
Pattern Recognition 42 (2009) 764 -- 779

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.e lsev ier .com/ locate /pr

Perturbation LDA: Learning the difference between the class empiricalmean
and its expectation

Wei-Shi Zhenga,c, J.H. Laib,c,∗, Pong C. Yuend, Stan Z. Lie
aSchool of Mathematics and Computational Science, Sun Yat-sen University, Guangzhou, PR China
bDepartment of Electronics and Communication Engineering, School of Information Science and Technology, Sun Yat-sen University, Guangzhou, PR China
cGuangdong Province Key Laboratory of Information Security, PR China
dDepartment of Computer Science, Hong Kong Baptist University, Hong Kong
eCenter for Biometrics and Security Research and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, PR China

A R T I C L E I N F O A B S T R A C T

Article history:
Received 24 September 2006
Received in revised form 9 July 2008
Accepted 22 September 2008

Keywords:
Fisher criterion
Perturbation analysis
Face recognition

Fisher's linear discriminant analysis (LDA) is popular for dimension reduction and extraction of discrim-
inant features in many pattern recognition applications, especially biometric learning. In deriving the
Fisher's LDA formulation, there is an assumption that the class empirical mean is equal to its expectation.
However, this assumption may not be valid in practice. In this paper, from the “perturbation” perspective,
we develop a new algorithm, called perturbation LDA (P-LDA), in which perturbation random vectors are
introduced to learn the effect of the difference between the class empirical mean and its expectation
in Fisher criterion. This perturbation learning in Fisher criterion would yield new forms of within-class
and between-class covariance matrices integrated with some perturbation factors. Moreover, a method is
proposed for estimation of the covariance matrices of perturbation random vectors for practical imple-
mentation. The proposed P-LDA is evaluated on both synthetic data sets and real face image data sets.
Experimental results show that P-LDA outperforms the popular Fisher's LDA-based algorithms in the
undersampled case.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Data in some applications such as biometric learning are of high
dimension, while available samples for each class are always lim-
ited. In view of this, dimension reduction is always desirable, and
at the same time it is also expected that data of different classes
can be more easily separated in the lower-dimensional subspace.
Among the developed techniques for this purpose, Fisher's linear
discriminant analysis (LDA)1 [1–4] has been widely and popularly
used as a powerful tool for extraction of discriminant features. The
basic principle of Fisher's LDA is to find a projection matrix such
that the ratio between the between-class variance and within-class
variance is maximized in a lower-dimensional feature subspace.
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1 LDA in this paper refers to Fisher's LDA. It is not a classifier but a feature
extractor learning low-rank discriminant subspace, in which any classifier can be
used to perform classification.
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Due to the curse of high dimensionality and the limit of training
samples, within-class scatter matrix Sw is always singular, so that
classical Fisher's LDA will fail. This kind of singularity problem is
always called the small sample size problem [5,6] in Fisher's LDA.
So far, some well-known variants of Fisher's LDA have been devel-
oped to overcome this problem. Among them, Fisherface (PCA+LDA)
[5], nullspace LDA (N-LDA) [6–8] and regularized LDA (R-LDA)
[9–13] are three representative algorithms. In “PCA+LDA”, Fisher's
LDA is performed in a principal component subspace, in which
within-class covariance matrix will be of full rank. In N-LDA, the
nullspace of within-class covariance matrix Sw is first extracted,
and then data are projected onto that subspace and finally a dis-
criminant transform is found there for maximization of the variance
among between-class data. In R-LDA, a regularized term, such as
� · I where � > 0, is added to Sw. Some other approaches, such as
Direct LDA [14], LDA/QR [15] and some constrained LDA [16,17], are
also developed. Recently, some efforts are made for development of
two-dimensional LDA techniques (2D-LDA) [18–20], which perform
directly on matrix-form data. A recent study [21] conducts com-
prehensive theoretical and experimental comparisons between the
traditional Fisher's LDA techniques and some representative 2D-LDA
algorithms in the undersampled case. It is experimentally shown
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that some two-dimensional LDA may perform better than Fisherface
and some other traditional Fisher's LDA approaches in some cases,
but R-LDA always performs better. However, estimation of the reg-
ularized parameter in R-LDA is hard. Though cross-validation (CV)
is popularly used, it is time consuming. Moreover, it is still hard to
fully interpret the impact of this regularized term.

From the geometrical view, Fisher's LDA makes different class
means scatter and data of the same class close to their corresponding
class means. However, since the number of samples for each class is
always limited in some applications such as biometric learning, the
estimates of class means are not accurate, and this would degrade
the power of Fisher criterion. To specify this problem, we first re-visit
the derivation of Fisher's LDA. Consider the classification problem
of L classes C1, . . . ,CL. Suppose the data space X (⊂ �n) is a compact
vector space and {(x11, y11), . . . , (x1N1

, y1N1
), . . . , (xL1, y

L
1), . . . , (x

L
NL

, yLNL
)} is

a set of finite samples. All data x11, . . . ,x
1
N1

, . . . ,xL1, . . . ,x
L
NL

are iid, and

xki ( ∈ X) denotes the ith sample of class Ck with class label yki (i.e.,

yki = Ck) and Nk is the number of samples of class Ck. The empirical

mean of each class is then given by ûk = 1
Nk

∑Nk
i=1x

k
i and the total

sample mean is given by û = ∑L
k=1

Nk
N ûk, where N = ∑L

k=1Nk is
the number of total training samples. The goal of LDA under Fisher
criterion is to find an optimal projection matrix by optimizing the
following Eq. (1):

Ŵopt = argmax
W

trace(WTŜbW)/trace(WTŜwW), (1)

where Ŝb and Ŝw are between-class covariance (scatter) matrix and
within-class covariance (scatter) matrix, respectively, defined as fol-
lows:

Ŝb =
L∑

k=1

Nk
N

(ûk − û)(ûk − û)T, (2)

Ŝw =
L∑

k=1

Nk
N

Ŝk, Ŝk =
Nk∑
i=1

1
Nk

(xki − ûk)(x
k
i − ûk)

T. (3)

It has been proved in [22] that Eq. (2) could be written equivalently
as follows:

Ŝb = 1
2

L∑
k=1

L∑
j=1

Nk
N

×
Nj

N
(ûk − ûj)(ûk − ûj)

T. (4)

For formulation of Fisher's LDA, two basic assumptions are always
used. First, the class distribution is assumed to be Gaussian. Second,
the class empirical mean is in practice used to approximate its ex-
pectation. Although Fisher's LDA has been getting its attraction for
more than thirty years, as far as we know, there is little researchwork
addressing the second assumption and investigating the effect of
the difference between the class empirical mean and its expectation
value in Fisher criterion. As we know, ûk is the estimate of Ex′|Ck [x

′]
based on the maximum likelihood criterion, where Ex′|Ck [x

′] is the
expectation of class Ck. The substitution of expectation Ex′|Ck [x

′] with
its empirical mean ûk is based on the assumption that the sample
size for estimation is large enough to reflect the data distribution of
each class. Unfortunately, this assumption is not always true in some
applications, especially the biometric learning. Hence the impact of
the difference between those two terms should not be ignored.

In view of this, this paper will study the effect of the differ-
ence between the class empirical mean and its expectation in Fisher
criterion. We note that such difference is almost impossible to be
specified, since Ex′|Ck [x

′] is usually hard (if not impossible) to be de-
termined. Hence, from the “perturbation” perspective, we introduce

the perturbation random vectors to stochastically describe such dif-
ference. Based on the proposed perturbation model, we then ana-
lyze how perturbation random vectors take effect in Fisher criterion.
Finally, perturbation learning will yield new forms of within-class
and between-class covariance matrices by integrating some pertur-
bation factors, and therefore a new Fisher's LDA formulation based
on these two new estimated covariance matrices is called perturba-
tion LDA (P-LDA). In addition, a semi-perturbation LDA, which gives
a novel view to R-LDA, will be finally discussed.

