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Non-negativity matrix factorization (NMF) and its variants have been explored in the last decade and

are still attractive due to its ability of extracting non-negative basis images. However, most existing

NMF based methods are not ready for encoding higher-order data information. One reason is that they

do not directly/explicitly model structured data information during learning, and therefore the

extracted basis images may not completely describe the ‘‘parts’’ in an image [1] very well. In order

to solve this problem, the structured sparse NMF has been recently proposed in order to learn

structured basis images. It however depends on some special prior knowledge, i.e. one needs to

exhaustively define a set of structured patterns in advance. In this paper, we wish to perform structured

sparsity learning as automatically as possible. To that end, we propose a pixel dispersion penalty (PDP),

which effectively describes the spatial dispersion of pixels in an image without using any manually

predefined structured patterns as constraints. In PDP, we consider each part-based feature pattern of an

image as a cluster of non-zero pixels; that is the non-zero pixels of a local pattern should be spatially

close to each other. Furthermore, by incorporating the proposed PDP, we develop a spatial non-negative

matrix factorization (Spatial NMF) and a spatial non-negative component analysis (Spatial NCA). In

Spatial NCA, the non-negativity constraint is only imposed on basis images and such constraint on

coefficients is released, so both subtractive and additive combinations of non-negative basis images are

allowed for reconstructing any images. Extensive experiments are conducted to validate the effective-

ness of the proposed pixel dispersion penalty. We also experimentally show that Spatial NCA is more

flexible for extracting non-negative basis images and obtains better and more stable performance.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Extracting basis images using matrix factorization techniques is
widely used in pattern recognition and computer vision. Given a set
of N d-dimensional image data xiARd, i¼ 1, . . . ,N, which are always
assumed to be non-negative, matrix factorization aims to decompose
a d� N data matrix X¼ ðx1, . . . ,xNÞ into a d� L basis matrix W and a
L� N coefficient matrix H such that

X�WH, ð1Þ

where L5minðN,dÞ for learning a low dimensional subspace that
describes main variations or distinctive factors of data. Principal
component analysis (PCA) is one of the most popular matrix
factorization techniques [2,3]. PCA learns a low dimensional subspace
of data that preserves as much data information as possible. It is,
however, always exploring holistic features as basis images and
cannot explore spatially localized features, and thus the potential
significant structured factors [4] cannot be explicitly explored.
ll rights reserved.
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The non-negativity matrix factorization (NMF) [5,6] is an
effective and popular way to alleviate the above problem. NMF
imposes non-negativity constraint on basis matrix W and coeffi-
cient matrix H at the same time. NMF aims to represent an image
by additive combination of a set of non-negative basis images.
This can sometimes effectively lead to part-based representation
of the data. In order to make NMF support this property in diverse
fields, many invariants, including using lasso penalty [7], impos-
ing orthogonal penalty [8–10] and designing a criterion that
measures the degree of sparsity [11], have also been reported
in the last decade. One attraction of these methods is that they
can experimentally retrieve sets or parts of variables as local
patterns (e.g. eyes or mouth) in a face image, which are intuitively
meaningful data structures and good for data analysis and
understanding.

Although several typical penalty functions and constraints
have been proposed in order to improve NMF for extracting
sparser features, it still lacks of theoretical guarantee that the
extracted non-negative basis images by the above methods can
directly reflect the expected data structure information. It is
because these constraints and penalty functions do not explicitly
model the shapes or configuration of local patterns in an image.
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Most of them are only concerned about the sparsity of the
extracted basis images or the relationship between different basis
images. A sparse basis image is conceptually different from a
spatially localized basis image. A sparse basis image is mainly
concerned about the number of its non-zero entries while no
geometric constraints among those non-zero entries are specified.
In comparison, a spatially localized basis image should be con-
cerned more about the structured relationship between pixels
(e.g. meaningful local patches). Therefore, the aforementioned
related existing penalty functions cannot completely address a
basic question raised by Mel [1] that how the extracted basis
images are related to the concept ‘‘parts’’.

Recently, structured sparsity learning is introduced in order to
quantify the correlation between variables (e.g. pixels in an
image) in regression [12], classification [13], compressed sensing
[14,15], and is also applied to NMF [4]. The main idea of the
structured sparse NMF is to enforce some prior knowledge about
structured information by formulating a structured regularization
penalty added to the usual data reconstruction error term. The
structured information differs for different applications and for
example includes [16,17]: (1) shape of local rectangle patches
(e.g. blocks as the set of axis-aligned half-spaces on a 2-dimen-
sional grid across different sizes and scales); (2) shape of oblique
local patterns with different angles in a plane; (3) a set of
consecutive variables in a sequence; (4) group of variables (e.g.
group of gene from the same pathway in gene analysis or group of
dummy variables corresponding to the same factor in ANOVA
factor analysis). However, in order to learn these structured
sparse information, special prior knowledge about the structured
information, e.g. group structure of variables or prior support
patches in an image for different types of data, needs to be
known and predefined manually. In order to realize this, one may
need to provide much more exhaustive prior structured patterns
during learning when using these structured sparsity learning
methods. Hence, its successfulness is highly depending on the
manual definition of structure in advance, and selection of prior
information may have to be performed in order to reduce the
complexity [17]. Moreover, it is still unknown how to define
appropriate predefined structured patterns which are good for
classification.

In this paper, we wish to learn structured sparse basis images
in an image as automatically as possible without manually
defining any special prior support patches. Our focus is on image
analysis and we propose to consider the ‘‘parts’’ as the clusters of
non-zero pixels in an image; that is all non-zero pixels of a part-
based pattern in an image should be spatially close to each other.
To this end, we devise a new spatially localized penalty function
called the pixel dispersion penalty, which quantifies how pixels
scatter spatially in an image.

Another contribution of this paper is that we will develop a
spatial non-negativity matrix factorization (Spatial NMF) and a
spatial non-negative component analysis (Spatial NCA), where
both methods will incorporate the proposed pixel dispersion
penalty and in particularly Spatial NCA allows both subtractive
and additive combination of non-negative basis images at the
same time. We find that when using the proposed pixel disper-
sion penalty, releasing non-negativity constraint on coefficient
matrix in NMF will lead to better performance on image under-
standing and face recognition.

The rest of the paper is organized as follows. Section 2 first
reviews some related work on extracting non-negative basis
images using matrix factorization. The proposed pixel dispersion
penalty is first detailed in Section 3 and utilized to develop new
matrix factorization techniques in Section 4. Experiments are
conducted for evaluating the proposed pixel dispersion penalty in
Section 5. The paper is finally concluded in Section 6.
2. Review of related work

In this section, we mainly review related work of NMF for
extracting sparse basis images (features). There are several other
works on combining manifold learning and supervised learning
with NMF [18–24] for classification. As manifold learning and
supervised learning are not the main focus in this work, these
works will not be covered in the following review and we will
discuss them finally in the conclusion part.

