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Abstract

Person re-identification is an important problem of
matching persons across non-overlapping camera views.
However, the re-identification is still far from achieving reli-
able matching. First, many existing approaches are whole-
body-based matching, and how body parts could affect and
assist the matching is still not clearly known. Second, the
learned similarity measurement/metric is equally used for
each pair of probe and gallery images, and the bias of the
measurement is not considered. In this paper, we address
the above two problems in order to conduct a more reliable
matching. More specifically, we propose a reliable integrat-
ed matching scheme (IMS), which uses body parts to assist
matching of the whole body. Moreover, a sparsity-based
confidence is also presented for regulating the learned met-
ric to improve the matching reliability. The experiments
conducted on three publicly available datasets confirm that
the proposed scheme is effective for person re-identification.

1. Introduction
Person re-identification has been seen a lot of develop-

ments in recent years. To address the re-identification prob-
lem of finding the correct matching (the same person/class)
for an unknown probe person image among a large num-
ber of gallery images captured from different camera views,
many existing approaches use images of the whole body to
match. These methods exploit either cross-view invariant
features [4, 5, 21, 3, 13, 7, 9, 28, 24] or cross-view robust
metrics [17, 6, 15, 30, 19, 16, 11, 10, 25, 14, 12].

For these practices, an intuitive doubt is that – is us-
ing whole body always reliable for matching in person re-
identification? In a surveillance system, the inter-class vari-
ation of persons varies drastically and there are often severe
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Figure 1: Illustration of person images in a surveillance sys-
tem. (a) shows the obvious discriminative body parts with
red dotted boxes between images of different persons, and
(b) shows the obvious similar body parts with green dotted
boxes between images of the same person.

overlaps between classes in a feature space due to similar
appearance (e.g. clothing) of different people. In Fig. 1(a),
it is clear that one body part with a highlighted red dotted
box (e.g. upper-/lower-/left-/right- body) certainly has more
discriminative information than the whole body for distin-
guishing different persons. Meanwhile, the intra-class vari-
ation can also be large, caused by large and unpredictable
condition changes. From Fig. 1(b), we can observe that one
body part with a highlighted green dotted box is also more
effective than the whole body for matching persons. There-
fore, we believe that some body parts sometimes are more
reliable than whole body.

Another doubt is that – is the learned metric which is
used equally for all the probe images after training always
reliable for matching in person re-identification? In an un-
controlled environment, different persons/classes have dif-
ferent large visual appearance changes. This may lead to an
overfitting problem during training process. An illustration
of person re-identification using a distance metric learned
by LFDA [16] is shown in Fig. 2. Since the metric treats



Figure 2: Illustration of person re-identification using the
metric learned by LFDA [16]. The left-most is the probe
image; images in the middle are the top 7 matched gallery
images, with a red box highlighting the correct match, and
the right-most shows the ground truth.

all matches between probe image and each gallery image
equally, the correct matching in gallery is not the top 1 rank
for the probe person, even though the visual appearance of
them are similar. This shows that the similarity measure-
ment sometimes is not reliable, and therefore one needs to
take the confidence of the similarity measurement during
the matching.

In this work, we investigate how to conduct a more re-
liable matching in person re-identification. Firstly, rather
than only utilizing the whole body to match, we propose
exploiting body parts to assist the whole body to re-identify
a probe image. Secondly, for each pair of probe image and
gallery image, we compute the confidence of each pair to
match in order to reduce the bias of the similarity mea-
surement learned from training data. For this purpose, a
sparsity-based confidence is introduced to regulate the met-
ric. Finally, we apply the two reliable matching strate-
gies to re-identification and propose an integrated matching
scheme (IMS). This scheme consists of two components:
whole body matching and body part matching, and each
component uses the confidence to improve the reliability.

Several existing re-identification methods also consider
using body parts. The pictorial model is a typical part-
body-based model for part-to-part matching in person re-
identification [2]. Zhao et al. also utilize body parts to
match by salience learning [27, 26]. However, these mod-
els only rely on body parts for re-identification, and they
neglect the effect of whole body in matching.

Extensive experiments are conducted on three person re-
identification datasets, including VIPeR [5], i-LIDS [20, 29]
and 3DPES [1]. The results demonstrate that the proposed
scheme is much more effective for re-identification.