Although there are some related work on covariance matrix esti-
mation for designing classifier such as RDA [23] and its similar work
[24], and EDDA [25], however, the objective of P-LDA is different
from theirs. RDA and EDDA are not based on Fisher criterion and they
are classifiers, while P-LDA is a feature extractor and does not pre-
dict class label of any data as output. P-LDA would exact a subspace
for dimension reduction but RDA and EDDA do not. Moreover, the
perturbation model used in P-LDA has not been considered in RDA
and EDDA. Hence the methodology of P-LDA is different from the
ones of RDA and EDDA. This paper focuses on Fisher criterion, while
classifier analysis is beyond our scope. To the best of our knowl-
edge, there is no similar work addressing Fisher criterion using the
proposed perturbation model.

The remainder of this paper is outlined as follows. The proposed
P-LDA will be introduced in Section 2. The implementation details
will be presented in Section 3. Then P-LDA is evaluated using three
synthetic data sets and three large human face data sets in Section 4.
Discussions and conclusion of this paper are then given in
Sections 5 and 6, respectively.

2. P-LDA: a new formulation

The proposed method is developed based on the idea of per-
turbation analysis. A theoretical analysis is given and a new for-
mulation is proposed by learning the difference between the class
empirical mean and its expectation as well as its impact to the
estimation of covariance matrices is Fisher criterion. In Section 2.1,
we first consider the case when data of each class follow single
Gaussian distribution. The theory is then extended to the mixture of
Gaussian distribution case and reported in Section 2.2. The imple-
mentation details of the proposed new formulation will be given In
Section 3.

2.1. P-LDA under single Gaussian distribution

Assume data of each class are normally distributed. Given a spe-
cific input (x,y), where sample x ∈ X and class label y ∈ {C1, . . . ,CL}, we
first try to study the difference between a sample x and Ex′|y[x′] the
expectation of class y in Fisher criterion. However, Ex′|y[x′] is usually
hard (if not impossible) to be determined, so it may be impossible
to specific such difference. Therefore, our strategy is to stochasti-
cally characterize (simulate) the difference between x and Ex′|y[x′]
by a random vector and then model a random mean for class y to
stochastically describe Ex′|y[x′]. Define nx (∈ �n) as a perturbation
random vector for stochastic description (simulation) of the differ-
ence between x and Ex′|y[x′]. When data of each class follow normal
distribution, we can model nx as a random vector from the normal
distribution with mean 0 and covariance matrix Xy, i.e.,

nx ∼ N(0,Xy), Xy ∈ �n×n. (5)

We callXy the perturbation covariance matrix of nx. The above model
assumes that the covariance matrices Xy of nx are the same for any
sample x with the same class label y. Note that it would be natural
that an ideal value of Xy can be the expected covariance matrix of
class y, i.e., Ex′|y[(x′−Ex′′|y[x′′])(x′−Ex′′|y[x′′])T]. However, this value
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is usually hard to be determined, since Ex′|y[x′] and the true density
function are not available. Actually this kind of estimation needs not
be our goal. Note that the perturbation random vector nx is only
used for stochastic simulation of the difference between the specific
sample x and its expectation Ex′|y[x′]. Therefore, in our study, Xy
only needs to be properly estimated for performing such simulation
based on the perturbation model specified by the following Eqs. (6)
and (7), finally resulting in some proper correctings (perturbations)
on the empirical between-class and within-class covariance matrices
as shown later. For this goal, a random vector is first formulated for
any sample x to stochastically approximate Ex′|y[x′] below:

x̃ = x + nx. (6)

The stochastic approximation of x̃ to Ex′|y[x′] means there exists a

specific estimate2 n̂x of the random vector nx with respect to the
corresponding distribution such that

x + n̂x = Ex′|y[x′]. (7)

Formally we call equality Eqs. (6) and (7) the perturbation model. It is
not hard to see such perturbation model is always satisfied. The main
problem is how to modelXy properly. For this purpose, a technique
will be suggested in the next section.

Now, for any training sample xki , we could formulate its corre-

sponding perturbation random vector nki ∼ N(0,XCk
) and the ran-

dom vector x̃ki =xki +nki to stochastically approximate its expectation
Ex′|Ck [x

′]. By considering the perturbation impact, Ex′|Ck [x
′] could be

stochastically approximated on average by:

ũk = 1
Nk

Nk∑
i=1

x̃ki = ûk + 1
Nk

Nk∑
i=1

nki . (8)

Note that ũk can only stochastically but not exactly describe
Ex′|Ck [x

′], so it is called the random mean of class Ck in our study.
After introducing the random mean of each class, a new form of

Fisher's LDA is developed below by integrating the factors of the per-
turbation between the class empirical mean and its expectation into
the supervised learning process, so that new forms of the between-
class and within-class covariance matrices are obtained. Since ũk and
ũ are both random vectors, we take the expectation with respect to
the probability measure on their probability spaces, respectively. To
have a clear presentation, we denote some sets of random vectors
as nk = {nk1, . . . ,nkNk

}, k = 1, . . . ,L, and n = {n11, . . . ,n1N1
, . . . ,nL1, . . . ,n

L
NL

}.
Since x11, . . . ,x

1
N1

, . . . ,xL1, . . . ,x
L
NL

are iid, it is reasonable to assume that

n11, . . . ,n
1
N1

, . . . ,nL1, . . . ,n
L
NL

are also independent. A new within-class
covariance matrix of class Ck is then formed below:

S̃k = E
nk

⎡
⎣

Nk∑
i=1

1
Nk

(xki − ũk)(x
k
i − ũk)

T

⎤
⎦ = Ŝk + 1

Nk
XCk

(9)

So a new within-class covariance matrix is established by:

S̃w =
L∑

k=1

Nk
N

S̃k = Ŝw + 1
N

L∑
k=1

XCk
= Ŝw + S�w (10)

2 In this paper the notation “ ∧ ” is always added overhead to the corresponding
random vector to indicate that it is an estimate of that random vector. As analyzed
later, n̂x does not need to be estimated directly, but a technique will be introduced
to estimate the information about n̂x .

where S�w = 1
N

∑L
k=1XCk

. Next, following equalities (2) and (4),
we get

1
2

L∑
k=1

L∑
j=1

Nk
N

×
Nj

N
(ũk − ũj)(ũk − ũj)

T

=
L∑

k=1

Nk
N

(ũk − ũ)(ũk − ũ)T,

where ũ = ∑L
k=1

Nk
N ũk = û + 1

N
∑L

k=1
∑Nk

i=1n
k
i . Then a new between-

class covariance matrix is given by:

S̃b = En

⎡
⎣1
2

L∑
k=1

L∑
j=1

Nk
N

×
Nj

N
(ũk − ũj)(ũk − ũj)

T

⎤
⎦

= Ŝb + S�b (11)

where S�b =∑L
k=1

(N−Nk)
2

N3 XCk
+∑L

k=1
Nk
N3

∑L
s=1,s � k(NsXCs ). The de-

tails of the derivation of Eq. (9) and (11) can be found in Appendix A.
From the above analysis, a new formulation of Fisher's LDA called

perturbation LDA (P-LDA) is given by the following theorem.

Theorem 1. (P-LDA) Under the Gaussian distribution of within-class
data, perturbation LDA (P-LDA) finds a linear projection matrix W̃opt
such that:

W̃opt = argmax
W

trace(WTS̃bW)

trace(WTS̃wW)

= argmax
W

trace(WT(Ŝb + S�b )W)

trace(WT(Ŝw + S�w)W)
. (12)

Here, S�b and S�w are called between-class perturbation covariance ma-
trix and within-class perturbation covariance matrix, respectively.