Let W¼ ðw1, . . . ,wLÞ and H¼ ðh1, . . . ,hNÞ, where L is the num-
ber of basis images and always much smaller than the dimension
of data for a low-rank learning, and each hi is the corresponding
coding vector for each data sample xi. The non-negative matrix
factorization (NMF) proposed by Lee and Seung [5,6] constrains
the basis images and coding vectors to be non-negative and is
therefore formulated as the following optimization problem:

min
WARd�L ,hi ARL

1

N

XN

i ¼ 1

Jxi�WhiJ
2
F

s:t: WZ0, hiZ0: ð2Þ

Due to the use of additive combination of non-negative basis
images, part-based basis images can be more easily extracted.
However, NMF was not explicitly designed to extract sparse basis
images, and it has been found that only imposing non-negativity
constraint on both basis images and coding vectors sometimes
does not sufficiently lead to extracting part-based basis images.

In order to make NMF extract sparser basis images in diverse
applications, several constraints or penalty functions are also com-
bined in order to make the extracted basis images less overlapped or
sparse. Li et al. united three penalty functions together and derived
the following criterion based on the divergence distance [8]:

min
WARd�L ,HARL�N

X
ij

Xijlog
Xij

ðWHÞij
�XijþðWHÞijþaJWT WJ1�b traceðHHT

Þ

8<:
9=;

s:t: WZ0, HZ0, a,bZ0: ð3Þ

The penalty JWT WJ1 at least includes the orthogonal penalty
between the columns of W which would reduce the redundancy
between basis images, and maximizing the penalty traceðHHT

Þ would
enforce the algorithm to achieve maximum expressiveness of basis
images wi [8].

Hoyer designed a sparsity measurement that computes the
sparsity degree [11] of each basis image wi directly as follows:

GðwiÞ ¼

ffiffiffi
d
p
�ð
P

j9wiðjÞ9=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

jwiðjÞ
2

q
Þffiffiffi

d
p
�1

: ð4Þ

By applying the same sparsity measurement to each coding vector
hi as well, a NMF with sparsity constraint (NMFnc) is formulated
in [11]. Apart from the above two variants, Pascual-Montano et al.
modified the NMF criterion by introducing a smooth matrix S [25]
as follows:

min
WARd�L ,hi ARL

1

N

XN

i ¼ 1

Jxi�WShiJ
2
F

s:t: WZ0, hiZ0: ð5Þ

where

S¼ ð1�yÞIþ
y
L

11T , yA ½0;1�: ð6Þ

The smooth matrix is designed in order to balance the sparsity of
the basis images wi and coding vectors hj.

In addition, work in [7] aimed to extract more effective sparse
non-negative basis images by means of sparse coding learning using
lasso penalty, and a related efficient algorithm was developed by Lee
et al. [26]. However, as suggested in [25], for learning a low rank basis
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matrix W, it is still hard to learn part-based and spatially localized
basis images from real data without directly penalizing them. There is
also work to combine non-negativity constraint, lasso penalty and
orthogonal penalty together by Zass and Shashua [9]. However, the
developed sparse non-negative PCA is computationally expensive as
it is a fourth order optimization problem.

Although the above constraints and penalty functions have been
widely recognized, they are not directly and explicitly designed for
exploring the structured information in an image. The structured
information is useful and significant. It is because variables or
parameters are not always completely independent, and they may
be correlated or grouped together in terms of some kind of structured
information. In order to overcome this problem, several recent works
attempted to impose group structure between variables, for example
incorporating some prior support patch information to quantify these
variables jointly [4,12,27]. Particularly, for extracting structured
sparse features in an image, Jenatton et al. proposed to use different
sizes and scales of rectangle blocks to group the pixels in an image
and applied this penalty to non-negativity matrix factorization [4].
Therefore, the learning model is formulated as follows1:

min
WARd�L ,hi ARL

1

N

XN

i ¼ 1

Jxi�WhiJ
2
þl

XL

j ¼ 1

OwðwjÞ

s:t: 8i, OhðhiÞr1 & WZ0, hiZ0: ð7Þ

where OwðwÞ ¼
P

GAGJdG
JwJ2, G is a pre-specified subset of power

set of f1, . . . ,ng, dG is a n-dimensional vector and performs as a filter
function [4], and OhðhiÞ is some kind of constraint on coding vector
hi. More general formulation can be found in [4]. However, these data
structured information needs to be known a priori as aforementioned
in the introduction.

Compared to the above existing works, the novelty and new
developments of this work include:
1.
sam

vec
We propose a pixel dispersion penalty in order to describe the
spatial structured relations between pixels in an image with-
out using any prior structured patterns as constraints.
2.
 By applying the pixel dispersion penalty, two new develop-
ments are presented. That is, (1) we apply our proposed pixel
dispersion penalty to non-negative matrix factorization and
develop Spatial NMF, and (2) we particularly develop spatial
non-negative component analysis (Spatial NCA). In Spatial
NCA, the non-negativity constraint is only imposed on basis
images wi and such constraint on codings hj is released. An
optimization algorithm is also developed accordingly.

3. The proposed pixel dispersion penalty

We wish to learn a low rank basis matrix W, each column of
which (i.e. each basis image wi) describes a spatially localized
part of an image. We say a basis image wi is spatially localized if
the non-zero pixels of the basis image are spatially and locally
non-dispersive, i.e. those non-zero pixels should be clustered and
close to its center. Suppose the image we are concerned is b pixels
in height and a pixels in width. To measure the dispersion degree
of non-zero pixels in each basis wi, we propose the following
criterion DðwiÞ:

DðwiÞ ¼
Xa

x ¼ 1

Xb

y ¼ 1

Xa

x0 ¼ 1

Xb

y0 ¼ 1

dðw2D
i ðy,xÞa0Þ � dðw2D

i ðy
0,x0Þa0Þ

�lð½y,x�,½y0,x0�Þ, ð8Þ
1 Please note that Eq. (7) is slightly different from Jenatton’s because each

ple is formulated as a row vector in [4] while it is formulated as a column

tor in this work.
where w2D
i (ARb�a) is the corresponding matrix form of the basis

image vector wi, dðtrueÞ ¼ 1 and 0 otherwise, and l is an associa-
tion function between two coordinate vectors ½y,x� and ½y0,x0� in an
image and measures the distance between them. In this paper, we
use the following association function:

lð½y,x�,½y0,x0�Þ ¼ 9y�y09þ9x�x09: ð9Þ

The larger the DðwiÞ is the more dispersive the non-zero pixels
are.

