b0 · κ0(xt
i,x

t
j) +

∑m

s=1
bs · κs(fs(xt

i), fs(xt
j)), (5)

where we denote κ(At
i,At

j) = κ(xt
i,x

t
j), At

i =
{
xt

i, {fs(x
t
i)}m

s=1

}
, κ0 is the kernel

function on data xt
i itself, and κs is constructed using the transferrable knowledge

fs(xt
i) extracted from the auxiliary data. We call κ the kernel transfer function.

Learning optimal non-negative weights {bi}m
s=0 from data is equivalent to

learning an optimal transfer kernel matrix K = (κ(At
i,At

j))i,j via the combina-
tion of kernel matrices Ks = (κs(fs(xt

i), fs(xt
j)))i,j , s = 0, · · · ,m. By exploiting

the close relationship between kernel product and the probability of pairwise
data, we learn an optimal transfer kernel matrix such that the entry value of
intra-class pairs in the kernel matrix is as large as possible while those of the
other entries are as small as possible. Let b = (b0, b1, · · · , bm)T , we thus have:

b = arg max
b

K(:)T K+
opt(:)

K(:)T K−
opt(:) + α · bT b

,

s.t. bs ≥ 0, s = 0, · · · ,m, α > 0,

(6)

where K(:) represents a vectorised kernel matrix and K(:) = Ψb, Ψ = [K0(:
),K1(:), · · · ,Km(:)] , and K+

opt and K−
opt are defined as follows:

K+
opt(i, j) =

{
1 yt

i = yt
j ,

0 yt
i 6= yt

j ,
K−

opt(i, j) =

{
0 yt

i = yt
j ,

1 yt
i 6= yt

j .
(7)

Note that the regularisation term α ·bT b is necessary in order to avoid learning
a trivial b that one entry of b is always 1 and the others are zero. In this work,
α is set to 0.01.

Rather than directly learning b based on the above multiple kernel learning
criterion, we further introduce two additional constraints to address an imbal-
anced kernel fusion problem as follows. Different from most non-transfer MKL
work [19, 20], our transfer learning is to combine a single target kernel (κ0) and
a large amount of auxiliary kernels (κs, s ≥ 1). Hence ineffective/harmful auxil-
iary kernels could have large effect on this kind of fusion, which would result in
negative transfer. In order to balance the effect of the auxiliary kernels on the
combined kernel, we introduce two constraints are described below:

1. Hypothesis Constraint. It constrains the order between the weight of
target kernel and the weights of auxiliary kernels as follows:

b0 ≥ bs, s ≥ 1, (8)
which enforces that more weight is given to the kernel function built directly
from the target class than any other auxiliary kernels. This is intuitive as
one wants to trust more on the limited target class data than any auxiliary
mapping when auxiliary data are unlabeled.

2. Partial Sparsity Constraint. As a second constraint, which is the most
important, we impose the following partial l1-norm based sparsity penalty
on b on auxiliary data for minimization:

bT 10, 10 = [0, 1, 1, · · · , 1]T . (9)
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Note that this sparsity penalty is partial because it does not apply to the
target class kernel. The objective of this partial sparsity constraint is to allow
only a small portion of the relevant auxiliary kernels to be combined with
the target class kernel. In our experiments, we demonstrate that these two
constraints play a critical role in minimising negative knowledge transfer.

With those two constraints, our proposed kernel adaptation transfer (KAT)
model is formulated as:

b = arg max
b

K(:)T K+
opt(:)

K(:)T K−
opt(:) + α · bT b + λ · bT 10

,

s.t. b0 ≥ bs ≥ 0, s = 1, · · · ,m, α > 0, λ ≥ 0.

(10)

Solving the above optimisation problem is nontrivial. However, by reformulating
Criterion (10) alternatively as follows, a quadratic programming solver [22] can
be exploited to find the solution:

b =arg min
b

bT ΨT K−
opt(:) + α · bT b + λ · bT 10,

s.t. bT ΨT K+
opt(:) = 1; b0 ≥ bs ≥ 0, s = 1, · · · ,m, α > 0, λ ≥ 0.

(11)

where λ is a free parameter that controls the strength of the partial sparsity
penalty (thus how much auxiliary knowledge can be transferred). Specifically
the smaller λ is, the more auxiliary knowledge can be transferred to target data,
and no auxiliary knowledge can be transferred if λ = +∞, which would set all
weights bs, s = 1, · · · ,m on auxiliary kernels κs to zero.

