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Abstract Fisher’s Linear Discriminant Analysis (LDA)

has been recognized as a powerful technique for face

recognition. However, it could be stranded in the

non-Gaussian case. Nonparametric discriminant analysis

(NDA) is a typical algorithm that extends LDA from

Gaussian case to non-Gaussian case. However, NDA suf-

fers from outliers and unbalance problems, which cause a

biased estimation of the extra-class scatter information. To

address these two problems, we propose a robust large

margin discriminant tangent analysis method. A tangent

subspace-based algorithm is first proposed to learn a sub-

space from a set of intra-class and extra-class samples

which are distributed in a balanced way on the local

manifold patch near each sample point, so that samples

from the same class are clustered as close as possible and

samples from different classes will be separated far away

from the tangent center. Then each subspace is aligned to a

global coordinate by tangent alignment. Finally, an outlier

detection technique is further proposed to learn a more

accurate decision boundary. Extensive experiments on

challenging face recognition data set demonstrate the

effectiveness and efficiency of the proposed method for

face recognition. Compared to other nonparametric meth-

ods, the proposed one is more robust to outliers.

Keywords Nonparametric discriminant analysis �
Linear discriminant analysis � Tangent distance �
Face recognition

1 Introduction

Fisher’s Linear Discriminant Analysis (LDA) [1] is one of

the most popular feature dimension reduction techniques in

computer vision and machine learning [13, 14]. It maxi-

mizes the ratio between extra-class variation and intra-class

variation. Despite its wide use, LDA assumes that the data

distribution of each class is Gaussian. Thus, this is certainly

hard to make LDA adapted to data under non-Gaussian

distribution. Nonparametric estimation is one of the most

popular algorithms for solving this problem. Nonparamet-

ric LDA (NDA) [3] has therefore been developed. The

main difference between NDA and LDA is that NDA

introduces a nonparametric extra-class scatter matrix,

which computes the extra-class variation of data along the

decision boundary.

Recently, NDA has received more and more attentions

and has many variants. The traditional NDA is for the two-

class classification problem. Then it was extended to the

multi-class case [15]. In [2], the extra-class scatter matrix is

constructed by a dataset near the decision boundary that is

learned by support vector machine (SVM). In [32], a

marginal Fisher analysis (MFA) method is proposed, and it
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calculates the intra-class and extra-class scatter matrices in

a local manifold patch. In [23], a nonparametric margin

maximum criterion (NMMC) is discussed. The intra-class

and extra-class scatter matrices are calculated by the fur-

thest intra-class neighbor and the nearest extra-class

neighbor respectively. In [17], a method is presented to

determine the optimal dimensionality for discriminant

analysis. In [18], the intra-class and extra-class scatter

matrices are only defined on pair-wise points, which are

neighboring. In [9], an adaptive nonparametric discrimi-

nant analysis is proposed by defining neighbors of a sample

using a maximal intra-class distance. In [40], the intra-class

and extra-class scatter matrices are constructed by Lapla-

cian matrices, and a linear Laplacian discriminant algo-

rithm is proposed for feature dimension reduction. In

[35, 39], local coordinate alignment technique is used to

learn a global embedding for dimension reduction. Then

Zhang et al. [36, 37] proposed a unified patch alignment

framework for subspace learning.

Although many nonparametric LDA models have been

developed, the NDA-based methods always suffer from the

outlier problem, which is not well addressed yet to our

knowledge. It is always assumed in NDA that a decision

boundary between different classes exists, so that samples

near the decision boundary can be used to estimate the

extra-class information. However, outliers may bias the

estimation of data distribution, and such kind of boundary

may be estimated inaccurately.

Moreover, NDA would always suffer from the

unbalance problem and this is also not explored by

existing NDA methods. In this paper, we analyze NDA

from an approximate viewpoint of tangent subspace [5].

From the view point of tangent subspace, we find that

NDA has a close connection with tangent subspace

learning and can be treated as a special case of tangent

analysis. In NDA, the number of intra-class samples is

larger than that of extra-class samples in a tangent space

of a sample point, so that the intra-class information is

excessively emphasized. Such unbalance problem as well

as outliers would make the NDA-based methods perform

worse than LDA.

In this paper, we mainly address these two problems in

NDA and then develop a novel discriminant tangent sub-

space method for robust face recognition. The proposed

method makes samples of the same class clustered as close

as possible and samples of different classes separated far

away from the tangent center. It naturally integrates the

tangent subspace techniques due to the close connection

between NDA and tangent subspace methods and also

benefits from the advantages of tangent approximation and

tangent alignment. The intra and extra samples are bal-

anced in a tangent space with respect to any sample point.