The measurement Eq. (8), however, is a non-convex function of
wi, which would be hard for optimizing wi in an analytic way. In
order to make the modeling of dispersion degree more tractable
for optimization, we further develop the following weighted
dispersion degree modeling:

DðwiÞ ¼
Xa

x ¼ 1

Xb

y ¼ 1

Xa

x0 ¼ 1

Xb

y0 ¼ 1

9w2D
i ðy,xÞ99w2D

i ðy
0,x0Þ9lð½y,x�,½y0,x0�Þ: ð10Þ

To investigate the rationale of the above modeling, we let
dy,xðDy,DxÞ ¼ lð½y,x�,½yþDy,xþDx�Þ. As shown in Fig. 1, dy,xðDy,DxÞ

is a special high-pass filter, and the penalty function DðwiÞ is
actually a weighted combination of a set of special high-pass
filter’s responses as follows:

DðwiÞ ¼
Xa

x ¼ 1

Xb

y ¼ 1

9w2D
i ðy,xÞ9�

Xa

x0 ¼ 1

Xb

y0 ¼ 1

9w2D
i ðy

0,x0Þ9dy,xðy
0�y,x0�xÞ

( )
:

ð11Þ

The high-pass filter then enlarges the effect of any points which
are away from the corresponding center ½y,x�. Therefore, mini-
mizing the weighted dispersion DðwiÞ would suppress the sce-
nario that two disjoint pixels at ½y,x� and ½y0,x0� which are far away
from each other and both have higher weights 9w2D

i ðy,xÞ9 and
9w2D

i ðy
0,x0Þ9 (i.e. higher pixel values), due to the non-negativity

of 9w2D
i ðy,xÞ9. This encourages the algorithm to learn spatially

localized patches in an image.
Moreover, by Eq. (11), we find that DðwiÞ in some aspect can

be viewed as a special weighted ‘1-norm function. However,
the difference is that the weight f

Pa
x0 ¼ 1

Pb
y0 ¼ 1 9w

2D
i ðy

0,x0Þ9dy,x

ðy0�y,x0�xÞg for each entry 9w2D
i ðy,xÞ9 has incorporated the pixel

spatial information surrounding the pixel at ½y,x� in an image,
and this makes the pixel dispersion penalty be a second-order
function.

Nevertheless, without using any manually predefined struc-
tured patterns as constraints, the spatially localized basis images
can be favored by the pixel dispersion penalty. The experiments
will show the learned basis images wi are also sparse.

We aim to extract non-negative basis images in this work.
Therefore, we finally present the following special pixel disper-
sion penalty for computation.
3.1. The pixel dispersion penalty for non-negative wi

Let ey,x(ARd) be the indicator vector such that

ey,xðjÞ ¼
1 j¼ ðx�1Þ � bþy,

0 otherwise,

(
ð12Þ

where b is the height of an image. Note that w2D
i ðy,xÞ ¼wT

i ey,x.
When wi is non-negative, Eq. (10) becomes

DðwiÞ ¼wT
i

Xa

x ¼ 1

Xb

y ¼ 1

Xa

x0 ¼ 1

Xb

y0 ¼ 1

lð½y,x�,½y0,x0�Þ � ey,xeT
y0 ,x0

( )
wi ¼wT

i Elwi,

ð13Þ



Fig. 1. Illustration of the filter function dy,xðDy,DxÞ in Eq. (11).

Fig. 2. Demonstration of NCA: (a) six image samples; (b) and (c) are two examples

of image construction; (d) and (e) are two alternative basis images that can be

learned by NCA from (a).
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where

El ¼
Xa

x ¼ 1

Xb

y ¼ 1

Xa

x0 ¼ 1

Xb

y0 ¼ 1

lð½y,x�,½y0,x0�Þey,xeT
y0 ,x0 : ð14Þ

We call El the dispersion kernel matrix in this paper.
4. Low-rank matrix factorization with pixel dispersion
penalty

4.1. Spatial non-negative matrix factorization

In order to extract non-negative structured local patterns of
the data, we are now incorporating the pixel dispersion penalty to
develop a new penalized NMF-based matrix factorization as
follows:

min
WARd�L ,hi ARL

1

N

XN

i ¼ 1

Jxi�WhiJ
2
Fþ

l
L

traceðWT ElWÞ

s:t: WZ0,0rhirc0, ð15Þ

where lZ0, L5d, and c0 is a simple positive constant bound
parameter which removes the scale effect during minimization of
traceðWT ElWÞ. Note that the condition L5d is necessary for
learning a low-rank basis matrix W and also avoiding trivial
solution if LZd. We call the above model as spatial non-negative
matrix factorization (Spatial NMF).

In this paper, we particularly focus on developing a special
spatially localized semi non-negative matrix factorization
method, in which the basis images are non-negative and no
non-negativity constraint is imposed on coefficients. We call such
kind of matrix factorization as spatial non-negative component
analysis (Spatial NCA). The next section will detail the motivation
and model.

4.2. Non-negative component analysis with pixel dispersion penalty

Although the usefulness of non-negative basis images in image
understanding and representation has been recognized, it may
still be hard for an object to be completely represented by
additive combination of a few spatially localized non-negative
basis images. To this end, there are recent attempts to partially
release the non-negativity constraint in NMF in [28,29] and our
early work [10]. Compared to [10,28,29], we first in the following
give more detailed analysis about the release of non-negativity
constraint on the coefficient part.

Since the non-negativity constraint on coefficients is released,
the subtraction between non-negative basis images is allowed. In
particular, this enables the algorithm to realize the scenario that
each pattern can be represented by removing and adding spatially
localized basis images on a few other basis images. Such a kind of
flexibility can be shown in Fig. 2. By allowing subtraction between
positive basis images the algorithm can probably find basis
images in Fig. 2(d) and (e); but NMF can only find Fig. 2(e). Hence
a much more flexible way to explore spatially localized basis
images can be possible if the non-negativity constraint on
coefficients is released. From another point of view, it is the fact
that by using matrix factorization techniques such as PCA, each
pattern xi is approximately reconstructed by a set of basis images
fwjg

L
j ¼ 1 as follows:

xi �
XL

j ¼ 1

hji �wj: ð16Þ

Let wþj ¼maxðwj,0Þ and w�j ¼�minðwj,0Þ. Then

xi �
XL

j ¼ 1

hji �wþj �hji �w�j : ð17Þ

So each data xi is able to be represented by combination of
non-negative basis images, where subtractive and additive com-
binations exist simultaneously. Note that as subtraction between
an two positive basis images is allowed, we are also able to
analyze any data with negative entries. For a more general matrix
factorization problem, we can generalize the above reconstruction
process as follows:

xi �
XL

j ¼ 1

hji �wj, wjZ0 for any j: ð18Þ

where the basis matrix W¼ ½w1, . . . ,wL� and coefficient matrix
H¼ ðhjiÞ ¼ ½h1, . . . ,hN � are learned by

min
WARd�L ,hi ARL

1

N

XN

i ¼ 1

Jxi�WhiJ
2
F

s:t: WZ0: ð19Þ

The above model as non-negative component analysis (NCA), and
compared to the NMF criterion only the constraint hiZ0 in Eq. (2)
has been removed.

Recent work in [10,28,29] has shown that although NCA can
explore non-negative basis images in a more flexible way, NCA
itself is hard to learn spatially localized basis images. In this work,
we wish to incorporate the proposed pixel dispersion penalty into
NCA in order to learn spatially localized structured patterns.

