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Abstract

Recent advances have shown that algorithms with (2D) matrix-based representation perform better than the traditional (1D) vector-based
ones. In particular, 2D-LDA has been widely reported to outperform 1D-LDA. However, would the matrix-based linear discriminant analysis be
always superior and when would 1D-LDA be better? In this paper, we investigate into these questions and have a comprehensive comparison
between 1D-LDA and 2D-LDA in theory and in experiments. We analyze the heteroscedastic problem in 2D-LDA and formulate mathematical
equalities to explore the relationship between 1D-LDA and 2D-LDA; then we point out potential problems in 2D-LDA. It is shown that 2D-
LDA has eliminated the information contained in the covariance information between different local geometric structures, such as the rows
or the columns, which is useful for discriminant feature extraction, whereas 1D-LDA could preserve such information. Interestingly, this new
finding indicates that 1D-LDA is able to gain higher Fisher score than 2D-LDA in some extreme case. Furthermore, sufficient conditions on
which 2D-LDA would be Bayes optimal for two-class classification problem are derived and comparison with 1D-LDA in this aspect is also
analyzed. This could help understand how 2D-LDA is expected to achieve at its best, further discover its relationship with 1D-LDA, and well
support other findings. After the theoretical analysis, comprehensive experimental results are reported by fairly and extensively comparing
1D-LDA with 2D-LDA. In contrast to the existing view that some 2D-LDA based algorithms would perform better than 1D-LDA when the
number of training samples for each class is small or when the number of discriminant features used is small, we show that it is not always
true and show that some standard 1D-LDA based algorithms could perform better in those cases on some challenging data sets.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Over the last two decades, many subspace algorithms have
been developed for feature extraction. Among them are prin-
cipal component analysis (PCA) [1–4], (Fisher’s) linear dis-
criminant analysis (LDA) [4–8], independent component anal-
ysis (ICA) [9–12], non-negative matrix factorization (NMF)
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[13–15], locality preserving projection [16] and Bayesian prob-
abilistic subspace [17,18], etc.

Most well-known subspace methods require the input pat-
terns to be shaped in vector form. Recently there are efforts
seeking to extract features directly without any vectorization
work on image samples, i.e., the representation of an im-
age sample is retained in matrix form. Based on this idea,
some well-known algorithms are developed, including two-
dimensional principal component analysis (2D-PCA) [19,20]
and two-dimensional linear discriminant analysis (2D-LDA)
[21–23].

2D-PCA was first proposed by Yang et al. [19,20], and
a generalized work has been subsequently described in [24]
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called bilateral-projection-based 2DPCA (B2DPCA). Ye then
proposed the generalized low rank approximations of matrices
(GLRAM) [25] as a further development of 2D-PCA. Recently
a modification on 2D-PCA was proposed in Ref. [26] and it
could be treated as implementing 2D-PCA after rearrangement
of the entries of an image matrix.

For supervised learning, 2D-LDA has also been developed
recently. Xiong et al. [22] and Li et al. [21] extended one-
dimensional LDA (1D-LDA), a vector-based scheme, to 2D-
LDA. In contrast to [21,22] which only do transform on one
side of the image matrix, i.e., either left side or right side, some
methods have been proposed for extraction of the discrimina-
tive transforms on both sides of the image matrix. Yang et al.
[27] proposed to do the IMLDA (uncorrelated image matrix-
based LDA) twice, i.e., IMLDA is first implemented to find the
optimal discriminant projection on the right side of the matrix
and then to find another optimal discriminant projection on the
left side. Similarly, Kong et al. [28] proposed to first extract the
2D-LDA discriminative projections on both sides of the image
matrix independently and then combine them by some process-
ing. Different from them, Ye et al. proposed an iterative scheme
to extract the transforms on both sides [23] simultaneously.
Recently, some other modifications on 2D-LDA [29–31] are
proposed. Especially, in Ref. [30], similar to Fisherface [8], 2D-
LDA is processed after the implementation of 2D-PCA. Though
such rapid development appeared in the last two years; however,
Liu et al. [32] actually had suggested a 2D image matrix-based
(Fisher’s) linear discriminant technique which performed LDA
directly on image matrices in 1993. In nature, the idea behind
is to construct the covariance matrix, including total-class scat-
ter matrix, within-class scatter matrix and between-class scatter
matrix, by just using the original image samples represented
in matrix form. Moreover, some recent studies [24,28,33,34]
have realized that two-dimensional matrix-based algorithms are
special blocked-based methods such as column-based or row-
based LDA\PCA in essence.