2. Proposed Scheme
2.1. Body Parts Assist Whole Body to Match

The problem of person re-identification is that a probe
person image is required to be matched with gallery person
images. To address this problem, we first consider utiliz-
ing body parts to enhance re-identification. The basic idea
is that, some body parts may contain discriminative details
for each individual, which are more reliable than the whole

body to match. For each unknown probe person image, it
is both costly and difficult to search the discriminative body
parts precisely. Therefore, these body parts are selected by
an overall evaluation in this paper (see details in Sec. 3.3).

One is able to use the body parts to assist the whole
body to determine the identity of an unknown person. The
effectiveness of the body parts is demonstrated in our ex-
periments. The combination of the discriminative body
parts and whole body achieves higher matching rate than
using body parts and whole body separately, for details
please see Sec.3.5. The discriminative body parts are less
affected by various changes including person-specific and
environment-specific changes, but they contain less infor-
mation than the whole body. In contrast, using the whole
body enforces spatial layout consistency, but it suffers great-
ly from un-controlled condition. Therefore, they are com-
plementary to each other, and the fusion of them is effective
for matching.

2.2. Confidence Regulates Metric to Match

In person re-identification, different persons have dif-
ferent large visual appearance changes. This may lead
to an overfitting problem during the training process, and
thus the learned metric sometimes is not reliable for re-
identification. In this section, for a probe image (no matter
using whole body or body parts), we consider that each per-
son/class in gallery should have a confidence to estimate the
probability that how likely the probe image belongs to this
class. So the confidence can be used to regulate the metric
in order to make it more reliable. Wright et al. [23] show
that representing a probe image by a sparse linear combina-
tion of gallery images is very effective for classification. In
this paper, we propose to apply this method to compute the
confidence.

Firstly, we construct the gallery person dictionary. For
each gallery image, the generic features are extracted (see
Sec.3.2 for details). Suppose kc person images, say,
g1c , g

2
c , · · · , gkcc , are obtained for class c in the gallery

(c = 1, 2, · · · , C). Then corresponding kc feature vec-
tors are denoted by xg1c ,xg2c , · · · ,xgkc

c
, where each fea-

ture vector has the same dimensionality (assume M ). Let
Dc = [xg1c ,xg2c , · · · ,xgkc

c
]. So the gallery person dictio-

nary for all the C classes is built as

D = [D1,D2, · · · ,DC ] . (1)

Obviously, D has a total ofK =
∑C
c=1 kc images, resulting

in an M ×K dictionary.
Then, given a feature vector xp of a probe person image

p, the sparse coding problem is formulated as the following
L1-minimization problem

α̂ = argmin
α
‖α‖1, s.t. xp = Dα , (2)



Figure 3: The proposed integrated matching scheme for per-
son re-identification.

where α ∈ RK is the sparse coefficient vector, ‖·‖1 de-
notes the L1-norm of a vector. Numerous efficient fast L1-
minimization algorithms can be used to solve Eq.(2). In
this paper, we employ the feature-sign search algorithm [8]
to obtain the sparse coefficient vector α.

Finally, for the probe image p, the reconstruction residu-
al of c-th class in the gallery is computed as follows

rp,c = ‖xp −Dcδc(α̂)‖2, c = 1, 2, · · · , C, (3)

where δc is a function that selects the coefficients associ-
ated with the c-th class. We define the confidence by a
Gaussian-shaped kernel Gσ(x) = 1√

2πσ
exp(− x2

2σ2 ), where
σ is a bandwidth parameter. Specifically, for the probe im-
age p, the confidence of a gallery image gc of c-th class is
computed as

sp,c = Gσ(rp,c) , c = 1, 2, · · · , C . (4)

We call sp,c as the sparsity-based confidence. A higher
sparsity-based confidence means a higher similarity (a s-
maller distance). Therefore, we wish to obtain a reliable
distance metric such that it is negatively correlated to the
confidence. Given a feature vector xgc of the gallery image
gc of the c-th class, suppose a distance metric is denoted
as dist(xp,xgc) between the probe image p and the gallery
image gc, then the corresponding new and reliable distance
is computed as dist(xp,xgc )

sp,c
.

