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Abstract. Categorizing free-hand human sketches has profound impli-
cations in applications such as human computer interaction and image
retrieval. The task is non-trivial due to the iconic nature of sketches,
signified by large variances in both appearance and structure when com-
pared with photographs. Prior works often utilize off-the-shelf low-level
features and assume the availability of a large training set, rendering
them sensitive towards abstraction and less scalable to new categories.
To overcome this limitation, we propose a transfer learning framework
which enables one-shot learning of sketch categories. The framework is
based on a novel co-regularized sparse coding model which exploits com-
mon/shareable parts among human sketches of seen categories and trans-
fer them to unseen categories. We contribute a new dataset consisting
of 7,760 human segmented sketches from 97 object categories. Extensive
experiments reveal that the proposed method can classify unseen sketch
categories given just one training sample with a 33.04% accuracy, offering
a two-fold improvement over baselines.

1 Introduction

Sketch is used to render the visual world since prehistoric times. Closely corre-
lated with the increasing availability of digital touch-screen devices, research on
human sketches has begun to return to the center stage with important appli-
cations such as sketch-based image retrieval (SBIR) and sketch recognition.

Sketches are intuitive to humans and descriptive in nature. They can con-
veniently capture object pose, configuration and fine appearance details. It was
shown recently that although humans are highly capable of identifying sketches,
it remains a very challenging task for computers [1]. Automatically recognizing
sketches is difficult because: (i) sketches are often highly abstract in representa-
tion compared with photographs, e.g. a photo of a person can be sketched as a
stick-man, (ii) sketches are hand-drawn by people with different levels of artistic
skills, as a result they often do not conform precisely to natural image bound-
aries, (iii) sketches lack visual cues (e.g. color and texture) commonly used in
image understanding.

Most prior works [1–3] address the sketch recognition problem following a s-
tandard supervised learning pipeline widely adopted for object recognition. That
is, first a large number (e.g. hundreds) of labeled instances are collected for each
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class; then followed by feature extraction and finally learning a classifier. Due
to the unique characteristics of sketches described above, many existing works
focus on designing features specifically engineered for sketches [4–6]. However,
one critical problem has largely been ignored – it is extremely difficult to collect
sufficient training samples, especially for large number of visual categories. Re-
cently the problem of lack of training data has attracted increasing attentions
for natural images due to the need for large scale learning of thousands of visual
categories [7]. In particular, many works exploit the idea of transfer learning us-
ing an intermediate level semantic representation such as attributes [8] so that
recognition can be achieved even without any training samples, i.e. zero-shot. It
thus comes as a surprise that no one has so far considered this lack of training
data problem for sketch recognition, because this problem is much more acute
for sketches – while almost unlimited number of images can be found for each
visual category on media-sharing sites such as Flickr, much fewer sketches are
uploaded and made available on the Internet.

In this paper, we address this lack of training data problem by developing
a novel one-shot learning framework. Our framework enables the learning of a
sketch classifier using only one training sample for each class. Similar to pre-
vious one-shot learning work [9], the framework takes advantage of knowledge
transferred from previously learned categories, no matter how different these
categories might be. In particular, we make use of common sketch parts learned
from an auxiliary set labeled by human and utilize them in a sparse coding based
one-shot learning framework. Our underlying hypothesis is that common parts
exist among sketches from distinct object categories (e.g. wings of ‘bird’ and ‘air-
plane’). The common parts can then be learned as a set of sparse codes from the
auxiliary set and used as transferrable knowledge to help learn a classification
model for the target classes. We importantly introduce a novel co-regularized
sparse coding algorithm where the sparse coding models for both the auxiliary
set and target set are learned jointly. The objective is to make sure that the
resulting sparse representation agrees as much as possible between the two sets.

More specifically, the proposed one-shot co-regularized sparse coding (OCSC)
approach has two stages. First, sharable basis (e.g. bird wings for replacing wings
of airplane) are discovered from auxiliary set for each novel sketch category
in target set. Secondly, considering which categories an unknown sketch most
relevant to, the sketch is encoded via the proposed co-regularized sparse coding
algorithm that enforces the resulting sparse representation to use as much as
possible the relevant basis discovered during the first stage (e.g. suppose we
know the given unknown sketch is an ‘apple’, it would likely to be encoded by
the basis of ‘tomato’ and ‘peach’ in the auxiliary set, because of their similar
looking). To perform categorization, we employ a sparse representation classifier
(SRC) [10].