Finally, we further interpret the effects of covariance matrices S̃w
and S̃b based on Eq. (12). SupposeW = (w1, . . . ,w�) in Eq. (12), where
wm(∈ �n) is a feature vector. Then for any W and random vectors
n= {nki }k=1,. . .,L

i=1,. . .,Nk
, we define:

fb(W,n) = 1
2

L∑
k=1

L∑
j=1

Nk
N

×
Nj

N

l∑
m=1

(wT
m(ũk − ũj))

2, (13)

fw(W,n) = 1
N

L∑
k=1

Nk∑
i=1

l∑
m=1

(wT
m(xki − ũk))

2. (14)

Noting that ũk = ûk + 1
Nk

∑Nk
i=1n

k
i is the random mean of class Ck, so

fb(W,n) is the average pairwise distance between random means of
different classes and fw(W,n) is the average distance between any
sample and the random mean of its corresponding class in a lower-
dimensional space. Define the following model:

W̃opt(n) = argmax
W

fb(W,n)/fw(W,n).

Given specific estimates n̂={n̂ki }k=1,. . .,L
i=1,. . .,Nk

, we then can get a projection

W̃opt(n̂). In practice, it would be hard to find the proper estimate

n̂
k
i that can accurately describe the difference between xki and its

expectation Ex′|Ck [x
′]. Rather than accurately estimating such n̂

k
i ,

we instead consider finding the projection by maximizing the ratio
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between the expectation values of fb(W,n) and fw(W,n) with respect
to n such that the uncertainty is considered to be over the domain
of n. That is:

W̃opt = argmax
W

En[fb(W,n)]/En[fw(W,n)]

= argmax
W

fb(W)/fw(W)

It can be verified that

fb(W) = En[fb(W,n)] = trace(WTS̃bW) (15)

fw(W) = En[fw(W,n)] = trace(WTS̃wW) (16)

So, it is exactly the optimization model formulated in Eq. (12). This
gives an more intuitive understanding of the effects of covariance
matrices S̃w and S̃b. Though in P-LDA Ŝw and Ŝb are perturbated
by S�w and S�b , respectively, however in Section 5 we will show S̃w
and S̃b will converge to the precise within-class and between-class
covariance matrices, respectively. This will show the rationality of
P-LDA, since the class empirical mean is almost its expectation value
when sample size is large enough and then the perturbation effect
could be ignored.

2.2. P-LDA under mixture of Gaussian distribution

This section extends Theorem 1 by altering the class distribu-
tion from single Gaussian to mixture of Gaussians [3]. Therefore, the
probability density function of a sample x in class Ck is:

p(x|Ck) =
Ik∑
i=1

P(i|k)N(x|uik,N
i
k), (17)

where uik is the expectation of x in the ith Gaussian component

(GC) N(x|uik,N
i
k) of class Ck, N

i
k is its covariance matrix and P(i|k) is

the prior probability of the ith GC of class Ck. Such density function
indicates that any sample x in class Ck mainly distributes in one
of the GC. Therefore, Theorem 1 under single Gaussian distribution
can be extended to learning perturbation in each GC. To do so, the
clusters within each class should be first determined such that data
in each cluster are approximately normally distributed. Then those
clusters are labeled as subclasses, respectively. Finally P-LDA is used
to learn the discriminant information of all those subclasses. It is
similar to the idea of Zhu and Martinez [26] who extended classical
Fisher's LDA to the mixture of Gaussian distribution case.

In details, suppose there are Ik GCs (clusters) in class Ck and Ni
k

out of all N samples are in the ith GC of class Ck. Let C
i
k denote the ith

GC of class Ck. If we denote xki,s as the sth sample of Cik, s= 1, . . . ,Ni
k,

then a perturbation random vector nki,s for x
k
i,s can be modeled, where

nki,s ∼ N(0,X
Cik

), X
Cik

∈ �n×n, so that x̃ki,s = xki,s + nki,s is a random

vector stochastically describes the expectation of subclass Cik, i.e.,

uik. Then P-LDA can be extended to the mixture of Gaussians case

by classifying the subclasses {Cik}
k=1,. . .,L
i=1,. . .,Ik

. Thus we get the following

theorem3 a straightforward extension of Theorem 1 and the proof
is omitted.

Theorem 2. Under the Gaussian mixture distribution of data within
each class, the projection matrix of perturbation LDA (P-LDA), W̃′′

opt ,
can be found as follows:

W̃′′
opt = argmax

W

trace(WTS̃′′
bW)

trace(WTS̃′′
wW)

= argmax
W

trace(WT(Ŝ′′
b + S′′�

b )W)

trace(WT(Ŝ′′
w + S′′�

w )W)
(18)

where

S̃′′
b = En′′ [

1
2

∑L

k=1

∑L

j=1

∑Ik
i=1

∑Ij
s=1

Ni
k
N ×

Ns
j
N (ũik − ũsj )(ũ

i
k − ũsj )

T] = Ŝ′′
b + S′′�

b ,

S′′�
b =

∑L

k=1

∑Ik
i=1

(N−Ni
k)

2

N3 X
Cik

+
∑L

k=1

∑Ik
i=1

Ni
k

N3

∑L

j=1

∑Ij
s=1,(j,s) � (k,i)

(Ns
jXCsj

),

Ŝ′′
b = 1

2

∑L

k=1

∑L

j=1

∑Ik
i=1

∑Ij
s=1

Ni
k
N ×

Ns
j
N (ûik − ûsj )(û

i
k − ûsj )

T,

S̃′′
w =

∑L

k=1

∑Ik
i=1

Ni
k
N S̃′′i

k = Ŝ′′
w + S′′�

w ,

S̃′′i
k = En′′k,i

[
∑Ni

k
s=1

1
Ni
k

(xki,s − ũik)(x
k
i,s − ũik)

T],

S′′�
w = 1

N

∑L

k=1

∑Ik
i=1
X

Cik
,

Ŝ′′
w = 1

N

∑L

k=1

∑Ik
i=1

∑Ni
k

s=1
(xki,s − ûik)(x

k
i,s − ûik)

T,

ûik = 1
Ni
k

∑Ni
k

s=1
xki,s, ũ

i
k = ûik + 1

Ni
k

∑Ni
k

s=1
nki,s, i = 1, . . . , Ik, k = 1, . . . , L,

n′′k,i = {nki,1, . . . ,nki,Ni
k
},n′′ = {n′′1,1, . . . ,n′′1,I1 , . . . ,n

′′
L,1, . . . ,n

′′
L,IL

}.

3. Estimation of perturbation covariance matrices

For implementation of P-LDA, we need to properly estimate two
perturbation covariance matrices S�b and S�w. Parameter estimation
is challenging, since it is always ill-posed [3,23] due to limited sam-
ple size and the curse of high dimensionality. A more robust and
tractable way to overcome this problem is to perform some regu-
larized estimation. It is indeed the motivation here. A method will
be suggested to implement P-LDA with parameter estimation in an
entire PCA subspace without discarding any nonzero principal com-
ponent. Unlike the covariance matrix estimation on sample data, we
will introduce an indirect way for estimation of the covariance ma-
trices of perturbation random vectors, since the observation values
of the perturbation random vectors are hard to be found directly.

For derivation, parameter estimation would focus on P-LDA un-
der single Gaussian distribution, and it could be easily generalized
to the Gaussian mixture distribution case by Theorem 2. This section

3 The designs of S̃′′
b and S̃′′

w in the criterion are not restricted to the presented
forms. The goal here is just to present a way how to generalize the analysis under
single Gaussian case.
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is divided into two parts. The first part suggests regularized models
for estimation of the parameters, and then a method for parameter
estimation is presented in the second part.

3.1. Simplified models for regularized estimation

In this paper, we restrict our attention to the data that are not
much heteroscedastic, i.e., class covariance matrices are approxi-
mately equal4 (or not differ too much). It is also in line with one of
the conditions when Fisher criterion is optimal [3]. Under this con-
dition, we consider the case when perturbation covariance matrices
of all classes are approximately equal. Therefore, the perturbation
covariance matrices can be replaced by their average, a pooled per-
turbation covariance matrix defined in Eq. (19). We obtain Lemma
1 with its proof provided in Appendix B.