Finally, we note that except the two proposed constraints for transfer learn-
ing, KAT is closely related to the widely adopted kernel alignment method [23],
which assumes the optimal entry values of kernel matrix K should be 1 for intra-
class pairs and 0 otherwise. In comparison, Eqn (10) relaxes this assumption and
maximises the ratio between those two types of values. Due to the nature of data
distribution (e.g. Caltech 256), the strict assumption made by kernel alignment
would not be held and could result in learning a combined kernel being domi-
nated by the large amount of ineffective auxiliary kernels.

4 Knowledge Transfer for Object Recognition

We now re-formulate the unsupervised transfer learning framework described in
Section 3 into a practical model for the one-class object recognition problem.
For such a problem, it is assumed that an image contains either one object from
a target class or only background clutter [24, 7, 9]. By applying our transfer
learning framework we assume that for each target object category of interest,
there are only very limited training samples (from only one sample to no more
than a dozen at best) and an auxiliary dataset containing a large number of
different object categories, where the auxiliary images are without any class
labels and could be irrelevant to the target class. In addition we have a random
set of cluttered background images which can be obtained by simply searching
“Things” on Google Image [15].

For object representation, we first detect salient feature points using the
Kadir and Brady detector [25]. A fixed number of feature points are then retained



8 Wei-Shi Zheng, Shaogang Gong and Tao Xiang

Fig. 1. The polar structure used for object representation (o = 8, r = 3 and 17 bins).

by thresholding the saliency value. The spatial distribution of those points is
represented by a polar geometry structure with o orientational bins and r radial
bins as illustrated in Figure 1. This polar structure is automatically expanded
from the center of the detected feature points, i.e. (B−1 ·

∑B
i=1 Zi

x, B−1 ·
∑B

i=1 Zi
y),

where B is the number of feature points and (Zi
x,Zi

y) is the coordinate of the
ith feature point. The maximum value of the radius is set to dmax = maxi ||Zi

x −
B−1 ·

∑B
i=1 Zi

x||2 + ||Zi
y −B−1 ·

∑B
i=1 Zi

y||2 so that all feature points are covered in
the polar structure. For representing the appearance of the feature points, SIFT
descriptors [26] are computed at each feature point, and for each bin in the
polar structure a normalized histogram vector is constructed using a codebook
with 200 codewords obtained using k-means. This gives us a 3400 dimensional
feature vector (xt

i in Eqn. (5)). Note that this polar object representation scheme
is not only much simpler and easier to compute than the Constellation model
based representation [16, 24, 27], but more importantly, it is more suitable for
our discriminative based kernel adaptation transfer model.

Given the training target and background data {xt
i, y

t
i}N

i=1, we now describe
how the auxiliary mappings fs(xt

i) (see Eqn. (1)) are obtained. We formulate
the auxiliary mappings that capture knowledge about how objects look different
and distinguishable from any background. We thus formulate the mappings as
decision boundaries between groups of objects and cluttered background learned
using a Support Vector Machine (SVM). More specifically, the unlabelled aux-
iliary data is clustered using an ensemble of k-means, resulting in m clusters in
total. That is, multiple k-means with different k values. In this way, the same
auxiliary image can belong to different clusters simultaneously. This is intended
to reflect the fact that an object can be distinguished from background in many
different ways (e.g. colour, texture, shape). For each cluster, denoted as Gs, a
decision function hs(x) is learned by linear SVM. These local (cluster specific)
decision functions are then used as the mapping functions, i.e. fs(xt

i) = hs(xt
i).

Note that outputs of SVM classifier as features are also adopted in [9, 28, 20],
but the objectives of using these features are different here.

Now with the m auxiliary mappings fs(xt
i), we can quantify them and com-

pute the kernel function κ(At
i,At

j) in Eqn. (5) for the target category, which
is a combination of multiple kernels, where we use RBF as the basis kernels.
Finally, this kernel function is used to train a SVM for classifying the target
object category against cluttered background.