By imposing the proposed pixel dispersion penalty (Eq. (13))
on the basis images, a spatial non-negative component analysis

(Spatial NCA) can be formulated by weighting the reconstruction



Fig. 3. (c) is the corresponding coefficients for the basis images in (b) learned by Spatial NCA in order to reconstruct (a); (d) shows examples of simultaneous additive and

subtractive combination of parts, where basis images of the same group are marked using the same color bounding box and the corresponding group numbers are also

shown in (c). The green ones in (c) are positive coefficients, the red ones are negative coefficient and the dark ones are towards zero. In each basis image in (b) and (d),

white pixels denote (almost) zero gray values and black ones denote positive gray values (the roles of white and black pixels there are different from those in (a) due to the

traditional use for visualization). (a) Example, (b) Basis Images, (c) Coefficients and (d) Combination Examples. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)
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error and the pixel dispersion penalty function as follows:

min
WARd�L ,hi ARL

f El
ðW,HÞ

s:t: WZ0, 9hiðjÞ9rc0, ð20Þ

where hiðjÞ is the jth entry of coding vector hi and

f El
ðW,HÞ ¼

1

N

XN

i ¼ 1

Jxi�WhiJ
2
Fþ

l
L

traceðWT ElWÞ, lZ0: ð21Þ

Specially, when the input data xi are non-negative (e.g. images
represented by pixel values), as the extracted basis images are
non-negative, so the criterion can implicitly ensure that the
learned coefficients hiðjÞ should not be too small negative value
as it is not good for minimizing the reconstruction error in Eq.
(20). In view of this, we can relax the above criterion for xiZ0 as
follows:

min
WARd�L ,hi ARL

f El
ðW,HÞ

s:t: WZ0, hiðjÞrc0: ð22Þ

An example on reconstructing a face image by simultaneous
additive and subtractive combination of spatially localized basis
images learned by Spatial NCA is shown in Fig. 3, where some
operations appear near the nose and mouth.

4.3. Optimization algorithm: a projected gradient method

We now mainly develop an optimization algorithm for Spatial
NCA (Eq. (20)). The following developed optimization algorithm
can be easily applied to Spatial NMF (Eq. (15)) with slight
modifications.

As Criterion (20) is convex for each variable respectively but
not for all variables jointly, it is not straightforward to compute a
globally optimal solution. To solve this problem, we seek optimal
basis matrix W and coefficient matrix H in an alternating update
manner. Among the alternating techniques, the multiplicative
rule is popular for the NMF-based matrix factorization techniques
and also recently used for a different semi non-negative algorithm
where non-negativity is imposed on coefficient rather than basis
images. However, due to the bound constraint in Eq. (20), the
multiplicative rule may not be easily applicable. Recently, Lin has
demonstrated that for NMF the projected gradient update method
is a more efficient technique as compared to the multiplicative
update rule [30] and related projection techniques has also been
used recently in [4]. We in this paper adopt this strategy and
develop a projected gradient update based alternating method for
computing an optimal solution for the proposed model in Eq. (20).
Algorithm 1. Learning the Spatial NCA model.

Data: Data matrix X, number of basis images L

begin

Initialization of W and H ðsee textÞ;

Formulation of the dispersion kernel matrix El in Eq: ð14Þ;

while stopping criterion not reached do

Update W by Eq: ð23Þ;

Update H by Eq: ð24Þ;

�����
end

���������������
end
Output: Basic Matrix W and Coefficient Matrix H

In this work, the alternating procedure for learning Spatial
NCA is shown in Algorithm 1. More specifically, the alternating
procedure at each iteration consists of the following two steps:
1.
 Update of basis images:

Wði,jÞ’max 0,Wði,jÞ�Z1 �
@f El
ðW,HÞ

@W
ði,jÞ

� �
where

@f El
ðW,HÞ

@W
¼

2

N
ðWHHT

�XHT
Þþ

2l
L

ElW: ð23Þ
2.
 Update of coefficients:

Hði,jÞ’min c0,max �c0,Hði,jÞ�Z2 �
@f El
ðW,HÞ

@H
ði,jÞ

� �� �
where

@f El
ðW,HÞ

@H
¼

2

N
ðWT WH�WT XÞ: ð24Þ
The Z1 and Z2 in Eqs. (23) and (24) are the step lengths in gradient
decent and can be adaptively determined as similarly done in [30].

The alternating procedure will repeat the above two steps
until convergence. The alternating update procedure ensures the
value of the objective function in Criterion (20) decreases after
each update [30] and can be finally terminated if the difference
between the last two updated criterion values is lower than some
tolerance value (e.g. 10�6 used in our experiments).

Initialization. Initialized values for W and H are necessary for
the above alternating procedure. While it is still an open/unsolved
issue on investigating the best optimization method for alternat-
ing algorithms (e.g. the proposed method and many other
non-convex methods), rather than using random initialization,
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inspired by Eq. (17), we initialize these two values using a PCA-
based method. The motivation is we still wish those basis images
are informative to some extent, albeit extraction of spatially
localized/sparse basis images. Such an idea is also embedded in
the proposed criteria and existing related methods (see Section 2).
This inspires a way to initialize the basis matrix using infor-
mative vectors. While PCA is a frequently used technique for
extracting most informative basis images from a set of images,
the extracted basis images, in general, do not satisfy the non-
negativity. In view of this, we present the following way to
extract related non-negative basis images which are learned using
PCA-based technique.

More specifically, to initialize L basis images, the L largest principal
component vectors qi, i¼ 1, . . . ,L are first extracted by PCA and then
the following 2L non-negative basis images are computed:

qþi ¼maxðq,0Þ, q�i ¼�minðq,0Þ: ð25Þ

Without loss of generality, we assume that all these non-negative
basis images are non-zero; otherwise, the zero basis images are
removed first. Let f ~q ig ¼ fq

þ

i =Jqþi J2g
S
fq�i =Jq�i J2g. Then we select L

non-negative basis images from f ~qig through the following steps:
�
 The first component is selected such that it has the maximal
correlation to the mean of training data u, i.e.

w1 ¼ arg max
~q i

~qT
i u: ð26Þ
�
 Let Qi ¼ f ~q jg
2L
j ¼ 1�fwjg

i
j ¼ 1. Then for iZ1, the iþ1 component

which has the lowest correlation to the already selected basis
images is selected by

wiþ1 ¼ arg min
~q AQi

Xi

s ¼ 1

~qT ws: ð27Þ

This procedure repeats until all the rest L�1 non-negative
basis images are selected.