2.3. The Integrated Matching Scheme

Two strategies towards reliable matching for person re-
identification have been presented in the previous section-
s. In this section, an effective integrated matching scheme
is developed, which consists of two matching components:
the whole body matching and body part matching. Mean-
while, each component uses the sparsity-based confidence
to improve the reliability of matching. Without loss of gen-
erality, we present a formulation which uses one body part
to enhance re-identification (see Fig. 3). A multi-parts fu-
sion formulation can be readily generalized.

In the whole body matching, for the probe image p and
each gallery image gc of c-th class (c = 1, 2, · · · , C), we
first obtain the whole body feature vectors xwp and xwgc ,
respectively. Then we compute the whole body distance
dist(xwp ,x

w
gc) (utilizing existing re-identification methods,

e.g. LFDA [16]; seeing detail in Sec. 3.1) and the corre-
sponding sparsity-based confidence swp,c. Similarly, in the
body part matching, we can also obtain the body part fea-
ture vectors xbp and xbgc , and further compute the body part
distance dist(xbp,x

b
gc) and the confidence sbp,c. Finally, the

integrated matching scheme is formulated as follows

distF ({xwp ,xbp}, {xwgc ,x
b
gc}) = β

dist(xwp ,x
w
gc)

swp,c

+(1− β)
dist(xbp,x

b
gc)

sbp,c
, c = 1, 2, · · · , C,

(5)

where distF ({xwp ,xbp}, {xwgc ,x
b
gc}) is the fusion distance

between the probe image p and the gallery image gc, and β
is a parameter for regulating the effect of two components.
In our experiments, we denote the above scheme as IMS
(integrated matching scheme) for convenience.

3. Experiments
3.1. Datasets and Settings

Datasets. Three publicly available person re-identification
datasets, VIPeR [5], i-LIDS [20, 29] and 3DPES [1] were
used for evaluation. The VIPeR dataset is composed of
1264 images of 632 individuals, with 2 images per individ-
ual. View angle change was the most significant cause of
appearance change (see Fig. 4(a)). In the i-LIDS dataset,
which was captured indoor in a busy airport arrival hal-
l, there are 119 people with total 476 images captured by
multiple non-overlapping cameras. The images have fair
amount of occlusion caused by people and luggage (see Fig.
4(b)). The 3DPES dataset includes 1011 images of 192 in-
dividuals captured from 8 outdoor cameras with significant-
ly different viewpoints. All the images were collected dur-
ing various times of the day, resulting in strong variations
of lighting conditions (see Fig. 4(c)).
Settings. In our experiments, all datasets were randomly
divided into training set and testing set by half so that there
are 316, 60 and 96 individuals in the testing set of VIPeR,
i-LIDS and 3DPES respectively. Each testing set was com-
posed of a gallery set and a probe set. Following the most
popular testing protocol [30], the gallery set consisted of
one image for each person, and the remaining images were
used as the probe set. This procedure was repeated 10 times.
Evaluation. To evaluate our scheme, we first focused on
a representative distance metric in IMS. The metric was
defined by local fisher discriminant analysis (LFDA) [18]
which has been proven to be useful for re-identification
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Figure 4: Illustration of person images on three datasets.
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Figure 5: Performance using different body parts.

[16]. We called such a model as IMS-LFDA in our exper-
iments. We compared IMS-LFDA with LFDA and other
five existing re-identification methods, that is, two distance
learning methods LMNN [22] and KISSME [6], a non-
learning distance based L1-norm, a ranking based model
RDC [30], and a part-body-based salience learning method
SDC [27]. In addition, an effective face recognition mod-
el SRC [23] was also compared. We would also apply the
proposed IMS to two other metrics (i.e. RDC and L1-norm)
for full comparison in Sec. 3.5. We used the average cu-
mulative match characteristic (CMC) curves over 10 trials
to show the ranked matching rates. A rank r matching rate
indicates the percentage of the probe images with correct
matches found in top r ranks against the gallery images.

3.2. Feature Representation

In our experiments, all whole body images were normal-
ized to 128 × 48 pixels according to the common practice.
We obtained overlapping patches of size 16× 16 from each
image, defined with every 8 pixels in both the horizontal
and vertical directions. Thus, a total of 75 regions were
selected in this feature set. We then extracted features in
each patch and concatenated them to form the final feature
of an image. The patch feature vectors consist of 16-bins
histogram of 8 color channels (RGB, YCbCr, HS), uniform
LBP histograms and HOG descriptors. So each patch was
represented by a 484-dimensional feature vector, resulting
in a 36300-dimensional vector for each image. Moreover,
we define four representative body parts, i.e. upper-/lower-
/left-/right- body. These body parts are obtained from whole
body automatically (1/2 scale difference), and the similar
feature representations were computed for different body
parts respectively.