5 Experiments

Experiments were conducted on Caltech256 dataset [15]. It contains a broad
ranges of objects from 256 object categories and a cluttered background set.
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In each experiment, we randomly selected 30 categories as target classes, and
selected 10 images from each of the remaining 226 categories to form the auxiliary
dataset and their labels were ignored in all the unsupervised transfer learning
part of the experiments. This was repeated for 10 times with a different 30 target
classes randomly drawn each time, giving 300 one-class object recognition tasks
in total. For each target class, unless otherwise stated (as in Figure 2), 5 target
images were randomly selected for training and the rest (always more than 80
images) were used for testing. The background set was randomly divided into 3
subsets: 20% of the total number of background images were used for learning
the auxiliary kernels, 30% were used for learning the transfer kernel, and the rest
50% were for testing. For different target classes, the same training and testing
background image sets were used. The recognition performance was measured
using both equal error rate (EER) and receiver-operating characteristic (ROC)
curve [16]. For object representation, we selected 300 feature points in each
image according to their entropy saliency values [25]. In KAT, for clustering
the auxiliary data using an ensemble of k-means, the value of k was set to
{1, 5, 11, 23, 28, 45, 75} giving a total of 188 clusters. For λ in Eqn. (11), cross
validation (CV) was performed when the number of training samples for target
object (p) is larger than 1. Specifically, two-fold CV was used for p = 2 and
three-fold CV was used for p = 5, 10, 15. Note that the training background
images were also used for cross-validation. Then, when the target class training
set contains a single sample (i.e. one shot learning), λ was set to 0 (i.e. all
auxiliary knowledge is transferred) as cross validation becomes impossible on
target object data.
Kernel adaptation transfer vs. without transfer. We first compared the
performance of our KAT model, learned using both target samples (up to 15)
and the unlabelled auxiliary data, against a non-transfer model, namely a SVM
classifier trained using only target samples. In this particular comparison, we
varied the number of training target category samples from 1 to 15 in order to
understand the effect of transfer learning when increasing number of target sam-
ples becomes available. The same image descriptor was used for both methods so
the performance difference was solely due to using transferred knowledge. The
results are shown in Figure 2, where “Avg EER” is the average EER over 300
trials, “Pos Avg EER” is the average EER over those trials when EER was re-
duced by positive transfer, “#Pos” is the number of trials with positive transfer,
and “#Neg” is the number of trials with negative transfer. Figure 2(a) shows
that on average the EER was reduced from 0.428 to 0.392 when only one target
sample was used from each target class, representing a 8.4% improvement in
recognition performance. However, when the number of available target samples
increases, the contribution of transfer learning diminishes, shown by the nar-
rowed EER gap between the KAT and the non-transfer model. This is expected
as transferring auxiliary kernels has its greatest benefit when the available target
training sample is minimal, e.g. with only 1 target sample. Figure 2(c) shows
that positive transfer was achieved for 67.7% of the 300 trials for one-shot learn-
ing, and reduced to 37.3% when the target training samples was increased to 15
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Fig. 3. KAT model ROC performance curves from four example target classes.

for each category. Interestingly although both the maximum EER reduction per
class (Figure 2(d)) and the average EER decrease as the number of data samples
increases, the average reduction for the classes with positive transfer was about
the same. This suggests that the decrease in the number of positive transfer
classes (Figure 2(c)) was the reason for the narrowed EER gap in Figure 2(a).

Figure 3 shows the performance of our KAT on 4 target categories using only
5 target samples for training each. The randomly selected training samples can
be seen in the left column of Figure 4 which clearly show that there are huge
variations in appearance and view angle for each class. Despite these variations,
Figure 3 shows that very good performance was obtained with significant im-
provement over the non-transfer model. Figure 4 gives some insight into what
auxiliary categories have been extracted and transferred to the target classes by
the KAT model. In particular, it can be seen that KAT can automatically select
object images from related classes if they are present in the auxiliary data (e.g. a
butterfly for superman that flies), or from objects that share some similarity in
shape or appearance (e.g. bonsai for porcupine, boat for shoe, pool table for
chess board) for extracting transferrable knowledge.
Kernel adaptation transfer vs. self-taught learning. We compared our
KAT model with the most related unsupervised transfer learning method we
are aware of, the Self-Taught Learning (STL) model [17]. For STL, we followed

Method Avg EER Pos Avg EER #Pos #Neg

KAT 0.357 0.332 (0.375) 187 84
STL 0.409 0.388 (0.426) 87 196
Aux 0.388 0.369 (0.419) 123 161
Non-Transfer 0.373 N/A N/A N/A