Lemma 1. If the covariance matrices of all perturbation random vectors
are replaced by their average, i.e., a pooled perturbation covariance
matrix as follows

XC1 =XC2 = · · · =XCL =X, (19)

then S�b and S�w can be rewritten as:

S�b = L − 1
N
X, S�w = L

N
X. (20)

Note that when class covariance matrices of data do not differ too
much, utilizing pooled covariance matrix to replace individual co-
variance matrix has been widely used and experimentally suggested
to attenuate the ill-posed estimation in many existing algorithms
[1,23,24,27–30].

To develop a more simplified model in the entire principal com-
ponent space, we perform principal component analysis [31] in X
without discarding any nonzero principal component. In practice, the
principal components can be acquired from the eigenvectors of the
total-class covariance matrix Ŝt(=Ŝw+Ŝb). When the data dimension
is much larger than the total sample size, the rank of Ŝt is at most
N−1 [5,32], i.e., rank(Ŝt)�N− 1. In general, rank(Ŝt) is always equal
to N−1. For convenience of analysis, we assume rank(Ŝt) ≈ N − 1.
It also implies that no information is lost for Fisher's LDA, since all
positive principal components are retained [33].

Suppose given the decorrelated data space X, the entire PCA
space of dimension n = N−1. Based on Eq. (6) and Lemma 1, for any
given input sample x = (x1, . . . ,xn)T ∈ X, its corresponding perturba-
tion random vector is nx = (�1x , . . . ,�

n
x)

T ∈ �n, where nx ∼ N(0,X).
Since X is decorrelated, the coefficients x1, . . . ,xn are approximately
uncorrelated. Note that the perturbation variables �1x , . . . ,�

n
x are ap-

parently only correlated to their corresponding uncorrelated coef-
ficients x1, . . . ,xn, respectively. Therefore it is able to model X by
assuming these random variables �1x , . . . ,�

n
x are uncorrelated each

other.5 Based on this principle, X can be modeled by

X=K, K= diag(�2
1, . . . ,�

2
n), (21)

where �2
i is the variance of �ix . Furthermore, if the average vari-

ance �2 = 1
n
∑n

i=1�
2
i is used to replace each individual variance �2

i ,

4 Discussing variants of Fisher's LDA under unequal class covariance matrices is
not the scope of this paper. It is another research topic [39].

5 It might be in theory a suboptimal strategy. However this assumption is prac-
tically useful and reasonable to alleviate the ill-posed estimation problem for high-
dimensional data by reducing the number of estimated parameters. In Appendix-D,
we show its practical rationality by demonstrating an experimental verification for
this assumption on face data sets used in the experiment.

i = 1, . . . ,n, a special model is then acquired by

X= �2I, � � 0, I is the n × n identity matrix. (22)

From the statistical point of view, the above simplified models could
be interpreted as regularized estimations [25] of X on the pertur-
bation random vectors. It is known that when the dimensionality of
data is high, the estimation would become ill-posed (poorly posed) if
the number of parameters to be estimated is larger than (compara-
ble to) the number of samples [3,23]. Moreover, estimation of X re-
lates to the information of some expectation value, which, however,
is hard to be specified in practice. Hence, regularized estimation of
X would be preferred to alleviate the ill-posed problem and obtain
a stable estimate in applications. To this end, estimation based on
Eq. (22) may be more stable than estimating K, since Eq. (22) can
apparently reduce the number of estimated parameters. This would
be demonstrated and justified by synthetic data in the experiment.

Finally, this simplified perturbation model is still in line with
the perturbation LDA model, since the perturbation matricesXCk

as
well as their average X need not to be the accurate expected class
covariance matrices but only need to follow the perturbation model
given below Eq. (5).

3.2. Estimating parameters

An important issue left is to estimate the variance parameters
�2
1, . . . ,�

2
n and �2. The idea is straightforward that the parameters

are learned from the generated observation values of perturbation
random vectors using maximum likelihood. However, an indirect
way is desirable, since it is impossible to find the realizations of
perturbation random vectors directly. Hence, our idea turns to find
some sums of perturbation random vectors based on the perturbation
model and then generate their realizations for estimation.

3.2.1. Inferring the sum of perturbation random vectors
Suppose Nk, the number of training samples for class Ck, is larger

than 1. Define the average of observed samples in class Ck by ex-
cluding xkj as

û−j
k = 1

Nk − 1

Nk∑
i=1,i � j

xki , j = 1, . . . ,Nk. (23)

It is actually feasible to treat û−j
k as another empirical mean of class

Ck. Then, another random mean of class Ck is able to be formu-
lated by:

ũ−j
k = 1

Nk − 1

Nk∑
i=1,i � j

x̃ki = û−j
k + 1

Nk − 1

Nk∑
i=1,i � j

nki . (24)

Comparing with ũk the random mean of class Ck in terms of

Eq. (8), based on the perturbation model, we know ũk and ũ−j
k

can both stochastically approximate to Ex′|Ck [x
′] by the following

specific estimates, respectively:

ˆ̃uk = 1
Nk

Nk∑
i=1

ˆ̃xki = Ex′|Ck [x
′], (25)

ˆ̃u−j
k = 1

Nk − 1

Nk∑
i=1,i � j

ˆ̃xki = Ex′|Ck [x
′], (26)

where ˆ̃xki = xki + n̂ki , n̂
k
i is an estimate of nki such that xki + n̂ki =

Ex′|Ck [x
′] based on the perturbation model. Hence, we can have the
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Fig. 1. Geometric interpretation: � = xk
j1

− xk
j2

= n̂kj2 − n̂kj1 .

relation below:

ˆ̃uk = ˆ̃u−j
k . (27)

A geometric interpretation of Eq. (27) can be provided by Fig. 1. Note

that ˆ̃uk = ˆ̃u−j1
k = ˆ̃u−j2

k , j1 � j2. It therefore yields xkj1
−xkj2

= n̂kj2 − n̂kj1 .

According to Eq. (7), this is obviously true because ˆ̃xki = xki + n̂ki =
Ex′|Ck [x

′], i = 1, . . . ,Nk.
Now return back to the methodology. Based on Eq. (27) we then

have

1
Nk(Nk − 1)

Nk∑
i=1,i � j

n̂
k
i − 1

Nk
n̂
k
j = ûk − û−j

k . (28)

Define a new random vector as:

n−k
j = 1

Nk(Nk − 1)

⎛
⎝

Nk∑
i=1,i � j

nki

⎞
⎠ − 1

Nk
nkj . (29)

Based on Lemma 1, we know that the pooled perturbation covariance
matrix to be estimated for all {nkj } is X. It is therefore easy to verify
the following result:

n−k
j ∼ N

(
0,

1
Nk(Nk − 1)

X
)
. (30)

Actually n−k
j is just the sum of perturbation random vectors we aim

to find. Moreover, Eq. (28) could provide an estimate of n−k
j by:

n̂
−k
j = ûk − û−j

k . (31)

It therefore avoids the difficulty in finding the observation values n̂
k
i

directly. Moreover it is known that {n̂−k
j }j=1,. . .,Nk

follow the same

distribution within class Ck, i.e., N(0,
1

Nk(Nk−1)X), so it is feasible to

generate Nk observation values {n̂−k
1 , n̂

−k
2 , . . . , n̂

−k
Nk

} from this distribu-
tion. In fact, the empirical mean of the observation values coincides
with their expectation with respect to the distribution because of
the following equality:

Nk∑
j=1

n̂
−k
j =

Nk∑
j=1

(ûk − û−j
k ) = 0. (32)

3.2.2. Inferring estimates of �2
1, . . . ,�

2
n and �2

The estimates of �2
1, . . . ,�

2
n and �2 are given below based on

Eq. (30) and the generated {n̂−k
j }k=1,. . .,L

j=1,. . .,Nk
. First we denote

û
�j
k = ûk − û−j

k = (û
�j
k (1), . . . , û

�j
k (n))T. (33)

Then we define �̂2(k, j) satisfying

1
Nk(Nk − 1)

�̂2
i (k, j) = (û

�j
k (i))2. (34)

In the uncorrelated space, X is modeled by X=K= diag(�2
1, . . . ,�

2
n)

for approximation, so �2
1, . . . ,�

2
n are estimated as �̂2

1, . . . , �̂
2
n by using

maximum likelihood as follows:

�̂2
i = 1

N

L∑
k=1

Nk∑
j=1

�̂2
i (k, j), i = 1, . . . ,n. (35)

As suggested by Eq. (22), an average variance of �2
1, . . . ,�

2
n is used,

so the estimate �̂2 of �2 is obtained below:

�̂2 = 1
n

n∑
i=1

�̂2
i . (36)

Extensive experiments in Section 4 will justify this estimation.