In addition, we propose a simple yet efficient outlier

detection technique. Outliers are filtered out according to

the weights computed in the tangent subspace. Integrating

this technique into the proposed nonparametric method can

improve the robustness of the algorithm to local noise.

The rest of paper is organized as follows. We start our

work with a discussion of NDA from an approximate

perspective of tangent subspace learning and patch align-

ment framework in Sect. 2. After that, we present the new

method in Sect. 3. In Sect. 4, we systemically evaluate the

proposed method on five face recognition datasets. Finally,

we conclude the paper in Sect. 5.

2 NDA and its problems

In this section, we first briefly review NDA and its dif-

ferences from LDA. Then we investigate the outlier

problem and unbalance problem by exploring its connec-

tion to tangent subspace analysis [11, 25].

2.1 LDA and NDA

Linear Discriminant Analysis has been widely used in

computer vision and pattern recognition. It can be viewed

as a special case of graph embedding. Given the training

data X ¼ ½x1; . . .; xn� 2 <d�n where x1; . . .; xn are drawn

from classes C1; . . .;CL; LDA learns a projection matrix for

maximization of the ratio between extra-class variance and

intra-class variance as follows:

U� ¼ arg max
U

trðUT SBUÞ
trðUT SWUÞ ð1Þ

where U 2 <d�m ðm\dÞ is an orthonormal matrix and tr(�)
is the trace operator. SB and SW are extra-class scatter

matrix and intra-class scatter matrix respectively, which

are specified as follows:

SW ¼
XL

k¼1

X

j2Ck

ðxj � lkÞðxj � lkÞT

¼
XL

k¼1

X

i;j2Ck

wI
ij
ðxj � xiÞðxj � xiÞT

ð2Þ

SB ¼
XL

k¼1

nkðlk � lÞðlk � lÞT

¼
XL

k¼1

XL

k0¼1;k0 6¼k

X

i2Ck

X

j2Ck0

wE
ijðxj � xiÞðxj � xiÞT

ð3Þ

where wij
E and wij

I are weights (constant), lk denotes the

sample mean of class Ck, l denotes the mean of all

samples, and nk denotes the number of samples in class Ck.

Therefore, (1) can be written as follows:
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U� ¼ arg max
U

PL
k¼1

P
i2Ck

trðUT ð
P

k0 6¼k

P
j2Ck0

wE
ij ðxj � xiÞðxj � xiÞT ÞUÞ

PL
k¼1

P
i2Ck

trðUT ð
P

j2Ck
wI

ij
ðxj � xiÞðxj � xiÞT ÞUÞ

ð4Þ

The main difference between NDA and LDA lies in the

definition of the extra-class scatter matrix. In [3], the extra-

class scatter matrix of NDA is defined as,

SN
B ¼

XL

i¼1

X

j2Ci

wijðxj � lðxjÞÞðxj � lðxjÞÞT ð5Þ

where l(xj) is the extra-class local k-NN mean defined by

lðxjÞ ¼
1

K

XK

k¼1

NNkðxj;Cxj
Þ ð6Þ

where cxj
is the class label of sample xj, NNk(xj, cxj

) is the

k-th extra-class nearest neighbor to xj. Using the Euclidean

metric, wij is value of the weighting function and defined

as,

wij ¼
minfjjxj � lijjb; jjxj � lðxjÞjjbg
jjxj � lijjb þ jjxj � lðxjÞjjb

ð7Þ

where b is an integral power [2] and ||�|| is the Euclidean

norm. The purpose of the wij is to de-emphasize the con-

tribution of samples that are far from the decision bound-

ary. Li and Ito [15] extends computation of SB
N from two-

class case to multi-class case.

Since LDA maximizes the mean value of the Kullback–

Leibler (KL) divergences between different classes, Tao

et al. [27] proposed a geometric mean method for subspace

selection, which maximizes the geometric mean of the KL

divergences or the normalized KL divergences. The geo-

metric mean method can in principle be faster than several

nonparametric methods [27].

2.2 Patch alignment framework

Patch alignment framework [36, 37] is a unified frame-

work for subspace learning. It divides the subspace

learning into the patch optimization step and whole

alignment step. Most subspace learning methods, such as

PCA, LDA, and Laplacian Eigenmaps, can be formulated

in this framework.