Table 1. Comparing KAT with STL [17] and a generic non-background classifier (Aux)
given 5 samples per class. The numbers in brackets are the performance of non-transfer
model for the target classes for which positive transfer was achieved.
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Training Images of Target Category Some of the Selected Auxiliary Images

Fig. 4. Examples of target categories (left) and the auxiliary data that provide the
most transferrable knowledge (right) by KAT. The four target categories from top to
bottom are porcupine, sneaker, superman, and chess-board respectively.

the PCA dimension reduction procedure in [17] on the high-dimensional de-
scriptors and exactly the same procedure in [17] to train the self-taught learner.
The number of sparse feature bases was set to be the same as the reduced
dimensionality and the sparse weights were tuned in {0.005, 0.05, 0.1, 0.5} [17]
due to the computational cost of the STL model, as discussed later. As STL
is computationally expensive, it is not possible to select the parameter using
cross-validation in practice. Instead, we tuned the parameter of STL using the
test data to illustrate the best performance STL can possibly achieve. In other
words, lower performance is expected for STL if cross validation is used. The
performances of the two unsupervised transfer learning methods are compared
in Table 1. It shows that a majority (196) of the 300 object recognition tasks
result in negative transfer using STL. As a result, the overall performance of
STL was actually worse than the baseline non-transfer model (0.409 vs. 0.373).
This is because STL cannot control how much auxiliary knowledge should be
transferred for different target categories. In comparison, because of measuring
the usefulness of and automatically selecting transferrable knowledge for differ-
ent target classes, our KAT achieved far superior results with only 84 out of 300
tasks lead to negative transfer. Table 1 also shows that even for those positive
transfer tasks, KAT yields higher improvement over STL (0.043 vs. 0.038 in
EER reduction). This suggests that the knowledge transferred by our method,
which aims to discriminate objects from background, is more suitable for the
recognition task than that of the STL method, which is generative in nature
and aims to capture how objects look in general. More detailed comparison on
specific object recognition tasks is presented in Figure 3.

On computational cost, STL is very expensive compared to KAT for high-
dimensional data. This is mainly due to the costly l1-norm sparsity optimization
in STL. On a computer server with an Intel dual-core 2.93GHz CPU and 24GB
RAM, it took between 4 to 30 hours to learn STL sparse bases depending on
the sparsity weight and about 5-20 minutes per category for computing the
coefficients of all training and testing data. In contrast, our KAT took on average
20 minutes to learn each category so is at least one magnitude faster.
Recognition using only auxiliary knowledge. To evaluate the significance of
selecting unlabelled auxiliary knowledge in KAT based on the limited target class
samples, we compare KAT to a generic non-background classifier termed ‘Aux’
using auxiliary data only. Table 1 shows that based on the general knowledge
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Target
Categroy

Manually Selected Auxiliary
Categories

Non-
transfer KAT Supervised

KAT
Target

Categroy
Manually Selected
Auxiliary Categories

Non-
transfer KAT Supervised

KAT

0.353 0.3410.3410.3410.341 0.388 0.443 0.430 0.30.30.30.317171717

0.47 0.380.380.380.38 0.43 0.406 0.425 0.30.30.30.329292929

0.398 0.0.0.0.372372372372 0.416 0.356 0.3270.3270.3270.327 0.396

Fig. 5. Supervised KAT vs. KAT.

#Target #Pos / #Neg Avg EER
Samples KAT KAT KAT- KAT KAT KAT KAT- KAT Kernel Non-

(λ = 0) Naive (full sparsity) (λ = 0) Naive (full sparsity) Alignment Transfer
1 203 / 84 203 / 84 196 / 92 196 / 92 0.392 0.392 0.401 0.401 0.398 0.428
2 208 / 65 203 / 78 166 / 114 151 / 128 0.370 0.371 0.399 0.416 0.414 0.404
5 187 / 84 134 / 138 108 / 184 84 / 205 0.357 0.387 0.424 0.446 0.442 0.373
10 66 / 25 72 / 80 22 / 138 25 / 137 0.343 0.354 0.413 0.415 0.382 0.349
15 112 / 28 76 / 151 44 / 196 36 / 204 0.325 0.363 0.428 0.450 0.403 0.336