4. Experimental results

The proposed P-LDA algorithmwill be evaluated by both synthetic
data and face image data. Face images are typical biometric data.
Always, the number of available face training samples for each class
is very small while the data dimensionality is very high.

This section is divided into three parts. The first and second parts
report the experiment results on synthetic data and face data, respec-
tively. In the third part, we verify our parameter estimation strat-
egy on high-dimensional face image data. Through the experiments,
two popular classifiers, namely nearest class mean classifier (NCMC)
and nearest neighbor classifier (NNC) are selected to evaluate the
algorithms. These two kinds of classifiers have been widely used for
Fisher's LDA in existing publications. All programs are implemented
using Matlab and run on PC with Intel Pentium (R) D CPU 3.40GHz
processor.

4.1. Synthetic data

This section is to justify the performances of the proposed P-LDA
under Theorems 1 and 2, and show the effects of Eqs. (21) and (22)
in modeling P-LDA. Three types of synthetic data following single
Gaussian and mixture of Gaussian distributions in each class, respec-
tively are generated in a three-dimensional space. As shown in Tables
1 and 2, for single Gaussian distribution, we consider two cases, in
which the covariance matrices are (i) identity covariance matrices
multiplied by a constant 0.25 and (ii) equal diagonal covariance ma-
trices, respectively. For each class, 100 samples are generated. For
mixture of Gaussian distribution, each class consists of three GC with

Table 1
Overview of the synthetic data (single Gaussian distribution)

Class Id Mean Covariance matrix I Covariance matrix II

Class 1 (−0.3,−0.5,1.2)T ⎛
⎝0.25 0 0

0 0.25 0
0 0 0.25

⎞
⎠

⎛
⎝0.2192 0 0

0 0.0027 0
0 0 0.0308

⎞
⎠Class 2 (−0.1,1.2,1.5)T

Class 3 (0.9,−0.7,1.1)T
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Table 2
Overview of the synthetic data (Gaussian mixture distribution)

Class Id Mean of first GC Mean of second GC Mean of third GC Covariance matrix

Class 1 (1,−0.5,−1)T (0.2,1,0.6)T (−0.3,−0.5,1.2)T ⎛
⎝0.0298 0 0

0 0.6593 0
0 0 0.5527

⎞
⎠Class 2 (−1,−0.5,−1)T (−0.1,1.2,1.5)T (1,−1.9,2)T

Class 3 (0.9,−0.7,1.1)T (−1.5,0.6,−0.6)T (1,1.5,1.2)T
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Fig. 2. Illustration of synthetic data: (a) is with equal identity covariance matrices multiplied by 0.25, (b) is with equal diagonal covariance matrices and (c) is with Gaussian
mixture distribution.

Table 3
Average accuracy results (equal identity covariance matrices)

Method Classifier: NCMC Classifier: NNC

p = 2 (%) p = 5 (%) p = 10 (%) p = 2 (%) p = 5 (%) p = 10 (%)

P-LDA, Eq. (22) 86.735 90 92.556 85.884 88.772 88.741
P-LDA, Eq. (21) 85.408 90 92.481 83.81 88.491 88.519
Classical Fisher's LDA 82.721 89.439 92.519 81.19 88.281 88.148

Table 4
Average accuracy results (equal diagonal covariance matrices)

Method Classifier: NCMC Classifier: NNC

p = 2 (%) p = 5 (%) p = 10 (%) p = 2 (%) p = 5 (%) p = 10 (%)

P-LDA, Eq. (22) 90.51 93.404 93.481 91.19 93.439 95.296
P-LDA, Eq. (21) 88.469 93.123 93.444 89.354 92.912 95.37
Classical Fisher's LDA 86.803 93.158 93.444 87.993 92.947 95.259

Table 5
Average accuracy results (Gaussian mixture distribution)

Method Classifier: NCMC Classifier: NNC

p = 6 (2) (%) p = 9 (3) (%) p = 18 (6) (%) p = 60 (20) (%) p = 6 (2) (%) p = 9 (3) (%) p = 18 (6) (%) p = 60 (20) (%)

P-LDA (GMM), Eq. (22) 71.257 75.586 77.712 78.556 71.082 72.913 78.725 81.167
P-LDA (GMM), Eq. (21) 68.275 73.874 76.667 78.333 68.363 71.502 78.007 81
Classical Fisher's LDA (GMM) 67.924 73.784 76.601 78.333 68.216 71.291 78.007 81

equal covariance matrices. For each GC, there are 40 samples ran-
domly generated and there are 120 samples for each class. Informa-
tion about the synthetic data is tabulated in Tables 1 and 2, and the
data distributions are illustrated in Fig. 2.

In Tables 3–5, the accuracies with respect to different numbers
of training samples for each class are shown, where p indicates the
number of training samples for each class. In the mixture of Gaussian
distribution case, the bracketed number is the number of training
samples from one GC of each class (e.g. “p = 9 (3)” means every three
samples out of nine training samples of each class are from one of
its GCs). For each synthetic data set, we repeat the experiments ten
times and the average accuracies are obtained. Since finding GC is

not our focus, we assume that those GCs are known for implemen-
tation of P-LDA based on Theorem 2. In addition, “P-LDA (GMM),
Eq. (22)” means P-LDA is implemented under Gaussian mixture
model (GMM) based on Theorem 2 with parameter estimated by
Eq. (22); “LDA (GMM)” means classical Fisher's LDA is implemented
using a similar scheme to Eq. (18) without the perturbation fac-
tors. Note that no singular problem in Fisher's LDA happens in the
experiment on synthetic data.

In the single Gaussian distribution case, we find that P-LDA using
Eq. (22) outperforms P-LDA using Eq. (21) and classical Fisher's LDA,
especially when only two samples for each class are used for train-
ing. When the number of training samples for each class increases,
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Fig. 3. Some images from the subset of FERET.

Fig. 4. Some images of one subject from the subset of CMU PIE.

Fig. 5. Images of one subject from the subset of AR.

P-LDA will converge to classical Fisher's LDA, as the class means will
be more accurately estimated when more samples are available. In
Section 5.1, theoretical analysis would confirm this scenario. Similar
results are obtained in the mixture of Gaussian case. These results
show that when the number of training samples is small, P-LDA us-
ing Eq. (22) can give a more stable and better estimate of the pa-
rameter and therefore provide better results.

4.2. Face image data

Fisher's LDA based algorithms are popularly used for dimension
reduction of high-dimensional data, especially the face images in
biometric learning. In this section, the proposed method is applied
to face recognition. Since face images are of high dimensionality and
only limited samples are available for each person, we implement P-
LDA based on Theorem 1 and Eq. (22) with its parameter estimated
by Eq. (36).

Three popular face databases, namely FERET [34] database, CMU
PIE [35] database and AR database [32], are selected for evaluation.
For FERET, a subset consists of 255 persons with four faces for each
individual is established. All images are extracted from four different
sets, namely Fa, Fb, Fc and the duplicate. Face images in this FERET
subset are undergoing illumination variation, age variation and some
slight expression variation. For CMU PIE, a subset is established by
selecting face images under all illumination conditions with flash in
door [35] from the frontal pose, 1/4 left/right profile and below/above
in frontal view. There are totally 7140 images and 105 face images
for each person in this subset. For AR database, a subset is established
by selecting 119 persons, where there are eight images for each
person. Face images in this subset are undergoing notable expression
variations. All face images are aligned according to their coordinates
of the eyes and face centers, respectively. Each image is linearly
stretched to the full range of [0,1] and its size is simply normalized
to 40×50. Some images are illustrated in Figs. 3–5.