2D-LDA is attractive since it is efficient in computation and
always avoids the “small sample size problem” [8,35–38] that
the within-class scatter matrix is always singular in 1D-LDA
when the training sample size is (much) smaller than the dimen-
sionality of the data. Recently, the 2D-LDA based algorithms
have been experimentally reported superior to some standard
1D-LDA based algorithms, such as Fisherface [8], on some
limited data sets.

However, one may ask: “Could 2D-LDA always perform the
best?” “Why would it be better sometimes?” “Is there any draw-
back in 2D-LDA?” “What is the intrinsic relationship between
1D-LDA and 2D-LDA?” “1D-LDA is Bayes optimal for two-
class classification under some sufficient conditions, and then
what is the situation for 2D-LDA? What are the differences be-
tween 1D-LDA and 2D-LDA under their sufficient conditions
being Bayes optimal?” After all, “When is 1D-LDA better than
2D-LDA?”

We do investigation into these questions and present an ex-
tensive analysis between 1D-LDA and 2D-LDA in theory and
in experiments. This is, to the best of our knowledge, the first
of such attempt with comprehensive study. The contributions

of this paper are summarized as follows:

(1) Extensive theoretical comparisons between 1D-LDA and
2D-LDA are presented, and we have the following findings:
(a) From the statistical point of view, 2D-LDA would also

be confronted with the “Heteroscedastic Problem” and
the problem would be more serious for 2D-LDA than
the one for 1D-LDA.

(b) Mathematical equalities are formulated to explore the
relationship between 1D-LDA and 2D-LDA. It gives a
novel way to show that 2D-LDA loses the covariance
information among different local geometry structures
in the image such as rows or columns, while 1D-LDA
could preserve those relations for feature extraction. It
then breaks the appearance view that 2D-LDA is able
to utilize the global geometry structure of an image.
Interestingly, we further find that 1D-LDA is able to
achieve higher Fisher score than 2D-LDA in some ex-
treme case as shown in the paper.

(c) The sufficient conditions when 2D-LDA is Bayes opti-
mal for two-class classification problem are given and
proved. They could help give an interpretation what
2D-LDA is expected ideally. Moreover further discus-
sions between 1D-LDA and 2D-LDA are presented
when those sufficient conditions are satisfied or not.

(2) Extensive experiments are conducted to compare 1D-LDA
with 2D-LDA. The experimental results break the existing
views and indeed show that 2D-LDA would not always be
superior to 1D-LDA when the number of training samples
for each class is small or when the number of discriminant
features used is small.

Though this paper focuses on (Fisher’s) LDA; however, the
analysis could be useful for other similar algorithms. The re-
mainder of this paper is outlined as follows. In Section 2, a brief
review of 1D-LDA and 2D-LDA is given. In Section 3, the-
oretical analysis between 1D-LDA and 2D-LDA is presented.
In Section 4, extensive experiments are conducted. Finally, we
have a summarization in Section 5.

2. Reviews

2.1. Notations

Suppose {(x1
1, X1

1, C1), . . . , (x1
N1

, X1
N1

, C1), . . . , (xL
1 , XL

1 ,

CL), . . . , (xL
NL

, XL
NL

, CL)} are image samples from L classes.

The n-dimensional vector xk
i ∈ Rn is the ith sample of the kth

class Ck and Xk
i ∈ Rrow×col is its corresponding row × col

image matrix, where i = 1, . . . , Nk and Nk is the number of
training samples of class Ck . Let N = ∑L

j=1Nj be the total

sample size. Define uk = 1
Nk

∑Nk

i=1 xk
i as the mean vector of

samples of class Ck and Uk = 1
Nk

∑Nk

i=1 Xk
i as its corresponding

mean matrix. Let u =∑L
k=1

Nk

N
uk be the mean vector of all

samples and U=∑L
k=1

Nk

N
Ukbe its corresponding mean matrix.
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2.2. 1D-LDA (one-dimensional LDA)

1D-LDA aims to find the discriminative vector wopt such that

wopt = arg max
w

wTSbw
wTSww

, (1)

where Sb=∑L
k=1

Nk

N
(uk−u)(uk−u)T, Sw= 1

N

∑L
k=1
∑Nk

i=1 (xk
i −

uk)(xk
i −uk)