The contributions of this work can be summarized as follows: (i) As far
as we know, this is the first work on one-shot learning for sketch recognition.
(ii) We introduce a novel transfer learning framework based on co-regularized
sparse coding. (iii) We create a new dataset containing over 7760 sketches in
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97 categories with manually labeled parts, based on the 20,000 human sketches
dataset [1].

2 Related Works

Sketch recognition There exist plenty of works on sketch recognition [1, 5],
most of which employ a bag-of-visual-words (BoVW) representation coupled
with local features. Some of the features can be commonly found in the vision
literature [2], while others are specifically engineered for sketches [4, 6]. Of all
features tested, it was shown that Histogram of Oriented Gradient (HOG) based
features are among the most effective ones [2, 3]. Despite being useful, unstruc-
tured local features are often incapable of capturing the relatively high degree of
intra-class variance and inter-class ambiguity associated with human sketches.
Yi et al. [5] tackled this problem by proposing a novel mid-level sketch repre-
sentation in the form of a star-graph that encapsulates local features to encode
holistic object structure, thereby offering the state-of-the-art performance to
date on the 20,000 sketches dataset [1]. Nonetheless, existing approaches often
assume the availability of a large number of training data, which seriously limits
their scalability to new categories.
One-shot learning Although one-shot sketch recognition is an unstudied top-
ic, one-shot learning has been exploited in related vision topics [9, 11]. Recent
works on attributes learning [12, 13] demonstrate that human-defined shareable
attributes can be an intuitive mechanism for transfer learning. In this work,
we utilize human segmented sketch parts as the shareable components between
seen and unseen categories. This is drastically different from the previous one-
shot learning works in terms of how transfer learning is enabled: (i) Compared
with the general part-shape prior knowledge based transfer learning [9, 11], the
human segmented parts provide much stronger constraints and thus are much
more informative. (ii) Compared with the semantic attribute based approaches
[12, 13], our human segmented parts do not have to conform to a visual concept
ontology, which are more data-driven, and are regularized by the target data to
provide more discriminative information. In other words, without relying on a
human defined ontology, it is more flexible and can be used for recognizing many
more new visual categories.
Sparse Coding For transferring part-based source sketch dictionary informa-
tion, a co-regularized sparse coding model is developed. Sparse coding has been
widely used in image classification [14, 15], face recognition [16], visual tracking
[17] and many other computer vision areas. However, there is no previous work
on the use of sparse coding for sketch recognition, despite the fact that sparse
coding is intrinsically appropriate for mining sharable parts from human seg-
mented sketches. Importantly, we propose a novel co-regularized sparse coding
model and apply it to the new problem of one-shot sketch recognition.

3 One-shot Co-regularized Sparse Coding Algorithm

Given the source/auxiliary dictionary consisting of sketch parts and target dictio-
nary consisting of one-shot target sketches, we propose an one-shot co-regularized
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sparse coding (OCSC) approach to obtain sparse representation of an unknown
sketch, followed by a sparse representation classifier (SRC) to classify it.

3.1 Notations
We denote matrix A ∈ Rd×n the source dictionary representing n sketch parts in
a d-dimensional space. The target dictionary is denoted as B ∈ Rd×m represent-
ing m one-shot instances in the same space, where B = {b1, b2, . . . , bj , . . . , bm},
and vector bj ∈ Rd represents the one-shot instance of j-th target category.
Therefore, given any unknown sketch y, two different sparse representations,
i.e. α ∈ Rn and β ∈ Rm, are obtained based on A and B, respectively.

3.2 Modeling
Basis Discovery The problem of sharable basis discovery is casted into a
sparse coding problem. For a target category, sharable basis is discovered from
source dictionary by finding the non-zero entries of the sparse representation of
its corresponding one shot target example. The intuition is that, the selected
parts in source dictionary which are able to perfectly reconstruct the one-shot
target instance sketch, should be also qualified to reconstruct other sketches in
the same target category. Therefore, given the one-shot target instance bj , the
basis vj of j-th target category is obtained by:

min
vj

1

2
‖bj −Avj‖22 + σ‖vj‖1, s.t. vji > 0 (1)

where vji is the i-th entry of vj , and vj is a n-dimensional vector whose non-zero
entries indicate the relevance between the sketch parts in source dictionary A
and the j-th target category; in other words, entries in vj can be considered
as the probabilities of the source sketch parts being relevant to the j-th target
category, if a normalization is further imposed.
Co-regularized Sparse Representation Given an unknown sketch y, we
firstly determine the relevance between y and each of the target categories by
obtaining a sparse representation β according to the target dictionary B:

min
β

1

2
‖y −Bβ‖22 + γ‖β‖1, s.t. βj > 0 (2)

where each entries of β indicates the relevance between y and each of the target
categories. Secondly, based on the relevance, the co-regularized sparse represen-
tation α is obtained by:

min
α

1

2
‖y −Aα‖22 + σ‖α‖1 −

λ

m
< V Tα, β >, s.t. αi > 0, βj > 0 (3)

where V = {v1, v2, . . . , vj , . . . , vm} is constructed by Eq. (1), and < V Tα, β >=∑m
j=1(< vj , α > ×βj). According to the role of vj in Eq. (1), < vj , α > indicates

how strong the resulting sparse representation α is linked to the j-th target
category, and the penalty < V Tα, β > is to guide the learning of α such that
the response on the entries relevant to the j-th target category (non-zero entries
of vj) should agree with the response on the corresponding entry in β, i.e. βj .
E.g. βj = 0 means the unknown target sketch should be irrelevant to the j-th
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target category according to Eq. (2) and therefore the corresponding coefficients
in α should be set to 0. The co-regularization process is the reason why we call our
model co-regularized sparse coding. We also name the novel penalty < V Tα, β >
as ‘guidance term’, which controls the strength of the co-regularization, therefore
the amount of knowledge transferred between the source and target sets.

We address the optimization of Criterion Eq. (3) in the next section by
reformulating it as a quadratic program (QP) and further derive an equivalent
linear complementary problem (LCP), such that an efficient principle pivoting
algorithm can be used to solve the problem.

3.3 Optimization Algorithm of OCSC

Here we give details on the optimization algorithm of our one-shot co-sparse-
coding (OCSC) model. To simplify the notations in Eq. (3), we set g(α) =<
V Tα, β >. We then re-formulate the problem in Eq. (3) as the following quadratic
program:

min
α

1

2
αTATAα+ (σ −AT y)Tα− λ

m
g(α) s.t. αi > 0 (4)

Since ATA is a positive semidefinite matrix, this quadratic program in Eq. (4) is
convex, where Karush-Kuhn-Tucker optimal conditions constitute the following
monotone linear complementary problem [16]:

δ = ATAα−AT y + σ − λ

m
g′(α), δ > 0, α > 0, αT δ = 0. (5)

Here g′(α) ∈ Rn is given by the differential of g(α) over α, and the i-th entry
g′(α)i = β1v1i + β2v2i + · · ·+ βmvmi. In our problem, the matrix ATA is always
positive definite, so the convex problem in Eq. (4) and the monotone LCP in
Eq. (5) thus have unique solutions for each vector y. Next, we describe how a
complementary solution can be obtained. Let F and G be two subsets of {1,...,n}
such that F∪G = {1, ..., n} and F∩G = ∅. Then consider the following partition
of the matrix A: A = [AF , AG], where AF ∈ Rd×|F |, AG ∈ Rd×|G|, and |F |
and |G| are the numbers of F and G, respectively. Based on the partition we
reformulate Eq. (5) as the following form:[

δF
δG

]
=

[
ATFAF ATFAG
ATGAF ATGAG

] [
αF
αG

]
−
[
ATF y
ATGy

]
+

[
σF − γ

mg
′(α)F

σG − γ
mg
′(α)G

]
(6)

where αF , δF , σF , g
′(α)F ∈ R|F |, αG, δG, σG, g′(α)G ∈ R|G|, α = (αF , αG), and

δ = (δF , δG). A complementary basic solution is obtained by setting αG = 0 and
δF = 0 in Eq. (6), and we can compute the values of the basic variables αF and
δG by :

min
αF∈R|F |

1

2
‖AFαF − y‖22 + σ

∑
i∈F

αi −
λ

m
< g′(α)F , αF > (7)

δG = ATG(ATFαF − y) + σG −
λ

m
g′(α)G (8)

Finally the optimal solution is given by setting α = (αF , 0) and δ = (0, δG).
Please refer to [18] for more details.
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3.4 Classification based on OCSC