In order to evaluate the proposed model, P-LDA is compared with
some Fisher's LDA-based methods including Fisherface [5], nullspace
LDA (N-LDA) [8], Direct LDA [14] and regularized LDA with CV

Table 6
Average recognition accuracy on subset of FERET (p = 3)

Method Classifier: NCMC (%) Classifier: NNC (%)

P-LDA 87.06 89.29
R-LDA (CV) [13] 86.43 87.96
N-LDA [8] 83.49 83.49
Direct LDA [14] 80.71 78.98
Fisherface [5] 77.25 71.22

Table 7
Average recognition accuracy on subset of CMU PIE

Method Classifier: NCMC Classifier: NNC

p = 5 (%) p = 10 (%) p = 5 (%) p = 10 (%)

P-LDA 78.98 89.94 81.82 93.26
R-LDA (CV) [13] 78.44 89.91 80.43 93.29
N-LDA [8] 74.45 84.98 74.45 84.98
Direct LDA [14] 73.68 85.88 72.73 88.12
Fisherface [5] 72.99 85.49 67.26 82.17

Table 8
Average recognition accuracy on subset of AR

Method Classifier: NCMC Classifier: NNC

p = 3 (%) p = 6 (%) p = 3 (%) p = 6 (%)

P-LDA 92.34 98.28 93.13 98.91
R-LDA (CV) [13] 92.40 98.32 92.81 98.74
N-LDA [8] 91.36 96.43 91.36 96.43
Direct LDA [14] 88.77 97.14 88.42 97.65
Fisherface [5] 86.57 94.66 85.50 94.50

CR-LDA (CV) [13], which are popular used for solving the small
sample size problem in Fisher's LDA for face recognition.

On each data set, the experiments are repeated 10 times. For each
time, p images for each person are randomly selected for training
and the rest are for testing. In the tables, the value of p is indicated.
Finally, the average recognition accuracies are obtained.

The results are tabulated in Tables 6–8. We see that P-LDA
achieves at least 6% and 3% improvements over Direct LDA and
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Table 9
Expense of R-LDA (CV)

Method FERET, p = 3 CMU PIE, p = 5 CMU PIE, p = 10 AR, p = 3 AR, p = 6

Time/run (NNC/NCMC) 19∼20 hours ∼1 hours ∼7.5 hours ∼1.2 hours 8.5∼9 hours

Table 10
Average recognition accuracy of P-LDA on FERET data set: “P-LDA with manually selected optimal parameter” vs. “P-LDA with parameter estimation”

Method Classifier: NCMC Classifier: NNC

Rank 1 (%) Rank 2 (%) Rank 3 (%) Rank 1 (%) Rank 2 (%) Rank 3 (%)

P-LDA with manually selected optimal parameter 87.25 90.16 91.80 89.33 91.29 92.12
P-LDA with parameter estimation 87.06 90.35 91.88 89.29 91.25 92.08

Table 11
Average recognition accuracy of P-LDA on CMU PIE data set: “P-LDA with manually selected optimal parameter” vs. “P-LDA with parameter estimation”

Method Classifier: NCMC Classifier: NNC

Rank 1 (%) Rank 2 (%) Rank 3 (%) Rank 1 (%) Rank 2 (%) Rank 3 (%)

P-LDA with manually selected optimal parameter 79.02 83.93 86.44 81.95 85.45 87.33
P-LDA with parameter estimation 78.98 83.89 86.40 81.82 85.12 86.97

N-LDA, respectively, on FERET database, and achieves more than 4%
improvement over Fisherface, Direct LDA and N-LDA on CMU PIE
database. On AR subset, P-LDA also gets significant improvements
over Fisherface and Direct LDA and gets more than 1% improvement
over N-LDA. Note that no matter using NNC or NCMC, the results of
N-LDA are the same, because N-LDA will map all training samples
of the same class into the corresponding class empirical mean in
the reduce space [7].

In addition, a related method R-LDA with CV parameter6 is also
conducted for comparison. On FERET, P-LDA gets more than one per-
cent improvement when using NNC and gets about 0.6% improve-
ment when using NCMC. On CMU, when p = 5, P-LDA gets 1.4%
improvement over R-LDA using NNC and 0.5% improvement using
NCMC; when p = 10, P-LDA and R-LDA gets almost the same perfor-
mances. On AR subset, the performances of P-LDA and R-LDA are also
similar. Though R-LDA gets similar performance to P-LDA in some
cases, however, as reported in Table 9, R-LDA is extremely computa-
tionally expensive due to the CV process. In our experiments, P-LDA
can finish in much less than one minute for each run, while R-LDA
using CV technique takes more than one hour. More comparison be-
tween P-LDA and R-LDA could be found in Section 5.2. It will be
analyzed later that R-LDA can be seen as a semi-perturbation LDA,
which gives a novel understanding to R-LDA. It would also be ex-
plored that the proposed perturbation model actually can suggest an
effective and efficient way for the regularized parameter estimation
in R-LDA. Therefore, P-LDA is much more efficient and still performs
better.

Although Fisherface, Direct LDA, N-LDA and R-LDA are also pro-
posed for extraction of discriminant features in the undersampled
case, they mainly address the singularity problem of the within-class
matrix, while P-LDA addresses the perturbation problem in Fisher
criterion due to the difference between a class empirical mean and
its expectation value. Noting that P-LDA using model (21) and (22)
can also solve the singularity problem, this suggests alleviating the

6 On FERET, three-fold CV is performed; On CMU, five-fold CV is performed
when p = 5 and 10-fold CV is performed when p = 10; On AR, three-fold CV is
performed when p = 3 and six-fold CV is performed when p = 6. The candidates
of the regularization parameter � are sampled from 0.005 to 1 with step 0.005. In
the experiment, the three-fold CV is repeated ten times on FERET. On CMU, the
five-fold and 10-fold CV are repeated six and three times, respectively; on AR, the
three-fold and six-fold CV are repeated 10 and 5 times, respectively. So, each CV
parameter is determined via its corresponding 30 round CV classification.

perturbation problem is useful to further enhance the Fisher crite-
rion.

In addition, the above results as well as the results on synthetic
data sets also indicate that when the number of training samples is
large, the differences between P-LDA and the compared LDA based
algorithms become small. This is true according to the perturbation
analysis given in this paper, since the estimates of the class means
will be more accurate when training samples for each class become
more sufficient. Noting also that the difference between P-LDA and
R-LDA is small when p is large on CMU and AR, it implies the im-
pact of the perturbation model in estimation of the between-class
covariance information will become minor as the number of training
samples increases. In Section 5.1, we would give more theoretical
analysis.

4.3. Parameter verification

In the last two subsections, we show that P-LDA using Eq. (22)
gives good results on both synthetic and face image data, particularly
when the number of training samples is small. In this section, we will
have extensive statistics of the performances of P-LDA on FERET and
CMU PIE if the parameter �2 is set to be other values.We compare the
proposed P-LDA with parameter estimation with the best scenario
selected manually.

The detailed procedure of the experiments is listed as follows.
Step (1): Prior values of �2 are extensively sampled. We let �2 =

�
1−� , 0 <� <1, so that �2 ∈ (0,+ ∞ ). Then 1999 points are sampled

for � between 0.0005 and 0.9995 with interval 0.0005. Finally, 1999
sampled values of �2 are obtained.

Step (2): Evaluate the performance of P-LDA with respect to each
sampled value of �2. We call each P-LDA with respect to a sampled
value of �2 a model.

Step (3): We compare the P-LDA model with parameter �2 esti-
mated by the methodology suggested in Section 3.2 against the best
one among all models of P-LDA got at step (2).