Zhang et al. [34] developed linear local tangent space

alignment approach for face recognition, which uses the

tangent space in the neighborhood of a data point to rep-

resent the local geometry. Zhao et al. [39, 40] developed

Laplacian PCA and linear Laplacian discrimination

respectively by constructing a Laplacian matrix in a local

patch. Zhang et al. [35] proposed a local coordinates

alignment (LCA) technique for manifold learning. LCA

obtains local coordinates as representations of local

neighborhood relations on a patch. Based on the orthogonal

neighborhood-preserving projection, Zhang et al. [38]

proposed discriminative orthogonal neighborhood-pre-

serving projections by combining both intra-class and

inter-class geometries. Zhang et al. [36] proposed a dis-

criminative locality alignment (DLA) for supervised sub-

space learning. In DCA, one local patch is built by one

given sample and its neighbors, which include the samples

from not only a same class but also different classes. PCA

is used as a preprocessing step for DCA to reduce noise.

Based on DCA and the optimal sparse solution of a man-

ifold learning, Zhou et al. [28] proposed a manifold elastic

net approach for sparse dimension reduction. To deal with

the undersampled problem in face recognition and human

gait recognition, Song and Tao [26] develop a discrmina-

tive geometry preserving projections method. Yang [33]

studied the problem of aligning overlapping locally scaled

patches for dimension reduction.

Although patch alignment-based methods indeed

improve the performance of subspace learning in terms of

recognition rate, there are few methods to deal with noise

and outliers especially in the challenging face recognition

problem. PCA is often used to reduce small noise [36], but

it fails to deal with large noise and outliers [6, 7, 30].

2.3 The problems

In manifold learning, we often assume that a local manifold

patch is isotropic to an Euclidean space. Let x 2 <d be a

pattern and t(x, a) be the pattern transformed from x by a

parameter a. Tangent approximation method, often called

the invariant pattern classification method [5, 11, 20, 25],

learns an approximate tangent subspace to model the local

variation of a manifold. It assumes that t(x, a) has the same

class membership as x. The set of transformed patterns,

Mx = {t(x, a)}, now form a manifold in pattern space. The

transformed pattern t(x, a) can be approximated by a

Taylor expansion at a = 0.

tðx; aÞ ¼ xþ aT þ oða2Þ ð8Þ

where T is a tangent vector, namely T = q(x, a)/qa. Tan-

gent vector approximates the manifold Mx by the first-order

Taylor expansion. In practice, the tangent vector T is often

approximated by x’s neighborhood points [5]. From this

view point, the tangent approximation on point x can be

viewed as the local patch optimization in patch alignment

framework.

From the viewpoint of tangent subspace, if we treat

xj - xi in NDA as the tangent vector of xi, it is easy to

find that NDA utilizes the nearby intra-tangent vectors

and extra-tangent vectors to construct intra-class matrix

and extra-class matrix respectively. So, NDA can be

interpreted as learning an approximate tangent subspace
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by a global projection matrix, where intra-class samples

are close to tangent center and extra-class samples are far

away from it. However, it can be found that there are

many intra-class samples and only one extra-class sample

(l (xj)) in tangent space. This implies that NDA exces-

sively focuses on intra-class variation and results in an

unbalance problem.

Another important problem in NDA is caused by outli-

ers, which certainly have negative effect on learning the

discriminant projection. In NDA, the decision boundary

has to be known first, so that samples near the decision

boundary can be used to construct the extra-class scatter

matrix. The most common way is to assume that the

samples adjacent to different classes are also close to the

decision boundary. However, this assumption is not

appropriate especially when outliers exist. Since outliers

may be close to a class but far away from decision

boundary, the decision boundary estimated by them will be

bias.

In order to further specify the outlier problem, a two-

class toy example is shown in Fig. 1, where data of each

class follows non-Gaussian distribution. Four optimal

projections with respect to LDA, canonical NDA, MFA,

and NMMC are shown respectively. NDA and its other

variants such as MFA and NMMC select the same samples

to construct the extra-class scatter matrix in Fig. 1a, b. The

results in Fig. 1b clearly demonstrate that NDA, MFA, and

NMMC fail to find the optimal projection direction. This

example illustrates that outliers make NDA and its varia-

tions estimate a bias decision boundary. To address the

unbalance problem and outlier problem in NDA, we will

introduce a novel discriminant technique in the following

section.