In Eq. (3), we aim to reconstruct a test sketch y using parts in source dictionary
as well as possible, and parts belonging to the same class of y shall be expected to
contribute the most during reconstruction. Therefore, we design a class specific
reconstruction classifier similar to the sparse classifier proposed by [10]. More
specifically, for each class c, let χc : Rn → Rnc be a function which selects the
coefficients belonging to class c, i.e. χc(α) ∈ Rnc is a vector whose entries are the
entries in α corresponding to class c. Thus the unknown sketch y is reconstructed
as ŷc = Acχc(α) only by using the coefficients associated with class c. To this
end, y can be classified by assigning it to the class c corresponding to the minimal
Earth Mover’s Distance (EMD) between y and ŷc, which has shown to be suitable
for many pattern recognition problems for matching patterns represented as
features [19]:

min rc(y) = EMD(y, ŷc) (10)

4 Experiments

We evaluate the proposed one-shot co-regularized sparse coding (OCSC) algo-
rithm under a sketch recognition framework, and offer comparisons against four
standard non-transfer-learning-based alternatives 4, namely template matching
(TM), support vector machine (SVM), SVM with bag-of-words (SVM+BOW)
and sparse coding with sparse representation classifier (SC+SRC).

4.1 Datasets and Features

Datasets – A total number of 7760 sketches from 97 categories (80 sketches per
category) are first collected from the largest human sketches to date [1]. We then
ask annotators to manually label semantic parts of each sketch. The experiment
is largely unconstrained where the annotators were free to segment the sketch
based on their own subjective criteria. Considering the large number of sketches
to annotate, 10 annotators are employed.
Features – Histogram of Oriented Gradient (HOG), the most effective descrip-
tor for sketch according to [5, 1], is employed to encode parts of sketches. Because
of the redundancy of the original parts data, we further apply K-means to ex-
tract 256 most common parts. A similar practice is also used in [20] to obtain
tokens.

4.2 Experimental settings

Among the 97 categories labeled by human, 77 are randomly selected as the
source categories and the rest 20 categories reserved for testing. Our goal is to
identify which target category an unknown sketch belongs to, given only one
instance of each target categories. That is, a total number of 6160 sketches from
77 categories are utilized to form the source part dictionary and 20 sketches from
each of the rest 20 categories to form one shot instances, and 20×79=1580 sketch-
es used for testing. For any sketch image, after scaling it into size of 256×256,

4 Note that few existing transfer learning works handles cross-dataset transfer and
none is designed for transferring from human segmented source sketches to one-shot
target sketches.
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HOG feature is extracted with two main parameters: cell size of 32 pixels and
orientation of 9; hence a 8×8×36=2304 dimensional feature vector is obtained
as representation for a sketch image.

Since this is the first attempt to perform sketch classification using one-
short learning, there are very few existing work to compare against. Instead, we
consider four standard alternatives for comparison:
Template Matching (TM) – where we use the single given sketch instance per
target class as template and measure the distance to every unknown sketch, then
assign it to the corresponding class with minimal template matching distance.
Specifically, each of the 20 one-shot instance sketches is represented by a 2304
dimensional HOG feature vector, which serves as a template to classify the rest
1580 sketches by measuring the EMD distance.
SVM – where all one-shot instances are used for training SVM classifiers to
classify unknown sketches. Here we directly use the extracted HOG features of
the same training sketches to train classifiers to classify the same 1580 testing
sketches same as in TM.
SVM+BOW – same as in [1], we employ HOG formed bag-of-words (BOW) as
features to train classifiers, which is the most popular strategy for sketch recog-
nition. In particular, we randomly sample 784 local features for each one-shot
instance sketch, hence get totally 784×20=15,680 samples to form a 500 visual
words vocabulary by Kmeans. Then it results in a 500 dimensional histogram of
visual words to represent a sketch for training and testing.
SC+SRC – where all one-shot instances form a dictionary, and the standard
sparse coding (SC) algorithm is employed to produce representation for an un-
known sketch, followed by a sparse representation classifier (SRC) to classify.

4.3 Results and discussions

We run our one-shot sketch recognition experiment 10 times by randomly sam-
pling 77 source and 20 target categories each time, and report the average recog-
nition accuracy in Table 1. It can be seen that the proposed OCSC method
achieves an overall 33.04% classification accuracy, and outperforms SVM, SVM+BOW,
TM and SC+SRC by 28.87%, 28.24%, 18.03% and 13.19%, respectively. This
result show clearly that useful knowledge has been transferred from the source
dataset to help one-shot classification.