After initializing the basis matrix W, we initialize the coeffi-
cient matrix H simply by H¼WT X.
Fig. 4. Examples of images in (a) Swimmer, (b) CBCL, (c) GB2312, (d) b
5. Experiments

The section is to demonstrate the effectiveness of the proposed
pixel dispersion penalty for extracting spatially localized basis
images in image understanding and face recognition.
5.1. Datasets and experiment setting

5.1.1. Datasets

Five datasets were selected for evaluation. Fig. 4 shows some
images from these datasets. These five datasets are introduced as
follows:
�

asi
Swimmer. The Swimmer dataset is always used for evaluation,
as the ground truth decomposition [31] is known for this
dataset, i.e. a group of images can be completely represented
using a few non-overlapping basis images. Swimmer consists
of 256 images of size 32�32. Each image is constituted by
5 parts from the 17 distinct non-overlapping basis images
(as shown in Fig. 5(a)), i.e., a centered invariant part called
torso of 12 pixels and four limbs of 6 pixels appear in one of the
4 positions.

�
 CBCL. The CBCL used in [5,25] consists of 2429 frontal face

images of resolution 19�19. It is widely used as a standard
dataset to evaluate matrix factorization algorithms. Note that,
no preprocessing is performed for CBCL here, while some
preprocessing, such as removing mean, clipping etc, were first
applied by Lee et al. [5] and Hoyer [11]. Without these
preprocessing, the different performances of the compared
methods are solely due to the differences of these methods. In
the experiment, 64 basis images were learned for CBCL.

�
 GB2312. GB2312 is a Chinese character dataset, which consists

of the most frequently used 3755 simple Chinese characters.
They were centered and normalized with resolution 20�20.
Fig. 4(c) shows some examples of them. Each local part of a
Chinese character is always constructed by eight strokes: Dian,
Shu, Heng, Pie, Duan Pie, Na, Ti, and Gou. These strokes are
shown in Fig. 4(d). In our experiments, we aim to evaluate how
c strokes in Chinese characters, (e) CMU and (f) AR databases.



Fig. 5. Illustration of experiment on Swimmer. Black pixels are for (almost) zero entries and white pixels are for positive ones. (a) Spatial NCA, (b) Spatial NMF, (c) SSNMF,

(d) Sparse NMF, (e) LNMF, (f) nsNMF, (g) NMF and (h) NCA.
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well these strokes are extracted by different methods. In the
experiment, 100 basis images were learned for GB2312.

�
 CMU. A subset from the CMU PIE dataset [32] was selected.

It consists of 2924 illuminated frontal face images from 68
people, where 43 images for each person under different
illumination conditions were captured both indoor and out-
door. All images were resized to 32�32 due to the computa-
tional issue as similarly done in [20,22,33].

�
 AR. The AR data set [34] used in this paper consists of 3094

images from 119 people, and each person has 26 images with
illumination variation, expression variation, or occlusion (with
or without glasses/scarf). All images were resized to 32�32
due to the computational issue.

5.1.2. Methods for evaluation

The main objective of this paper is to validate the proposed
pixel dispersion penalty (PDP) for extracting non-negative and
spatially localized basis images. Hence, we mainly compare our
proposed two methods Spatial NMF and Spatial NCA with NMF
[6], localized non-negative matrix factorization (LNMF) [8], non-
smooth non-negative matrix factorization and (nsNMF) [25],
sparse coding based NMF (Sparse NMF) [7] and structured sparse
NMF (SSNMF) [4].

For comparison in our experiments, we will report the best
results of the compared methods NMF, LNMF, nsNMF, Sparse NMF
and SSNMF on each data set. For image understanding the best
visual results of basis images learned by these compared methods
are presented, and for face recognition the best recognition rates
are reported. Note that, we tuned the y in nsNMF(Eq. (5)) in
[0 : 0.1 : 1], the sparse parameter in Sparse NMF in [0 : 0.1 : 1],
and the sparse parameter in SSNMF in 2ð�10�100�ZÞ, ZA ½0 : 0:1 : 1�
set in a similar form to [4] and its online code.2

For the proposed methods Spatial NMF and Spatial NCA, unless
otherwise stated, we have the following setting. For experiments
on image understanding, the parameter l in these two proposed
methods is set in order to make the proposed algorithms generate
basis images that are with similar sparsity degree to the best
results of SSNMF, so that the comparison can be done more fairly
2 http://www.di.ens.fr/� jenatton/
at almost the same sparsity degree of features; that is l¼ 0:1 for
CBCL and l¼ 1 for GB2312 for the two proposed methods. For
face recognition, the parameter l in our two proposed methods is
always set to 1. The effect of the parameter in these two proposed
methods will be investigated in Section 5.5.

All basis and coefficient matrices in all the iterative methods
evaluated in our experiments were initialized by the same
PCA-based initialization technique as described in Section 4.2
and the maximum number of iteration is 500.

5.2. Experiments on image understandings

We in the following compare all related methods on both
synthetic and real-world datasets.
5.2.1. Experiments on synthetic dataset

We first present the comparison results on the Swimmer data,
in which all images can be exactly reconstructed by 17 ground
truth image parts. An algorithm is good for Swimmer dataset if it
can learn the exact 17 ground truth basis images, where the exact
basis images are shown in Fig. 5(a).

Since we know the ground truth decomposition, we report the
best results that are the most similar to the ground truth for all
other compared methods in this experiment, while we fixed the
parameter l in Spatial NMF and Spatial NCA to be 0.1. We find
that performance of Spatial NMF and Spatial NCA are almost the
same by setting the parameter value around 0.1, e.g. 0.2 or 0.3.

As shown in Fig. 5, we find that Spatial NMF and Spatial NCA
are able to learn the 17 ground truth basis images. Compared to
Spatial NMF and Spatial NCA, NMF always preserves the shadow
torso (i.e. the centered vertical segment) in its extracted basis
images. In comparison, LNMF, nsNMF and Sparse NMF still
preserve the torso in each basis images for Swimmer. This shows
the usefulness of the proposed pixel dispersion penalty that
imposes the spatial relationship between pixels as a constraint
in an image directly, while no similar constraint has been
considered in LNMF, nsNMF and Sparse NMF.

We also note that SSNMF can also successfully extract the
ground truth basis images. Similar to Spatial NMF and Spatial
NCA, SSNMF is also a structured sparsity learning method. On one

http://www.di.ens.fr/~jenatton/
http://www.di.ens.fr/~jenatton/
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hand, this validates the effectiveness of structured sparsity
learning used by our proposed methods and SSNMF; on the other
hand, it suggests that Spatial NMF and Spatial NCA, which are
based on the pixel dispersion penalty and do not depend on
pre-specified structured patterns, can also perform as good as
SSNMF. Note that the structured sparsity learning in SSNMF is
highly depending on the special prior knowledge used to for-
mulate the penalty; in comparison, pixel dispersion penalty is
more unsupervised and thus less complicated.

5.2.2. Experiments on real-world dataset

The CBCL and GB2312 were used for experiments here. The
CBCL is used to see how local facial basis images can be investi-
gated and the Chinese character set is used to investigate the
frequently used basic strokes in Chinese character images.