3 Large margin discriminant tangent subspace

This section proposes to learn a robust large margin dis-

criminant tangent subspace (LMTS) method. In Sect. 3.1,

inspired by the invariant pattern classification method [25],

we discuss how to select balanced intra-class and extra-

class samples to learn a set of discriminant features in a

tangent space. In Sect. 3.2, inspired by the patch alignment

framework [37], we also align the local tangent subspaces

to a global subspace. After that, in Sect. 3.3, we further

propose a simple yet efficient outlier detection technique to

reduce noise.

As an overview, Fig. 2 illustrates the basic methodol-

ogy of the proposed method. A tangent subspace is first

learned to model the local data variation on manifold and

then tangent alignment is performed to get a global sub-

space. Similar to the patch alignment framework [36], we

also harness the whole alignment to learn a global coor-

dinate (or subspace). However, our tangent subspace

belongs to the invariant pattern classification method [5,

25] and aims to learn the invariant local structure of a

manifold in (8).

3.1 Tangent approximation

The tangent approximation assumes that a local variation

of a sample point can be depicted by a linear approxima-

tion of its tangent space given by the first-order Taylor

expansion. Using the tangent approximation technique

−5 0 5
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LDA
NMMC
MFA
NDA

(a)

−5 0 5
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2

3

4

LDA
NMMC
MFA
NDA

(b)Fig. 1 Toy problems: LDA and

NDAs (see text for details).

a Optimal projections of

different methods calculated on

a synthetic dataset where two

classes are separated. b Optimal

projections of different methods

calculated on a synthetic dataset

where two classes are not

separated

Fig. 2 A basic methodology of robust large margin discriminant

tangent subspace. It learns a tangent approximation mapping and a

tangent alignment mapping to project the original feature space to a

global subspace
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could make the modeling of data variation more accurate,

and it also has been shown as a promising technique for

research in other fields [19, 25].

Note that data variations can be derived from intra-class

samples and extra-class samples [31]. Our goal is to learn a

large margin tangent subspace for each sample point on a

manifold. We expect intra-class samples cluster as com-

pactly as possible while data of different classes scatter far

away from each other. Suppose xk,i
E is the kth nearest extra-

class sample of xi and xk,i
I is the kth nearest intra-class

sample of xi. Let yk,i
E be extra-class tangent vector of xk,i

E and

yk,i
I be intra-class vector of xk,i

I in the tangent subspace of

sample xi. We then propose the following optimization

problem:

max
yE

1;i
;...;yE

K1 ;i
;yI

1;i
;...;yI

K2 ;i

PK1

k¼1 wE
ikðyE

k;iÞ
T yE

k;iPK2

k¼1 wI
ikðyI

k;iÞ
T yI

k;i

 !
ð9Þ

where wik
E and wik

I are the corresponding importance

weights, and K1 and K2 are the number of intra and extra

samples respectively. For simplicity, we set both wik
E and

wik
I to 1 in the experiment. If there is a linear mapping

Ui
T = w from the tangent space and its subspace, then for

some extra-class sample xk,i
E and intra-class sample xk,i

I , we

get

yE
k;i ¼ UT

i ðxE
k;i � xiÞ and yI

k;i ¼ UT
i ðxI

k;i � xiÞ ð10Þ

In the tangent space of xi, we expect to learn a linear

projection matrix Ui
T which is the solution of following

criterion:

max
Ui

tr UT
i

PK1

k¼1 wE
ik xE

k;i � xi

� �
xE

k;i � xi

� �T
� �

Ui

� �

tr UT
i

PK2

k¼1 wI
ik xI

k;i � xi

� �
xI

k;i � xi

� �T
� �

Ui

� � ð11Þ

3.2 Tangent alignment

Aiming to learn a global coordinate system for all the

tangent subspaces, we perform the tangent alignment

technique to derive a global map UT ¼ / � w: We assume

there exists a global coordinate Y ¼ ½y1; . . .; yn�; a global

map U so that

yE
k;i ¼ UTðxE

k;i � xiÞ and yI
k;i ¼ UTðxI

k;i � xiÞ ð12Þ

Then we have the following problem

arg max
fy1;...;yng

tr
PN

i¼1

PK1

k¼1 wE
ikyE

k;i yE
k;i

� �T
� �

tr
PN

i¼1

PK2

k¼1 wI
ikyI

k;i yI
k;i

� �T
� � ð13Þ

It is straightforward to verify that

tr
XN

i¼1

XK1

k¼1

wikyE
k;i yE

k;i

� �T
 !

¼ tr UT
XN

i¼1

XK1

k¼1

wik xE
k;i � xi

� �
xE

k;i � xi

� �T
 !