3.3. Selecting Discriminative Body Part

For each unknown probe person image, it is still hard
to search the most discriminative body part precisely.
Therefore, we investigate the overall re-identification per-
formance using four representative body parts, including
upper-/lower-/left-/right- body. Specifically, LFDA mod-
el is applied to match on the VIPeR, i-LIDS, and 3DPES
datasets, and AUC (area under CMC curve (r ≤ 20)) is u-
tilized to measure the performance. The overall results are
presented in Fig. 5. It is clear that the upper-body is superior
to other body parts on all three datasets. Based on this fact,
we focus on seeing how the upper-body of each person as-
sist the whole body matching and enhance re-identification
in our following experiments.

3.4. Evaluation of the Proposed Scheme

Firstly, we compare IMS-LFDA with LFDA [16]. As
shown in Fig. 6 and Table 1, IMS-LFDA outperforms LF-
DA notably on all three datasets. The advantage is par-
ticularly significant on the more challenging VIPeR and i-
LIDS datasets. For instance, on i-LIDS dataset, IMS-LFDA
achieves about 10% improvement over LFDA at rank-1.
Then we compare IMS-LFDA against several typical re-
identification methods, including LMNN [22], KISSME
[19], L1-norm and RDC [30]. Our results (Fig. 6 and Ta-
ble 1) show clearly that IMS-LFDA obtains better match-
ing significantly over these methods. More specifically, on
VIPeR dataset, the rank-1 matching rate is 26.27% for IMS-
LFDA, whilst 11.20% for LMNN, 21.55% for KISSME,
9.62% for L1-norm, and 17.78% for RDC. The SDC model
[27] which only uses body parts to match was also adopt-
ed for comparison. One can observe that our model always
outperforms SDC. Finally, SRC [23] is applied for match-
ing. It is evident that our model still yields overall better
performance than SRC. These results highlight the effec-
tiveness of the proposed scheme.

3.5. Further Evaluations

In this section, we further evaluate the proposed IMS in
the following four aspects.

Contributions of Individual Components in IMS. Our
scheme consists of two matching components, i.e., whole
body matching and body part matching. In our experiments,
the two components in IMS-LFDA model are denoted as
IMS-LFDAwhole and IMS-LFDApart, respectively. In Ta-
ble 2, we evaluate the two components on how they con-
tribute to the full scheme. The results show that the best per-
formance is achieved when the two components are com-
bined. This suggests the body part could help the whole
body to re-identify a probe person. The body part matching
is less affected than the whole body matching by various
changes including person-specific and environment-specific
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Figure 6: Matching rates (%) of different methods on VIPeR, i-LIDS, and 3DPES datasets.

Methods
VIPeR i-LIDS 3DPES

r =1 r =5 r =10 r =20 r =1 r =5 r =10 r =20 r =1 r =5 r =10 r =20
IMS-LFDA 26.27 55.95 69.78 82.66 41.66 66.27 78.67 90.15 38.71 61.64 72.22 82.54
LFDA [16] 21.58 49.78 65.38 79.75 31.67 56.44 71.52 87.04 34.24 59.31 70.13 81.12
LMNN [22] 11.20 32.34 44.75 59.27 30.69 51.14 62.98 76.87 25.12 45.92 56.39 67.03
KISSME [6] 21.55 50.98 67.09 81.65 32.22 56.63 70.48 85.24 32.76 57.65 68.51 79.71

L1-norm 9.62 24.56 34.21 46.93 37.80 57.76 67.42 79.64 27.43 48.86 58.22 67.75
RDC [30] 17.78 40.66 52.88 67.18 42.29 62.48 73.99 85.00 34.04 54.74 64.37 73.84
SDC [27] 24.58 42.37 54.14 64.92 37.41 55.74 66.98 80.23 27.25 56.16 66.82 74.88
SRC [23] 10.89 24.63 33.16 44.15 42.47 62.79 73.49 83.83 31.69 53.47 62.48 72.19