The average recognition rate of each model of P-LDA is obtained
by using the same procedure run on FERET and CMU PIE databases.
We consider the case when p, the number of training samples for
each class, is equal to three on FERET and equal to five on CMU.
For clear description, the P-LDA model with parameter estimated
using the methodology suggested in Section 3.2 is called “P-LDA
with parameter estimation”, whereas we call the P-LDA model with
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Fig. 6. “P-LDA with manually selected optimal parameter” vs. “P-LDA with parameter estimation” on FERET.
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Fig. 7. “P-LDA with manually selected optimal parameter” vs. “P-LDA with parameter estimation” on CMU.
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Fig. 8. Classifier: NCMC. (a) The performance of P-LDA as a function of �2 (x-axis) on FERET, where the horizontal axis is scaled logarithmically and (b) the enlarged part of
(a) near the peak of the curve where �2 is small.
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Fig. 9. Classifier: NNC. (a) The performance of P-LDA as a function of �2 (x-axis) on FERET, where the horizontal axis is scaled logarithmically; (b) the enlarged part of (a)
near the peak of the curve where �2 is small.
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Fig. 10. Classifier: NCMC. (a) The performance of P-LDA as a function of �2 (x-axis) on CMU PIE, where the horizontal axis is scaled logarithmically and (b) the enlarged
part of (a) near the peak of the curve where �2 is small.
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Fig. 11. Classifier: NNC. (a) The performance of P-LDA as a function of �2 (x-axis) on CMU PIE, where the horizontal axis is scaled logarithmically; (b) the enlarged part of
(a) near the peak of the curve where �2 is small.

respect to the best �2 selected from the 1999 sampled values “P-LDA
with manually selected optimal parameter”. Comparison results of the
rank 1–3 accuracies are reported in Tables 10 and 11. Figs. 6 and 7
show the ranking accuracies of these two models. It shows that the
difference of rank 1 accuracies between two models is less than 0.2%
in general.

To evaluate the sensitivity of P-LDA on �2, the performance of
P-LDA as a function of �2 is shown from Fig. 8 to Fig. 9 using NCMC
and NNC classifiers, respectively. The overall sensitivity of P-LDA on
�2 for FERET data set is described in Fig. 8(a), where the horizon-
tal axis is on a logarithmic scale. Fig. 8(b) shows the enlarged part
of Fig. 8(a) near the peak of the curve where �2 is small. Similarly,
Figs. 10 and 11 show the result on CMU PIE. They show it may be
hard to obtain an optimal estimate of �2, but interestingly it is shown
in Tables 10 and 11 and Figs. 6 and 7 that the suggested methodol-
ogy in Section 3.2 works well. It is apparent that selecting the best
parameter manually using an extensive search would be time con-
suming, while P-LDA using the proposed methodology for parame-
ter estimation costs much less than one minute. So the suggested
methodology is computationally efficient.

5. Discussion

As shown in the experiment, the number of training samples for
each class is really an impact of the performance of P-LDA. In this
section, we explore some theoretical properties of P-LDA and the

convergence of P-LDA will be shown. We also discuss P-LDA with
some related methods.

5.1. Admissible condition of P-LDA

Suppose L is fixed. Since the entries of all perturbation covariance
matrices are bounded,7 it is easy to obtain S�b =O( 1N ) and S�w=O( 1N ),

i.e., the perturbation factor S�b → O, S�w → O when 1
N → 0, where

O is the zero matrix. Here, for any matrix A = A(�) of which each
nonzero entry depends on �, we say A = O(�) if the degree8 of A→O
is comparable to the degree of �→0.

However, if L is a variant, i.e., the increase of the sam-
ple size may be partly due to the increase of the amount of
classes, then S�b � O( 1N ) and S�w � O( 1N ). Suppose any covariance
matrix XCk

is lower (upper) bounded by Xlower if and only if
Xlower(i, j)�XCk

(i, j)(XCk
(i, j)�Xupper(i, j)) for any (i,j). Then the

following lemma gives an essential view, and its proof is given in
Appendix C.

Lemma 2. If all nonzero perturbation covariance matrices XCk
,

k = 1, . . . ,L, are lower bounded by Xlower and upper bounded by

7 We say a matrix is bounded if and only if all entries of this matrix are bounded.
8 The degree of A = A(�)→O depending on � is defined to be the smallest degree

for A(i,j)→0 depending on �, where A(i,j) is any nonzero entry of A. For example,
A = [� �2], then the degree of A→O is 1 and A = O(�).
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Table 12
Average recognition accuracy of R-LDA on FERET data set: “R-LDA with manually selected optimal parameter” vs. “R-LDA using perturbation model” (p = 3)

Method Classifier: NCMC Classifier: NNC

Rank 1 (%) Rank 2 (%) Rank 3 (%) Rank 1 (%) Rank 2 (%) Rank 3 (%)

R-LDA with manually selected optimal parameter 86.78 90.24 91.69 88.27 90.16 91.25
R-LDA (CV) 86.43 89.96 91.49 87.96 90.26 91.33
R-LDA using perturbation model 86.47 90.00 91.69 88.08 90.20 91.49

Table 13
Average recognition accuracy of R-LDA on CMU PIE data set: “R-LDA with manually selected optimal parameter” vs. “R-LDA using perturbation model” (p = 5)

Method Classifier: NCMC Classifier: NNC

Rank 1 (%) Rank 2 (%) Rank 3 (%) Rank 1 (%) Rank 2 (%) Rank 3 (%)

R-LDA with manually selected optimal parameter 78.60 83.42 85.88 80.50 84.08 85.98
R-LDA (CV) 78.44 83.27 85.72 80.43 84.05 85.94
R-LDA using perturbation model 78.24 83.51 86.13 80.18 84.12 86.14

Xupper , where Xlower and Xupper are independent of L and N, then it

is true that S�b = O( LN ) and S�w = O( LN ).

The condition of Lemma 2 is valid in practice, because the data
space is always compact and moreover it is always a Euclidean space
of finite dimension. In particular, from Eq. (20), it could be found
that the perturbation matrices depend on the average sample size
for each class. Based on Theorem 1, we finally have the following
proposition.

Proposition 1. (Admissible condition of P-LDA) P-LDA depends on
the average number of samples for each class. That is S�b = O( LN ) and

S�w = O( LN ), i.e., S�b → O, S�w → O when L
N → 0.

It is intuitive that some estimated class means are unstable
when the average sample size for each class is small.9 This also
shows what P-LDA targets for is different from the singularity
problem in Fisher's LDA, which will be solved if the total sam-
ple size is large enough. Moreover the experiments on synthetic
data in Section 4.1 could provide the support to Proposition 1, as
the difference between P-LDA and classical Fisher's LDA become
smaller when the average sample size for each class becomes
larger.

5.2. Discussion with related approaches

5.2.1. P-LDA vs. R-LDA
Regularized LDA (R-LDA) is always modeled by the following cri-

terion:

Wopt = argmax
W

trace(WTŜbW)

trace(WT(Ŝw + �I)W)
, � >0. (37)

Sometimes, a positive diagonal matrix is used to replace �I in the
above equality.

Generally, the formulation of P-LDA in Section 2 is different from
the form of R-LDA. Although the formulation of R-LDA looks similar

9 With suitable training samples, the class means may be well estimated, but
selection of training samples is beyond the scope of this paper.

to the simplified model of P-LDA in Section 3, the motivation and
objective are totally different. Details are discussed as follows.

1. P-LDA is proposed by learning the difference between a class em-
pirical mean and its corresponding expectation value as well as its
impact to Fisher criterion, whereas R-LDA is originally proposed
for the singularity problem [9,10,13] because Ŝw + �I is positive
with � > 0.

2. In P-LDA, the effects of S�b and S�w are known based on the pertur-
bation analysis in theory. In contrast, R-LDA still does not clearly
tell how �I has effect on Ŝw in a pattern recognition sense. Al-
though Zhang et al. [12] presented a connection between the reg-
ularization network algorithms and R-LDA from a least square
view, it still lacks interpretation how regularization can has effect
on within-class and between-class covariance matrices simulta-
neously and also lacks parameter estimation.