U

 !

¼ tr UT
XN

i¼1

XK1

j¼1

wik xE
k;i xE

k;i

� �T

�2xE
k;ix

T
i þ xix

T
i

� � !
U

 !

¼ tr UT X
XN

i¼1

SE
i WE

i SE
i

� �T
XT � 2X

XN

I¼1

SE
i WE

i XT � XWE
i XT U

 !

¼ tr UT X
XN

i¼1

SE
i WE

i SE
i

� �T �
XN

i¼1

SE
i WE

i þWE
i

 !
XT U

 !

where Si
E is the selection projection matrix [40] such that

Yi
E = YSi

E. Similarly, we can get

tr
XN

i¼1

XK2

k¼1

wikyI
k;i yI

k;i

� �T
 !

¼ tr UTX
XN

i¼1

SI
i W

I
i SI

i

� �T �
XN

i¼1

SI
i W

I
i þWI

i

 !
XT U

 !

where Si
I is the selection projection matrix Yi

I = YSi
I. Thus,

we have the following maximization problem:

arg max
U

trðUT XPEXT UÞ
trðUT XPIXT UÞ ð14Þ

where

PE ¼
XN

i¼1

SE
i WE

i ðSE
i Þ

T � SE
i WE

i þWE
i ð15Þ

PI ¼
XN

i¼1

SI
i W

I
i ðSI

i Þ
T � SI

i W
I
i þWI

i ð16Þ

For computation, the above optimization problem in

(14) can be solved by using generalized eigen-

decomposition as follows:

ðXPEXTÞU ¼ ðXPIXTÞUK ð17Þ

where K is the diagonal matrix whose diagonal terms are

eigen-values. Then U can be the eigenvectors corre-

sponding to the first m largest eigen-values.

When feature dimension is high, XLIXT tends to be

singular such that discriminant analysis methods suffer the

undersampled problem [27]. To deal with the undersam-

pled problem, a regularizer can be further introduced in

(17) and we have

ðXPEXTÞU ¼ ðXPIXT þ dIÞUK ð18Þ
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In the experiment, we empirically set d ¼ 0:01�
ð1N
PN

i¼1 maxðxiðjÞÞÞ2; where xi(j) is jth entry of feature

vector xi.

3.3 Outlier detection

Lee and Landgrebe [10] introduced the decision boundary

feature matrix for a direct computation of the intrinsic

discriminant dimensionality. In NDA and its variations, the

decision boundary is approximately calculated by intra-

class and extra-class matrix. However, the estimation of

extra-class matrix becomes bias when there are outliers.

The outliers will have large effect on the data distribution

and biases the data distribution estimation, which are major

problems in robust learning [6–8].

Figure 3a shows a two-class toy problem (triangle class

and ellipse class). The two rectangle points (outliers)

belong to the ellipse class. It is clear that the outliers are

closer to another class than the rest of the same class. If we

remove the two outliers, we will learn a decision boundary

(solid line in Fig. 3a) which can entirely separate the main

parts of two classes. If we include the two outliers, we will

obtain a biased decision boundary (dash line in Fig. 3a). It

is clear that the outliers make NDA estimate a bias decision

boundary. This inaccurate estimation is due to the inac-

curate estimation of extra-class matrix.

For nonparametric methods, some samples near the

desired decision boundary are selected to calculate the

extra-class matrix. To describe the importance of a selected

sample, we introduce the weight of a sample xi as following:

weightðxiÞ ¼
X

j

rðxi; xjÞ and

rðxi; xjÞ ¼
wE

ij xi 2 NNkðxj;Cxj
Þ

0 else

� ð19Þ

where NNk(xj, cxj
) is the kth nearest neighbor of xj and is not

in Cxj. A large weight(xi) shows that xi is close to the decision

boundary. Let us first consider an ideal case that samples in

this set have nearly equal weights. The solid line in Fig. 3b

shows the accumulation curve of weight in this case. Each

point near the boundary receives equally importance. Thus,

accumulation curve is nearly linear. However, the distribu-

tion of weight will be extremely different when there are

outliers. The dash line in Fig. 3b shows an example of the

accumulation distribution on FRGC dataset. Therefore, we

find that some points whose weights are larger than the

others may be outliers. This motivates us to find a strategy to

alleviate the effect of outliers.