Besides comparing visual basis images learned by different
methods, three criteria including mean square error (MSE), the
normalized absolute overlap degree (AOD) [10] and the sparsity
degree (SD) (Eq. (4)) were also used for evaluation. The MSE is to
evaluate whether the extracted spatially localized basis images
are informative, AOD measures the redundancy between basis
images, and SD measures the sparsity of each basis image. More
specifically, the AOD is defined by

AODðWÞ ¼
1

LðL�1Þ

XL

r ¼ 1

XL

r0 ¼ 1,r0a r

bwT
r
bwr0 : ð28Þ

where bwrðiÞ ¼ 9wrðiÞ9=
P

j ¼ 19wrðjÞ9.
We wish to see that a better localized feature extraction

method is featured with low AOD values, large SD values and
a reasonable MSE value. The lower the AOD is the less over-
lap between extracted basis images will be; the larger the SD is
the sparser the extracted basis images are. Though minimizing
reconstruction error is not our main concerns in this work, MSE is
still a necessary criterion to show whether the extracted basis
images are informative, as sparse basis images are the ones we
preferred only if it can explore structured localized basis images
and these images are also good at describing images.
Fig. 6. Illustration of experiment on CBCL. In each basis image, white pixels denote (alm

and black pixels here are different from those in Fig. 5 due to the traditional use for vis

(f) nsNMF, (g) NMF and (h) NCA.
We first report the visual results in Figs. 6 and 7. As shown, by
using the pixel dispersion penalty, the basis images extracted by
Spatial NMF and Spatial NCA are more spatially localized and less
overlapping, resulting in more clear and meaningful localized
facial basis images and strokes investigated in these two datasets
respectively. Compared to NMF, nsNMF and Sparse NMF which
are popular non-negative matrix factorization methods, Spatial
NMF and Spatial NCA apparently are able to extract less over-
lapping basis images, as less shadows are observed in the basis
images. Although Sparse NMF finds some interesting radicals in
Chinese characters on data set GB2312, they are not the basic
strokes we aim to investigate. Also the extracted part-based
features can be less effective compared to Spatial NMF and Spatial
NCA, as Sparse NMF achieves obviously higher MSE than Spatial
NCA (see Table 1) on GB2312. Compared to LNMF, we will show
later that the reconstruction ability of LNMF is much unsatisfac-
tory than our proposed methods (see Table 1), albeit obtaining
similar visual results. From the figures, especially Fig. 6, the main
differences between SSNMF and Spatial NMF/Spatial NCA are
two-fold: (1) SSNMF sometimes preserves more shadows around
localized feature in basis images (see Fig. 6(c)); (2) SSNMF
extracts more pairwise features (e.g. two eyes, two eyebrows as
shown in Fig. 6(c)), while Spatial NMF and Spatial NCA are good at
extracting isolated localized features. It is probably because the
basis images extracted by SSNMF are regularized by pre-specified
structured patterns, which might include pairwise ones; in
comparison, the pixel dispersion penalty used in Spatial NMF
and Spatial NCA aims to extract basis images where non-zero
pixels are clustered together locally, therefore prone to extract
isolated localized features. For some applications, the isolated and
localized features can be more robust for recognition under
illumination and occlusion, and this would be shown in the next
section.

In order to quantify the visual results, we also report the
absolute overlapping rate between the extracted basis images and
the sparsity degree of the basis images in Table 1. These two types
of results validate the observations from the visual images shown
in Figs. 6 and 7. That is by using the pixel dispersion penalty, less
ost) zero gray values and black ones denote positive gray values (the roles of white

ualization). (a) Spatial NCA, (b) Spatial NMF, (c) SSNMF, (d) Sparse NMF, (e) LNMF,



Fig. 7. Illustration of experiment on GB2312. In each basis image, white pixels denote (almost) zero gray values and black ones denote positive gray values. (a) Spatial NCA,

(b) Spatial NMF, (c) SSNMF, (d) Sparse NMF, (e) LNMF, (f) nsNMF, (g) NMF and (h) NCA.

Table 1
Comparison among non-negativity based methods for image understanding.

Database Criterion NMF LNMF nsNMF Sparse NMF SSNMF Spatial NMF Spatial NCA

CBCL SD (Eq. (4)) 0.6080 0.8496 0.7108 0.5915 0.79717 0.8561 0.8448

AOD (Eq. (28)) 0.1717 0.0259 0.1042 0.1873 0.0458 0.0217 0.0269

MSE 0.5833 4.9371 2.0561 1.51 0.6046 0.7121 0.6955

GB2312 SD (Eq. (4)) 0.9378 0.9750 0.9437 0.9065 0.9495 0.9573 0.9355

AOD (Eq. (28)) 0.0116 2.1421e�005 0.0095 0.0251 0.0076 0.0056 0.0131

MSE 14.3415 21.4311 15.2772 15.62 14.707 15.3095 12.8823

Table 2
Recognition comparison: classification rate (%): L¼100.

Database NMF LNMF nsNMF Sparse

NMF

SSNMF Spatial

NMF

Spatial

NCA

CMU 77.1 76.92 77.20 77.36 78.61 78.99 79.06
AR 57.90 61.84 61.39 59.99 60.19 62.15 63.39
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overlapping (smaller AOD), more spatially localized and sparser
basis images (larger SD) are learned. According to the MSE values
shown in Table 1, Spatial NCA and Spatial NMF are able to extract
equally sparse but much more informative basis images as
compared to the ones extracted by LNMF. Compared to NMF,
nsNMF and Sparse NMF, the two proposed methods extract more
spatially localized and sparser features while keeping reasonable
MSE values. Although compared to SSNMF, Spatial NMF and
Spatial NCA achieve a little higher MSE values, minimizing the
reconstruction error is not the main objective of this work. A little
higher MSE is the price one has to pay when using the pixel
dispersion penalty for effectively extracting a few spatially
localized basis images. From another point of view, this also
suggests a tradeoff between locality/sparsity and the quality of
data reconstruction. Pixel dispersion penalty will help interpret
part-based representation of images, but at the same time the
MSE is higher, because the basis images are less overlapped and
thus more sparse, resulting in relatively less information used for
reconstruction.

5.3. Experiments on face recognition

For recognition, we first applied each method to extract basis
image matrix W on each data set. Then, any input image vector x
will be transformed to ðWT WþgIÞ�1WT x as similarly done in [8],
where W is the basis matrix and the identity matrix I is to avoid
the singularity problem (g is small, e.g. 10�6 in our experiments).
For recognition, we extracted L basis images, where LAf100;200g.
We then applied Linear Discriminant Analysis [2], a popular
technique in face recognition, for learning a discriminant subspace
that implicitly selects or combines the extracted basis images.
Finally the nearest neighbor classifier was used to classify testing
samples in the discriminant feature space.

The CMU and AR datasets were used for recognition against
variations such as illumination, occlusion and expression. In our
experiments, 3 and 6 images were randomly selected for CMU
and AR respectively for training, and the rest were used for
testing. This procedure was repeated 10 times for each method
on each dataset, and the average recognition rate is reported.