SVM SVM+BOW TM SC+SRC OCSC (Ours)

4.17% 4.80% 15.01% 19.85% 33.04%

Table 1. Comparison on Sketch Recognition Results

Fig. 1 shows an example confusion matrix for our method. It suggests that
we can achieve very good classification results on some relatively complex cate-
gories even with just one sketch instance, e.g. ‘wheel’ (97.47%), ‘t-shirt’ (91.14%),
‘pumpkin’ (84.81%), ‘wine-bottle’ (83.54%), and ‘computer-monitor’ (74.68%).
However, it performs poorly on some other categories, such as ‘snake’ (16.46%),
‘syringe’ (17.72%), ‘banana’ (13.9%), and ‘sword’ (6.33%). We perform less well
on these categories because they exhibit relatively simple holistic structures
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Fig. 1. Classification confusion matrix for randomly selected target categories showing
the classification capacity of our proposed OCSC algorithm. Diagonal entries indicate
classification accuracy for each class. Non-diagonal entries stands for how many sketches
was incorrectly classified, and which categories they were classified to. We just show
the top mistakes of each category classification for clarity.
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Fig. 2. Effect of guidance term. The left figure shows the trend of recognition rate
when varying the weight of the guidance term. The right figure shows the comparison
of each category with the parameter setting corresponding to the red and blue triangles
in the left figure.

(hence share more common parts) that cause the classifier to confuse one with
another. For example, 40.51% swords go to the pen category, 24.05% syringes
are recognized as pen, and 18.98% pens go to the sword category.

Effect of guidance term The guidance term, g(α) =< V Tα, β > in Eq. (3), is
an important penalty in the proposed OSCS framework. In particular, its weight
λ controls how strong this constraint is to enforce the use of the corresponding
basis to encode a sketch, e.g. in the case of small λ, a sketch would be encoded
with the optimal parts by searching all the words in source part dictionary which
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(a) rifle (b) t-shirt

Fig. 3. Original feature maps and reconstructions on (a) ‘rifle’ and (b) ‘t-shirt’. From
left to the right: the original feature maps, reconstructions without guidance term,
reconstructions by our proposed method.

leads to precise reconstruction. In contrast, in the case of large λ, it would be
encoded by a subset of predetermined parts, i.e., the parts of relevant categories
given by Eq. (1) and Eq. (2). Fig. 2(a) illustrates how overall the recognition
rate changes while increasing the value of λ from 0 to 25, with the other two
parameters fixed. It clearly shows that there is a steep climb in recognition rate
before the optimal value λ = 6 is reached (indicated by red triangle in Fig. 2(a)).
Afterwards, performance drops steadily while approaching 0% when λ = 25.
Such a reduction of recognition rate reflects the trade-off between guidance term
and the regression term , ‖y − Aα‖22, in Eq. (3). That is, too large a weight on
guidance term will make the regression problem ill-conditioned that consequently
impacts the overall classification accuracy. Note that it becomes the standard
sparse coding problem when removing the guidance term in Eq. (3), which is
also equivalent to setting λ = 0 (blue triangle in Fig. 2(a)).

To gain more insight into the usefulness of the guidance term, we offer a set
of per-category recognition results on 20 categories in Fig. 2(b). It shows that,
under the optimal parameters, the guidance term generally improve performance
on all categories except ‘sword’ and ‘megaphone’. In particular, we can observe
a jump in recognition rate on categories such as ‘ice-cream-cone’ (from 24.05%
to 65.82%), ‘computer-monitor’ (from 43.04% to 74.68%) and ‘pumpkin’ (from
49.37 to 84.81%), with those of ‘t-shirt’ and ‘wheel’ lifted to over 90%.

Fig. 3 shows qualitative examples of feature maps and reconstructions with
and without the guidance term, for ‘rifle’ and ‘t-shirt’ . It can be seen that better
reconstructions can be obtained for both categories, especially for salient parts
(e.g. ‘barrel’ of ‘rifle’) and object contours (e.g. outline of ‘t-shirt’).

5 Conclusion

We have studied the problem of one-shot learning of sketch categories, via a
novel co-regularized sparse coding framework. We also demonstrated how shared
sketch parts can be used within this framework as a semantic level descriptor,
as opposed to the rigid grid-level features commonly used in the literature. A
key contributing factor towards the superiority of our work is the introduction
of a guidance term within our one-shot learning formulation that enforces sparse
representations of sketches to agree on a set of predetermined basis. Our experi-
ments on a human labeled dataset of 7,760 sketches show a two-fold improvement
over baselines.
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