Inspired by soft-threshold [30] in robust face recogni-

tion, we suggest directly removing those xi whose weights

are larger than a threshold from the training set when

constructing the extra-class matrix. Note that an outlier

always gets a excessive high sample weight such that the

estimated decision boundary is biased. Therefore, we

assume that weights of samples nearby a decision boundary

should be almost equal. To this end, if there is a xi whose

weight is larger than that of the others, it may be an outlier

and it would be removed in our algorithm.

4 Experiments

In this section, the proposed method is extensively com-

pared with other related methods on five commonly used

face recognition data sets. Since the face recognition

problem is an open set problem,1 we divide the data set into

training set, probe set, and gallery set [40]. A probe set

contains one or more images from a set of individuals.

Each person will have exactly one match in the gallery.

The gallery may contain images from other individuals

who are not in the probe population [22, 40]. Considering

that the dimension of facial images is often high, we dis-

cuss standard discriminant analysis and regularized

−10 −5 0 5 10

−2

0

2

(a)

0 500 1000
0

0.2

0.4

0.6

0.8

1

X: 1251
Y: 0.501

X: 721
Y: 0.5

(b)

Fig. 3 a Example of decision boundaries in a two-class problem

(triangle class and ellipse class). The two rectangle points are outliers

belong to the ellipse class. The solid line is the decision boundary

calculated by NDA regardless of those two outliers; the dash line is

the decision boundary calculated by NDA when those two outliers are

involved. b Accumulation curves of two weight distributions. The

solid line presents an accumulation curve of the distribution of sample

weights of ideal data set. The dash line presents the accumulation

curve of the distribution of sample weight of FRGC data set. The

sample weights are calculated by (18)

1 Open set domains assume that new classes may be encountered. In

contrast, closed set domains assume that all classes of a domain have

been known and can be used in training.
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discriminant analysis in Sects. 4.2 and 4.3 respectively. All

algorithms are implemented in MATLAB.

The number of intra-class nearest neighbors K1 and

extra-class nearest neighbors K2 for all non-parameter

methods are set to 4 and 8 respectively. The nearest

neighbor classifier is adopted for classification. The num-

ber of features, extracted by all methods, ranges from 10 to

350 where the best accuracy is reported. The value of

threshold for LMTS is set to the value whose corre-

sponding probability value in accumulation curve is 0.7.

Note that the goal of this experiment is to fairly compare

the related nonparametric discriminant methods rather than

achieve the highest face recognition accuracies on these

data sets.

4.1 Datasets

4.1.1 FRGC dataset

The facial images are collected from a subset of FRGC

version 2 [21] face database. There are uncontrolled 8,014

images of 466 subjects in the query set for the FRGC

experiment 4. These still images contain the variations of

illumination, expression, time, and blurring. However,

there are only two facial images available for some per-

sons. Thus, a subset is selected in our experiments. We take

the first 10 facial images if the number of facial images is

not less than 10. Then we get 3160 facial images of 316

subjects. The first 200 subjects are used as the training set.

Then we take the first five facial images of each person in

the last 116 subjects as the gallery set and the remaining

five images as the probe set. Therefore, the set of persons

for training is different from that for testing.

4.1.2 CMU PIE dataset

The CMU PIE database [24] contains more than 40,000

facial images of 68 subjects. We select a subset in our

experiment which contains five near frontal poses (C27,

C05, C29, C09, and C07) and illumination indexed by 03

and 11. So there are 10 images for each subject. The first 38

subjects are used as the training set, and the remaining 30

subjects are set as the gallery set and probe set, where we

take the first five facial images of each person in the last 30

subjects as the gallery set and the remaining five images as

the probe set. Therefore, the set of persons for training is

different from that for probe. Histogram equilibrium was

applied as the preprocessing step in PIE dataset.

4.1.3 FERET dataset

The facial recognition technology (FERET) database [22]

contains 1,564 sets of images for a total of 14,126 images,

including 1,199 individuals and 365 duplicate sets of

images. We take the first 10 frontal facial images if the

number of frontal facial images is not less than 10. Then

we get 1,690 facial images of 169 subjects. The first 100

subjects are used as the training set. Then we take the first

five facial images of each person in the last 69 subjects as

the gallery set and the remaining five images as the probe

set.

4.1.4 ORL dataset

The Cambridge (ORL) database2 contains 40 distinct

subjects, each subject having ten different images, taken at

different times, varying the lighting, facial expressions, and

facial details (glasses/no glasses). All the images are taken

against a dark homogeneous background and the subjects

are in upright, frontal position. The first 20 subjects are

used as the training set, and the remaining 20 subjects are

set as the gallery set and probe set, where we take the first

five facial images of each subject in the last 20 subjects as

the gallery set and the remaining five images as the probe

set.