During the experiments, we fixed the parameter l in Spatial
NMF and Spatial NCA to be 1, and for comparison we report the
best results of the compared methods. The comparison results are
reported in Tables 2 and 3 with respect to different numbers of
basis images. As shown, the proposed Spatial NMF and Spatial
NCA, especially the latter one, outperform the others on CMU and
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AR datasets when the number of extracted basis images is 100;
when more basis images are learned, e.g. 200, our proposed
methods still perform better overall than other methods on
AR dataset, yielding about 122 higher recognition rate. Note
that the two proposed methods do not achieve superior perfor-
mance on CMU when L¼200, because there are less classes
(people) in CMU than AR and it is possible that some spatially
localized basis images extracted could be noisy if more basis
images are learned. Note that this finding can be applied to all
other methods as they all obtain lower performance on CMU
when more basis images are extracted. In addition, we here fixed
the parameter l to 1 in our two proposed methods, while
reporting the best results of other methods for comparison. We
show later it is possible to improve the performance of the
proposed methods if larger l is used. Nevertheless, the pixel
dispersion penalty is an effective penalty function for learning
non-negative basis images.
Table 4
Image understanding: SSNCA vs. Spatial NCA (see text in Section 5.4 for the setting

of Spatial NCA here).

Database Methods SD (Eq. (4)) AOD (Eq. (28)) MSE

CBCL SSNCA 0.7552 0.0679 0.5330

Spatial NCA 0.8448 0.0269 0.6955

GB2312 SSNCA 0.8175 0.0835 10.831

Spatial NCA 0.8433 0.0653 11.5268
5.4. Further comparison

In previous sections, we show that among the two proposed
methods, Spatial NCA is better than Spatial NMF. The difference
between these two methods is that there is no non-negativity
constraint on coefficients in Spatial NCA while there is in Spatial
NMF. This implies that by releasing the non-negativity constraint
on coefficients, more effective non-negative basis images can be
learned.

In this section, we further show that the superiority of Spatial
PCA is partially due to the use of the proposed pixel dispersion
penalty. In order to show that, we additionally compare Spatial
NCA with SSNCA, where SSNCA is to impose the structured
sparsity in [4] onto NCA. The sparse parameter in SSNCA was
tuned in the same way as the one for SSNMF and the best results
were reported. For Spatial NCA, we fixed the parameter l in
Spatial NCA to 0.1 for experiments on CBCL and GB2312 and 1 for
all recognition experiments. Please note that we set the para-
meter in Spatial NCA to 0.1 here for GB2312 because it generates
basis images that have the most similar sparse degree to the best
Fig. 8. Illustration of experiment on CBCL: SSNCA vs. Spatial NCA (see text in Sectio

and (d) Spatial NCA.

Table 3
Recognition comparison: classification rate (%): L¼200.

Database NMF LNMF nsNMF Sparse

NMF

SSNMF Spatial

NMF

Spatial

NCA

CMU 75.53 75.79 77.49 75.53 74.93 74.88 74.69

AR 70.69 69.65 70.79 70.91 70.36 68.64 72.76
ones learned by SSNCA. The results are shown in Fig. 8,
Tables 4 and 5. From these results, we have:
�

n 5.

Tab
Rec

D

C

A

Spatial NCA can extract much sparser and less overlapping
basis images (i.e. smaller AOD and larger SD). This can be
investigated from Fig. 8 and Table 4.

�
 Spatial NCA overall outperforms SSNCA for recognition,

especially on AR dataset. This is shown in Table 5.

Hence, the proposed pixel dispersion penalty plays an impor-
tant role in Spatial NCA and performs more effectively than the
structured sparsity constrain in SSNCA, especially from the recog-
nition aspect.

5.5. More discussion on Spatial NCA and Spatial NMF

5.5.1. The effect of the parameter l
We finally investigate the effect of the parameter l in Spatial

NMF and Spatial NCA which indicates the importance of the pixel
dispersion penalty. In previous section, the importance parameter
l is actually fixed to be 0.1 in most of the cases for experiments on
image understanding and always 1 for recognition. We are now
varying the value of this parameter and see its effect on the
performance of the two proposed methods. For image analysis,
we varied the parameter value from 0.1 to 1 in Tables 6 and 7; for
face recognition, we varied the parameter in [0.01 : 0.01 : 0.09
0.1: 0.1 : 0.9 1 : 0.5 : 10] in Figs. 9 and 10.

From these results, we can find that:
4 for the setting of Spatial NCA here). (a) SSNCA, (b) Spatial NCA, (c) SSNCA

le 5
ognition comparison: SSNCA vs. Spatial NCA (%).

atabase L¼100 L¼200

SSNCA Spatial NCA SSNCA Spatial NCA

MU 78.38 79.06 77.58 74.69

R 58.69 63.39 69.61 72.76



Table 7
Evaluation of pixel dispersion penalty on GB2312: AOD, SD, MSE.

Criterion Method l

0.1 0.3 0.5 0.7 0.9

AOD Spatial NMF 0.0088 0.0073 0.0066 0.0062 0.0057

Spatial NCA 0.0653 0.0280 0.0197 0.0161 0.0137

SD Spatial NMF 0.9456 0.9509 0.9534 0.9546 0.9572

Spatial NCA 0.8433 0.9032 0.9207 0.9289 0.9342

MSE Spatial NMF 14.6579 14.8326 14.8908 14.8406 15.1489

Spatial NCA 11.5268 12.1136 12.4202 12.6183 12.8025
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Fig. 9. Illustration of the effect of PDP for recognition on CMU. The x-axis is on

logarithm scale. (a) L¼100 and (b) L¼200.

Table 6
Evaluation of pixel dispersion penalty on CBCL: AOD (Average Overlap Degree in

Eq. (28)), SD (Sparsity Degree in Eq. (4)), MSE.

Criterion Method l

0.1 0.3 0.5 0.7 0.9

AOD Spatial NMF 0.0217 0.0141 0.0113 0.0090 0.0074

Spatial NCA 0.0269 0.0163 0.0134 0.0109 0.0097

SD Spatial NMF 0.8561 0.8779 0.8864 0.8935 0.8987

Spatial NCA 0.8448 0.8729 0.8811 0.8880 0.8916

MSE Spatial NMF 0.7121 0.8816 0.9502 1.0649 1.1078

Spatial NCA 0.6955 0.8047 0.8879 0.9681 1.0155
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Fig. 10. Illustration of the effect of PDP for recognition on AR. (a) L¼100 and

(b) L¼200.

Table 8
Spatial NCA and Spatial NMF: data explanation for different numbers of bases (L).

Database Criterion Spatial NCA Spatial NMF

L¼36 L¼64 L¼100 L¼36 L¼64 L¼100

CBCL SD (Eq. (4)) 0.8043 0.8448 0.8726 0.8088 0.8561 0.8892

AOD (Eq. (28)) 0.0314 0.0269 0.0227 0.0291 0.0217 0.0163

MSE 1.3672 0.6955 0.3742 1.4059 0.7121 0.3952
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�
 The sparse degree and overlapping degree of the basis images
extracted by Spatial NMF and Spatial NCA are always almost the
same, while Spatial NCA always has a lower MSE performance.