Table 2. Further investigation on transferrable knowledge selection.

extracted from all objects in the auxiliary dataset alone, the performance of Aux
is much better than random guess (0.5), but worse than the non-transfer model
and much worse than our KAT. This result confirms the necessity and usefulness
of performing transfer learning provided that the extracted auxiliary knowledge
is indeed useful, and is quantified and selected.
Supervised KAT vs. KAT. To compare how unsupervised transfer learning
fares against supervised transfer learning given a fully labelled auxiliary dataset
of only related object categories to a target class, we selected related auxiliary
categories for 6 target categories (car tire, giraffe, lathe, cormorant, gorilla, and
fire truck) as shown in Figure 5. With these labelled and related auxiliary data,
we implemented a supervised version of our KAT, that is, auxiliary mappings
were constructed from each auxiliary class, instead of relying on clustering. As
shown in Figure 5, with those labelled data from the related auxiliary categories,
the supervised KAT does not always achieve better results compared to (unsu-
pervised) KAT. This is because our KAT can select automatically those related
samples for building auxiliary kernels when they are present, but more impor-
tant also utilises any relevant and available information about how objects are
distinguishable from background from all the irrelevant auxiliary data.
Further investigation on transferrable knowledge selection.

1) With vs. without constraints. We validate the usefulness of the two con-
straints introduced in KAT: (1) a hypothesis constraint (Eqn. (8)) and (2) a par-
tial sparsity penalty controlled by λ (Eqn. (9)), for alleviating negative transfer.
Table 2 shows the performance of KAT without the second constraint (termed
KAT(λ = 0)) and without both (termed KAT-Naive). Note that as aforemen-
tioned for one target sample, the λ in KAT as well as its variants was set to 0. It
is evident that the usefulness of the extracted auxiliary knowledge is significantly
weakened (more than 33% higher in average EER compared to KAT in some
case) without these constraints and much less positive transfer is obtained.

2) KAT vs. Kernel Alignment. We compare KAT with the widely adopted
kernel alignment method for kernel fusion in Table 2 [23]. As shown KAT per-
forms much better, because KAT introduces our two proposed constraints to
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Fig. 6. Examples of object categories that no improvement was obtained using KAT.
From left to right: background, galaxy, and waterfall.

balance the effects of target and auxiliary kernels, but kernel alignment does not
explicitly consider the important difference between those two effects.

3) KAT vs. KAT(full sparsity). We show that the most popular way for ker-
nel selection using a full l1 norm sparsity on all kernel weights bi, i = 0, · · · ,m
cannot work well for our unsupervised cross-category transfer learning. This is
demonstrated by the KAT(full sparsity) that uses the full sparsity as in previous
MKL work [29] on all kernel weights for kernel fusion in Table 2. The results
show that without differentiating target kernel from auxiliary kernels using the
proposed constraints, the full sparsity penalty leads to much worse performance.
The failure mode. As shown in table 1, some object categories cannot benefit
from KAT. Figure 6 shows examples of three such categories. For these cate-
gories, the sample images either contain large portion of background (e.g. water-
fall) or contain objects that do not have clear contour but have similar textures as
cluttered background (e.g. galaxy). Since the similarity to background is greater
than that to other object classes in auxiliary data (see Figure 4), the extracted
transferrable knowledge thus would not help for these object categories.

6 Conclusion

We introduced a novel unsupervised selective transfer learning method using
Kernel Adaptation Transfer (KAT) which utilises unlabelled auxiliary data of
largely irrelevant object classes to any target object category. The model quan-
tifies and selects the most relevant transferrable knowledge for recognising any
given target object class with very limited samples. For one-class recognition,
KAT selects the most useful general knowledge about how objects are visually
distinguishable from cluttered background. Our experiments demonstrate clearly
that due to its transferrable knowledge selection capability, the proposed unsu-
pervised KAT model significantly outperforms the Self-Taught Learning (STL)
method. Despite only implemented for one-class recognition tasks in this work,
the proposed KAT framework is a general transfer learning method that can be
readily formulated for other pattern recognition problems with large intra-class
variation and sparse training data conditioned that a set of auxiliary mappings
fs can be constructed. Our current work includes extending this model to multi-
class object detection and one-to-many object verification.
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