4.1.5 Extended Yale B dataset

The Extended Yale B database [4] consists of 2,414 frontal

face images from 38 subjects under various lighting con-

ditions. The first 20 subjects are used as the training set,

and the remaining 18 subjects are set as the gallery set and

probe set, where we take the first five facial images of each

subject in the last 18 subjects as the gallery set and the

remaining five images as the probe set.

For the first four data sets, the grayscale images were

resized to resolution 64 9 64; and for the last Extended

Yale B Dataset, the grayscale images were resized to res-

olution 96 9 84. Table 1 summarizes the details of the

data sets used in the experiments.

4.2 Experiment I: discriminant analysis

To solve the singularity problem of the intra-class matrix of

LDA, PCA is often used to reduce the high-dimensional

image space. Hence, we compare different methods on

PCA subspace. Wang and Tang [29] showed that the

dimension of principal subspaces significantly affects the

performance of recognition for the PCA plus LDA strategy.

Based on their work, the optimal number of principal

components is determined manually. We find that PCA

performs the best when the dimension of feature vectors

are 453 and 150 on FRGC and PIE respectively.

2 http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.
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Table 2 tabulates the experimental results on five data

sets. The ‘‘Tn’’ represents n facial images for each person

that are randomly selected from the training set on that

experiment. On FRGC data set, the recognition accuracy

by only using PCA subspace is 51.03%. It is obvious that

all compared discriminant methods can learn a discrimi-

nant subspace and further improve recognition accuracy.

The recognition accuracy of different methods increases as

the number of training set increases.

The FRGC and FERET data set seem to be more diffi-

cult than the other three data sets. The highest rates on

FRGC and FERET are 78.28 and 62.35% respectively.

This may be due to the fact that FRGC and FERET data set

are the most challenging data sets. The facial images in the

two data sets have large variations under uncontrolled

environment so that NDA estimates a bias decision

boundary. LMTS addresses this problem in NDA by using

large margin strategy and robust method. We can see that

LMTS obtains a notable improvement over NDA and

achieves the best performance on the two data sets.

On PIE, ORL, and extended YALE B data set, all

methods obtain high recognition rates. Since there are only

40 subjects in ORL data set and the facial images are

nearly frontal images, NDA, MFA, and LMTS all achieve

the highest recognition rate 99%. It seems that NDA and

MFA can more efficiently use local structure on small data

set than LDA so that they perform better than LDA. As

expected, LMTS consistently outperforms the other

methods.

4.3 Experiment II: regularized discriminant analysis

Although PCA is often used as a preprocessing step for

discriminant analysis to reduce the dimension of image

feature, regularization methods are often used in local

feature (e.g., Gabor features [12]) -based face recognition.

Regularized discriminant analysis method is often used to

deal with undersampled problem [27] and to further

improve recognition accuracy [16]. In this experiment, we

evaluate different regularized methods for face recognition.

More specifically, we filter each facial image and perform a

Gabor filter on every six pixels. Thus, there are 99 Gabor

values on an image by one Gabor filter. Four scales and

four directions of Gabor are used. So the number of Gabor

filters in a Gabor feature vector is 99 9 (4 9 4) = 1,584.

The regularized parameter is set as indicated below (18).

Table 3 shows the comparison results of regularized

discriminant methods. As expected, regularized LMTS

achieves the best accuracy. Compared with RLDA, the

improvement of RNDA is limited because RNDA calcu-

lates intra-class matrix in the same way as RLDA. RMFA

and RLMTS perform better than RLDA and RNDA

because they construct intra-class and extra-class matrix

from the information in local area. By using Gabor

Table 1 Description of the data sets used in the experiments

FRGC dataset PIE dataset Feret dataset ORL dataset YALE dataset

T G P T G P T G P T G P T G P

Number of subjects 200 116 116 38 30 30 100 69 69 20 20 20 20 18 18

Number of images 2,000 580 580 380 150 150 1,000 345 345 200 100 100 640 288 288

Character ‘‘T’’ represents training set; character ‘‘P’’ represents probe set; character ‘‘G’’ represents gallery set