�
 In most of the cases, much better recognition performance can

be obtained by setting a larger l value (41), for example l¼ 3
for Spatial NMF and l¼ 4 for Spatial NCA on CMU when
L¼200. This indicates much better classification results can
be obtained by the proposed Spatial NMF and Spatial NCA
when l41.

�
 The Spatial NCA performs better and more robust than Spatial

NMF. This further validates the comparison analysis between
these two methods in previous sections.

5.5.2. The number of basis images for data explanation

We now further discuss the effect of the number of basis
images learned by Spatial NCA and Spatial NMF for explaining the
given data. Tables 8 and 9 and Figs. 11 and 12 are presented for
this purpose on the CBCL and GB2312 datasets respectively. As
shown, with more number of basis images, both methods can
extract much sparser localized features, i.e. larger SD values and
smaller AOD values. Indeed the reconstruction error becomes
(much) smaller, which is obvious on GB2312. Even though less
basis images are learned, the extracted spatially localized features
are still meaningful as image parts shown in Figs. 11 and 12, and
it is probably because of the explicit spatial constraint between
pixels modeled by the proposed pixel dispersion penalty. How-
ever, from another point of view, as shown by the visual results,
the spatial localized features become more compact (namely the
support area is smaller) which may not more explicitly and
obviously explain the parts of image. Hence there should be a
balance between achieving high sparsity and intuitively explain-
ing parts in image.



Table 9
Spatial NCA and Spatial NMF: data explanation for different number of bases (L).

Database Criterion Spatial NCA Spatial NMF

L¼64 L¼100 L¼121 L¼64 L¼100 L¼121

GB2312 SD (Eq. (4)) 0.91 0.9355 0.9457 0.9265 0.9573 0.9703

AOD (Eq. (28)) 0.0197 0.0131 0.011 0.0121 0.0056 0.0032

MSE 18.2958 12.8823 10.1167 20.3581 15.3095 12.315

Fig. 11. Spatial NCA and Spatial NMF: basis images for different numbers of bases (L) on CBCL. (a) Spatial NCA: L¼36, (b) Spatial NCA: L¼64, (c) Spatial NCA: L¼100,

(d) Spatial NMF: L¼36, (e) Spatial NMF: L¼64, and (f) Spatial NMF: L¼100.

Fig. 12. Spatial NCA and Spatial NMF: basis images for different numbers of bases (L) on GB2312. (a) Spatial NCA: L¼64, (b) Spatial NCA: L¼100, (c) Spatial NCA: L¼121,

(d) Spatial NMF: L¼64, (e) Spatial NMF: L¼100, and (f) Spatial NMF: L¼121.
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5.5.3. The coefficient part in spatial NCA

Finally, we have an in-depth discussion on the coefficient part
in Spatial NCA. Different from Spatial NMF, Spatial NCA releases
the non-negativity constraint on coefficients. That is, there may
be negative values appear in the coefficient matrix H. We now
have a discussion on these data values. In Fig. 13, we present the
coefficient vectors for an image in CBCL across three values of l,
where the horizontal axis is the entry index of a coefficient vector
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Fig. 13. Example of the distribution of coefficients learned by Spatial NCA for an image sample in CBCL: x-axis is the index of basis image, y-axis is the corresponding

coefficient value. (a) l¼ 0, (b) l¼ 0:1 and (c) l¼ 1.
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Fig. 14. Example of the distribution of coefficients learned by Spatial NCA for an image sample in AR dataset. (a) l¼ 0, (b) l¼ 0:1 and (c) l¼ 1.
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and the vertical axis is the value for each entry. Similar figure is
also illustrated for an image in AR dataset in Fig. 14. Note that,
since the scale of the basis matrix W is different for different l
values, the entry of each coefficient vector is therefore scaled by
the scale of the corresponding basis image, so that all coefficient
values are investigated at the same magnitude level in the figure.
We find that when l¼ 0, that is when Spatial NCA becomes NCA,
more negative coefficients are observed, and when l gets much
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larger, for example from l¼ 0:1 to l¼ 1, less negative values are
observed. The coefficients tend to be non-negative when the
proposed pixel dispersion penalty plays a more important role
in Spatial NCA. This is not a single observation and similar things
can be observed for other images in the same or different datasets
when using Spatial NCA as well. Actually, it happens intuitively
and naturally, because when more weight is on pixel dispersion
penalty, the learned factors are more spatially localized, i.e. the
size of the local patch becomes smaller and smaller and the
learned basis images are much less overlapped, and therefore all
non-negative local parts should be additively combined together
in order to reconstruct an image due to the reconstruction error
constrained in the criterion. However, even though the negative
coefficient becomes small, it still has impact on recognition, e.g.
Spatial NCA still achieves better performance than Spatial NMF in
general when l¼ 1, as shown in Table 2. This suggests allowing the
negative coefficients is a way to balance the reconstruction and
recognition performance during extraction of non-negative basis
images, and we see from the reported experiments that this can be
an important issue for sparse matrix factorization techniques. Such a
balance was also investigated and recognized as an important issue
for discriminant subspace methods [35]. Even if almost all entries of
the learned coefficient matrix by Spatial NCA with a very large l are
ultimately non-negative, Spatial NCA still allows negative values
exist in the coefficient matrix H in the initial stage of optimization,
and our results imply this flexibility may help achieve more robust
performance for face recognition under illumination and occlusion.
From another point of view, the solution set for Spatial NMF is just a
subset of the one for Spatial NCA, and hence it is possible that
Spatial NCA performs more flexibly and better.
6. Conclusion

We in this paper explore a novel penalty function called pixel
dispersion penalty in order to guide matrix factorization techni-
ques to learn spatially localized non-negative basis images without
using any additional pre-specified structured patterns. The pixel
dispersion penalty has directly explored the spatial relationship
between pixels. Based on the proposed pixel dispersion penalty, we
have developed spatial non-negative matrix factorization (Spatial
NMF) and spatial non-negative component analysis (Spatial NCA).
Extensive experiments have been conducted in order to quantify
the performance of the proposed pixel dispersion penalty and the
two developed methods against related methods. We find that the
pixel dispersion penalty performs more effective for extracting
spatially localized basis images and overall better for face recogni-
tion under illumination and occlusion. Moreover, by using pixel
dispersion penalty, allowing subtractive and additive combinations
of non-negative basis images at the same time would yield a more
flexible and also effective matrix factorization technique. This leads
to (1) good balance between extracting spatially localized basis
images and extracting informative basis images and (2) overall
better and more robust classification performance. As in [18–24,36],
the future developments of this work can be to combine the
proposed Spatial NMF and Spatial NCA with the manifold learning
smoothed, and (semi-)supervised learning together in order to
obtain much better recognition performance. Also, developing an
online learning model which can deal with large-scale data proces-
sing is also our future work.
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