T=∑L
k=1

Nk

N
Sk

w, Sk
w= 1

Nk

∑Nk

i=1 (xk
i −uk)(xk

i −uk)
T

are between-class scatter matrix, within-class scatter matrix
and within-class scatter matrix of class Ck , respectively. In
practice, due to the curse of high dimensionality, Sw is always
singular. So far, some well-known standard variations of 1D-
LDA have been developed to overcome this problem, such as
Fisherface [8] and its further developments [40,41], Nullspace
LDA [35–37], direct LDA [42], LDA/QR [38,43] and regular-
ized LDA [5,44–47], etc. Thereof, regularized LDA is always
implemented as follows:

wr-opt = arg max
w

wTSbw
wT(Sw + � I)w

, � > 0. (2)

Other efforts are also made for obtaining more discriminative
and robust 1D-LDA algorithms in the small sample size case,
such as constraint-based LDA algorithm [48,49], weight-based
LDA algorithm [50], mixture model-based LDA [51], locally
LDA [52] and oriented LDA [53], etc.

2.3. 2D-LDA (two-dimensional LDA)

2D-LDA directly performs discriminant feature analysis on
an image matrix rather than on a vector. 2D-LDA tries to find
the optimal vector w2d

opt such that

w2d
opt = arg max

w2d

w2dT
S2d

b w2d

w2dTS2d
w w2d

, (3)

where S2d
b = ∑L

k=1
Nk

N
(Uk − U)(Uk − U)T and S2d

w =
1
N

∑L
k=1
∑Nk

i=1 (Xk
i − Uk)(Xk

i − Uk)
T are between-class scatter

matrix and within-class scatter matrix, respectively. An alter-
native approach of 2D-LDA could be driven by the following
criterion:

w̃2d
opt = arg max

w̃2d

w̃2dT
S̃2d

b w̃2d

w̃2dTS̃2d
w w̃2d

, (4)

where S̃2d
b = ∑L

k=1
Nk

N
(Uk − U)T(Uk − U) and S̃2d

w =
1
N

∑L
k=1
∑Nk

i=1 (Xk
i − Uk)

T(Xk
i − Uk).

Equality (Criterion) (3) or (4) is called the unilateral 2D-
LDA [28]. As aforementioned, a generalization of 2D-LDA
called the bilateral 2D-LDA (B-2D-LDA) [23,28] finds a pair
discriminant vectors (w2d

l-opt , w2d
r-opt ) satisfying:

(w2d
l-opt , w2d

r-opt ) = arg max
(w2d

l ,w2d
r )∑L

k=1
Nk

N
w2d

l

T
(Uk−U)w2d

r w2d
r

T
(Uk−U)Tw2d

l

1
N

∑L
k=1
∑Nk

i=1 w2d
l

T
(Xk

i −Uk)w2d
r w2d

r
T
(Xk

i −Uk)
Tw2d

l

. (5)

3. 1D-LDA vs. 2D-LDA: theoretical analysis

In this part, to compare with 1D-LDA, we first mainly focus
on 2D-LDA in terms of equality (3). It does not mean the
comparison would lose the generality. It is because equality (4)
would become equality (3) if the input matrices are transposed
first, and also so far it is hard to obtain a closed form solution
but a practical solution [23,28,54] is popular and always found
for equality (5). Analysis will be extended to the variations of
2D-LDA in terms of equalities (4)–(5) in Section 3.4.

Without loss of generality, define Xk
i = [Xk

i (1), Xk
i (2), . . . ,

Xk
i (col)] ∈ Rrow×col and its corresponding vector form xk

i =
[Xk

i (1)T, Xk
i (2)T, . . . , Xk

i (col)T]T, where Xk
i (j) ∈ Rrow×1 is

the j th column of matrix Xk
i . We then have

Uk = [Uk(1), . . . , Uk(col)]

=
⎡
⎣ 1

Nk

Nk∑
i=1

Xk
i (1), . . . ,

1

Nk

Nk∑
i=1

Xk
i (col)

⎤
⎦ ,

U = [U(1), . . . , U(col)]

=
[

L∑
k=1

Nk

N
Uk(1), . . . ,

L∑
k=1

Nk

N
Uk(col)

]
,

uk = [Uk(1)T, . . . , Uk(col)T]T,

u = [U(1)T, . . . , U(col)T]T.