Table 2 Face recognition rates

(%) on PCA features

The bold numbers are the

highest recognition rates for

each configuration

PCA ? LDA PCA ? NMMC PCA ? NDA PCA ? MFA PCA ? LMTS

FRGC (T6) 70.60 65.17 69.48 70.17 71.65

FRGC (T10) 77.19 73.45 75.34 77.24 78.28

FERET (T6) 57.68 50.43 55.94 51.88 58.55

FERET (T10) 60.87 54.78 59.42 58.55 62.35

PIE (T6) 71.03 76.05 75.86 74.48 76.55

PIE (T10) 86.21 88.97 92.41 95.17 96.55

ORL (T6) 96.00 96.00 98.00 96.00 98.00

ORL (T10) 97.00 98.00 99.00 99.00 99.00

YALE B (T20) 91.32 95.14 97.22 94.10 97.57

YALE B (T32) 98.26 98.96 99.31 98.96 99.65
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features, RLMTS can consistently outperform other

methods and further improve recognition rates.

4.4 Parameter selection

The threshold mentioned in Sect. 3.3 is an important

parameter to remove noise from the decision boundary. Its

value directly affects final recognition accuracy. For

demonstration, Fig. 4a shows the face recognition rates

when different values of the threshold parameter are set,

where the experimental setting is the same as that of FRGC

(T10) in Sect. 4.2. When the threshold ranges from 10 to

Table 3 Face recognition rates (%) of different regularized methods

on Gabor features

RLDA RNMMC RNDA RMFA RLMTS

FRGC (T6) 75.86 70.01 76.90 80.17 81.16

FRGC (T8) 77.24 70.62 77.45 80.12 81.55

FRGC (T10) 77.25 70.41 77.59 80.05 81.55

PIE (T6) 92.41 93.79 93.1 93.79 94.48

PIE (T8) 94.48 93.10 95.05 93.10 95.17

PIE (T10) 98.62 93.10 97.93 98.62 99.31

The bold numbers are the highest recognition rates for each

configuration
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Fig. 4 Face recognition

accuracy when different

thresholds are set. a The

accuracies of MFA and LMTS

with different values of

threshold in Sect. 3.3 on FRGC

dataset; b the accuracy of

LMTS whose number of extra-

class k near neighbors ranges

from 2 to 14 when number of

k near intra-class neighbors

equals 4; c the weights

calculated by (19) on the same

dataset of a; d the accumulation

curve calculated by the weights

in c; e the weights on PIE

dataset; f the accumulation

curve calculated by the weights

in e
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100, the accuracy of LMTS is always larger than that of

MFA. But different values of the threshold will make

LMTS perform differently. When the threshold ranges

from 30 to 40 and from 90 to 100, LMTS can obtain higher

accuracy, and when the threshold is larger than 100, rec-

ognition accuracy decreases because outliers make LMTS

estimate a biased extra-class matrix. Thus, it is necessary to

determinate an appropriate value of the threshold for par-

ticular application.

Figure 4c shows the sorted weights of all samples. We

can find that the weights of some samples are significantly

larger than the weights of others. When the value of the

threshold is set to 40, there are nearly 39 images that

should be removed. Looking at the accumulation curve in

Fig. 4d, we also observe the same phenomenon. Given a

new data set, we suggest to decide the threshold by the

weight distribution and accumulation curve. Figure 4e, f

further show the weight curve and accumulation curve on

PIE database respectively.

The number of intra-class k nearest neighbors and extra-

class k nearest neighbors are also important to recognition

accuracy. Figure 4b depicts the accuracy of LMTS whose

number of extra-class k near neighbor ranges from 2 to 14

and the number of intra-class k near neighbors is fixed to 4.

For each extra-class k near neighbors, we select the weight

corresponding to the point at 0.65 on the accumulation curve.

The accuracy of LMTS varies between 78% and 79%. The

average accuracy is 78.71%. The different number of extra-

class k near neighbors results in different accuracy.

5 Conclusion

This paper addresses the outlier and unbalance problems in

nonparametric discriminant analysis, which are less

investigated in existing nonparametric methods. Based on

tangent approximation and tangent alignment techniques,

we propose a novel large margin discriminant tangent

analysis for robust face recognition. An outlier detection

technique is further suggested to construct a robust extra-

class matrix such that the proposed method can learn a

more robust subspace for learning. Extensive experiments

on five face recognition data sets show the improvements

of the proposed method as compared to related nonpara-

metric discriminant methods and validate its usefulness for

face recognition especially on challenging data sets. Our

work also shows that there is a potential threshold

parameter for LMTS to detect outlier. Future work is to

study robust LMTS and its parameter selection from the

view point of robust statistics [7, 30].
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