Table 1: Top ranked matching rate (%) at r=1,5,10,20 on VIPeR, i-LIDS, and 3DPES.
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Figure 7: Performance comparison using different parame-
ter β on three datasets.

changes, but the body part contains less spatial layout infor-
mation than the whole body. So they are complementary to
each other and fusion of them is reliable and effective.
Effects of the Proposed Confidence in IMS. The sparsity-
based confidence is proposed for regulating the learned dis-
tance metric between two person images to match. In Ta-
ble 2, IMS-LFDAw/o denotes IMS-LFDA without using
the confidence. Compared to LFDA (see Table 1), IMS-
LFDAw/o still has more accurate matching. This suggests
that the body part matching is helpful for re-identification.
Furthermore, it is also evident that IMS-LFDA consistently
outperforms IMS-LFDAw/o. The advantage of the confi-
dence is validated by this experimental result.
Is IMS Useful for Other Metrics? The proposed IMS us-
es the metric learned by LFDA to re-identify in all previous
experiments. One may ask whether the IMS can be use-
ful for other metrics. To answer this question, we intro-
duce two other metrics to IMS, which are defined by L1-

norm and RDC, respectively. We call the two models as
IMS-L1-norm and IMS-RDC. We performed experiments
on the three datasets and the results are reported in Table
3. It shows that IMS-L1-norm and IMS-RDC also give a
notable improvement over L1-norm and RDC, respectively.
This demonstrates the wide application of our scheme.
Influence of Parameter. In our experiments, we implemen-
t our scheme by selecting optimal parameter β (see Eq.(5))
in the range of [0,1]. In this section, we vary the parameter
β to evaluate IMS. Specifically, we show results of IMS-
LFDA as an example here. The AUC (r ≤ 20) of dif-
ferent β on three datasets are plotted in Fig. 7. It can be
seen that when β is around 0.7 and 0.4 for VIPeR and other
datasets, respectively, IMS-LFDA achieves the best perfor-
mance. Since more variations including person-specific and
environment-specific changes exist on i-LIDS and 3DPES,
the body part matching is more useful (smaller optimal β)
on the two datasets than that on the VIPeR.

4. Conclusion
In this work, we have proposed two strategies to make

matching in person re-identification more reliable. Based
on these two strategies, we propose an integrated match-
ing scheme for re-identification. This scheme utilizes body
parts to assist whole body to match, and a sparsity-based
confidence is introduced to our scheme to regulate the
learned metric. Extensive experiments are conducted to e-
valuate the proposed scheme on three different person re-
identification datasets. The results show clearly that our
scheme is very effective for person re-identification.



Methods
VIPeR i-LIDS 3DPES

r =1 r =5 r =10 r =20 r =1 r =5 r =10 r =20 r =1 r =5 r =10 r =20
IMS-LFDA 26.27 55.95 69.78 82.66 41.66 66.27 78.67 90.15 38.71 61.64 72.22 82.54

IMS-LFDAwhole 23.61 52.58 67.03 81.23 38.73 62.08 74.57 88.89 36.08 60.80 71.54 82.16
IMS-LFDApart 14.43 37.88 51.61 67.41 37.25 62.40 75.59 88.18 32.56 56.74 68.01 78.79

IMS-LFDAw/o 23.92 52.88 66.87 80.59 35.96 62.55 76.15 88.51 36.27 60.76 70.81 81.63

Table 2: Evaluation on VIPeR, i-LIDS, and 3DPES using LFDA in our scheme.

Methods
VIPeR i-LIDS 3DPES

r =1 r =5 r =10 r =20 r =1 r =5 r =10 r =20 r =1 r =5 r =10 r =20
IMS-L1-norm 12.18 28.26 38.96 51.49 43.01 63.27 72.83 83.11 30.98 52.62 62.02 72.09

L1-norm 9.62 24.56 34.21 46.93 37.80 57.76 67.42 79.64 27.43 48.86 58.22 67.75

IMS-RDC 20.32 42.63 55.22 68.10 44.99 66.44 75.55 86.97 35.73 57.23 66.06 75.68
RDC 17.78 40.66 52.88 67.18 42.30 62.48 73.99 85.00 34.04 54.74 64.37 73.84

Table 3: Evaluation on VIPeR, i-LIDS, and 3DPES using L1-norm and RDC in our scheme.
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