3. P-LDA tells the convergence of perturbation factors by Proposi-
tion 1. However, R-LDA does not tell it in theory. The singularity
problem R-LDA addresses is in nature an implementation prob-
lem and it would be solved when the total sample size is suffi-
ciently large, while it does not imply the average sample size for
each class is also sufficiently large in this situation.

4. P-LDA is developed when data of each class follow either single
Gaussian distribution or Gaussian mixture distribution, but R-LDA
has not considered the effect of data distribution.

5. In P-LDA, scheme for parameter estimation is an intrinsic method-
ology derived from the perturbation model itself. For R-LDA, a
separated algorithm is required, such as the CV method, which
is so far popular. However, CV seriously lies on a discrete set of
candidate parameters. In general, CV is always time consuming.

Interestingly, if the proposed perturbation model is imposed on R-
LDA, i.e., R-LDA is treated as a semi-perturbation Fisher's LDA, where
only within-class perturbation S�w is considered and the factor S�b is
ignored, then the methodology in Section 3 may provide an inter-
pretation how the term �I has its effect in the entire PCA space. This
novel view to R-LDA can give the advantage in applying the pro-
posed perturbation model for an efficient and effective estimation of
the regularized parameter � in R-LDA. To justify this, similar com-
parisons on FERET and CMU subsets between “R-LDA with manually
selected optimal parameter” and “R-LDA using perturbation model”
are performed in Tables 12 and 13, where “R-LDA with manually se-
lected optimal parameter” is implemented similarly to “P-LDA with
manually selected optimal parameter” as demonstrated in Section
4.3. For reference, the results of R-LDA (CV) are also shown. We
find that “R-LDA using perturbation model” extremely approximates
to “R-LDA with manually selected optimal parameter” and achieves
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almost the same performances as R-LDA (CV). This indicates that the
proposed perturbation model could also be an alternative, practical
and efficient way for parameter estimation in R-LDA.

5.2.2. Other comparisons
Recently, a related work called median LDA has been proposed

by Yang et al. [36], in which they addressed the estimation of the
class mean in Fisher's LDA by using median mean. However, the
analysis of the perturbation impact of the estimation of class mean
on two covariance matrices in Fisher criterion is not systematically
and theoretically presented.

Another related work is known as the concentration inequality
(learning) in learning theory [37,38], such as Hoeffding's inequality
that describes the difference between empirical mean and its ex-
pectation. But only statistical bound is reported. The bound may be
loose and the effect of such difference has not been integrated into
the discriminate learning algorithm such as Fisher's LDA. In contrast,
in P-LDA, a random mean is modeled to stochastically characterize
the expectation value of each class. P-LDA has been developed by in-
tegrating the perturbation between the empirical mean of each class
and its expectation value into the learning process.

6. Conclusion

This paper addresses a fundamental research issue in Fisher
criterion—the class empirical mean is equal to its expectation.
This is one of the assumptions made in deriving the Fisher's LDA
formulation for practical computation. However, in many pattern
recognition applications, especially the biometric learning, this
assumption may not be true. In view of this, we introduce pertur-
bation random vectors to learn the effect of the difference between
the class empirical mean and its expectation in Fisher criterion, and
then a new formulation, namely perturbation LDA (P-LDA) is de-
veloped. The perturbation analysis has finally yielded new forms of
within-class and between-class covariance matrices by integrating
some perturbation factors in Fisher criterion. A complete theory and
mathematical derivation of P-LDA under single Gaussian distribu-
tion and mixture of Gaussian distribution of data in each class are
developed, respectively. For practical implementation of the pro-
posed P-LDA method, a technique for estimation of the covariance
matrices of perturbation random vectors is also developed. More-
over, the proposed perturbation model also gives a novel view to
regularized LDA (R-LDA), resulting in an efficient and effective esti-
mation of regularized parameter. Experiments have been performed
to evaluate P-LDA and do comparison with recently developed pop-
ular Fisher's LDA-based algorithms for solving the small sample size
problem. The results show that the proposed P-LDA algorithm is
efficient and obtains better performances. In future, the perturba-
tion model in Fisher's LDA may be further developed. In this paper,
P-LDA relies on Gaussian assumption of data distribution in each
class. Though P-LDA under mixture of Gaussians is also developed,
it is currently required that the Gaussian components (GC) are first
found, which is still an active research issue in pattern recognition.
Therefore, non-parametric technique may be considered for its
future development.
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Appendix A. Derivation of Eqs. (9) and (11)
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Fig. 12. F(�) (y-axis) vs. � (x-axis) on subset of FERET (p = 3).
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Appendix B. Proof of Lemma 1

Proof. S�w is true obviously and the proof is for S�b here. Since∑L
s=1,s � kNs = N − Nk, k = 1, . . . ,L, then:

S�b =
L∑

k=1

(N − Nk)
2

N3
X+

L∑
k=1

Nk
N3

L∑
s=1,s � k

(NsX)

= L − 1
N
X. �

Appendix C. Proof of Lemma 2

Proof. For convenience, we denote Xlower �XCk
(XCk

�Xupper)
which means XCk

is lower (upper) bounded by Xlower(Xupper).
Similarly to the proof in Lemma 1, it is easy to have the following
relations:

L − 1
N
Xlower �S�b �

L − 1
N
Xupper ,

L
N
Xlower �S�w�

L
N
Xupper . (C1)

Since Xlower and Xupper are independent of L and N and L
N →

0 implies 1
N → 0 for L � 1, so it is true that S�b = O( LN ) and

S�w = O( LN ). �

Appendix D. Experimental verification

We here experimentally provide support for the suboptimal but
practical strategy used to model X by assuming random variables
�1x , . . . ,�

n
x to be uncorrelated each other in the entire principal com-

ponent space in Section 3.1. We show that this assumption is re-
ally practically useful. Recall the parameter estimation in Section 3.2

where we get n−k
j ∼ N(0, 1

Nk(Nk−1)X). Hence a general estimate X̂

forX is calculated by X̂= 1
N

∑L
k=1Nk(Nk −1)

∑Nk
j=1(n̂

−k
j )(n̂

−k
j )T using

the generated observation values {n̂−k
j }k=1,2,. . .,L

j=1,. . .,Nk
. Then we can have

statistics of the cumulate percentage F(�) defined by:

F(�) = |{(i, j)| ˜̂X(i, j)��, i � j, i = 1, . . . ,n, j = 1, . . . ,n}|
|{(i, j)|i � j, i = 1, . . . ,n, j = 1, . . . ,n}| ,

0���1,
˜̂X(i, j) = |X̂(i, j)|√

X̂(i, i)
√
X̂(j, j)

,

where n is the dimensionality of the entire principal component

space, |{ · }| is the size of { · } and
˜̂X(i, j) is the absolute standard

correlation value between �ix and �jx.
The curve of the value of F(�) as a function of � has been shown

in Figs. 12 and 13 on FERET and CMU PIE, respectively, where three
training samples are used for each class on FERET and six train-
ing samples are used for each class on CMU PIE. We observe that
on FERET, F(�) = 0.2925% when � = 0.09959 and F(�) = 0.006176%
when � = 0.2015; on CMU, F(�) = 0.3002% when � = 0.102 and
F(�) = 0.008472% when � = 0.2513. This shows that it would be
quite a low probability for the absolute standard correlation value
˜̂X(i, j), i � j to get a high value. It means it has an extremely high
probability that the correlation between �ix and �jx is very low
when i � j.

In conclusion, the experiment shows that �1x , . . . ,�
n
x are almost

uncorrelated each other because of the extremely low correlation
values between them. As we always do not have sufficient samples
to tackle the ill-posed estimation problem when dealing with high-
dimensional data, it is a practical and also reasonable way to hold
this assumption for performing regularized estimation and model
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the perturbation covariance matrix using Eq. (21) and its further
reduced form Eq. (22).
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