As indicated in Refs. [28,33], it is easy to verify the following:

S2d
b =

L∑
k=1

Nk

N

col∑
j=1

(Uk(j) − U(j))(Uk(j) − U(j))T

= S2d
b,1 + · · · + S2d

b,col , (6)

S2d
w = 1

N

L∑
k=1

Nk∑
i=1

col∑
j=1

(Xk
i (j) − Uk(j))(Xk

i (j) − Uk(j))T

= S2d
w,1 + · · · + S2d

w,col , (7)

where

S2d
b,j =

L∑
k=1

Nk

N
(Uk(j) − U(j))(Uk(j) − U(j))T,

j = 1, . . . , col,

S2d
w,j = 1

N

L∑
k=1

Nk∑
i=1

(Xk
i (j) − Uk(j))(Xk

i (j) − Uk(j))T,

j = 1, . . . , col.

3.1. Heteroscedastic problem

First the 2D-LDA criterion in terms of equality (3) could be
equivalently written as

w2d
opt = arg max

w2d

w2dT
{

1
col

∑col
j=1 S2d

b,j

}
w2d

w2dT
{

1
col

∑col
j=1 S2d

w,j

}
w2d

.
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It can be found that the between-class information of 2D-LDA
in terms of equality (3) is modeled by averaging all between-
class scatter matrices S2d

b,j with respect to different column in-
dexes and models the within-class information similarly by av-
eraging all S2d

w,j . From the statistical point of view, both S2d
b

and S2d
w are “plug-in” estimates according to equalities (6)–(7).

However, if columns with different indexes of images are het-
eroscedastic in essence, i.e., S2d

b,j �= S2d
b,i , ∀i �= j or S2d

w,j �=
S2d

w,i , ∀i �= j , then those “plug-in” estimates S2d
b and S2d

w would

be inappropriate if the differences between S2d
b,j or the differ-

ences between S2d
w,j are significantly large. In such case the

heteroscedastic problem [39] has to be addressed. We note that
1D-LDA would also be confronted with the heteroscedastic
problem when the covariance matrices of different classes, i.e.,
Sk

w, k = 1, . . . , L, are not equal [39], and it breaks the assump-
tion of LDA that within-class covariance matrices of all classes
are equal. However, the problem for 2D-LDA is different from
the one for 1D-LDA in the following aspects. It is observed
that samples learned by 2D-LDA in terms of equality (3) are
actually the columns of images according to equalities (6)–(7),
while columns are always obviously different if they are not
coherent. Hence, on one hand, for estimation of within-class
scatter information, columns with different indexes of images
within the same class could be heteroscedastic (i.e., S2d

w,j are
not equal), even if the image samples in vector form are not
heteroscedastic (i.e., Sk

w are equal). On the other hand, the het-
eroscedastic problem in 1D-LDA is mainly due to the unequal
within-class covariance matrices of different classes, but such
a problem could additionally happen to S2d

b in 2D-LDA for es-
timation of between-class scatter information, because it is for-
mulated by averaging all S2d

b,j . Therefore, it would be expected
that the heteroscedastic problem in 2D-LDA could be more se-
rious than that in 1D-LDA. However, such a seriously potential
problem in 2D-LDA has not been pointed out before.

3.2. Relationship between 1D-LDA and 2D-LDA

Let w=[�wT

1 , . . . ,
�
w

T

col]T be any n-dimensional vector, where
�
wi ∈ Rrow×1. To explore the relationship between 1D-LDA
and 2D-LDA, we first have the following lemma, and its proof
can be found in Appendix A.

Lemma 1. If
�
w1, . . . ,

�
wcol ∈ Rrow×1 are imposed to be

equivalent, i.e.,

w2d = �
w1 = · · · = �

wcol ∈ Rrow×1, (8)

then the following relations are valid:

w̃TSbw̃ = w2dT
S2d

b w2d + w2dT

⎧⎨
⎩

L∑
k=1

Nk

N

col∑
j=1,h=1,j �=h

(Uk(j)

−U(j))(Uk(h) − U(h))T

⎫⎬
⎭w2d , (9)

w̃TSww̃ = w2dT
S2d
w w2d + w2dT

⎧⎪⎨
⎪⎩

1

N

L∑
k=1

Nk∑
i=1

col∑
j=1,h=1,j �=h

(Xk
i (j)

−Uk(j))(Xk
i (h) − Uk(h))T

⎫⎪⎬
⎪⎭w2d , (10)

where

w̃ =
⎡
⎣w2dT

, . . . , w2dT︸ ︷︷ ︸
col

⎤
⎦T

. (11)

2D-LDA is apparently indicated to preserve global geomet-
ric information of image since it directly lies on samples rep-
resented in image matrix form. However, the above lemma re-
veals that unlike 1D-LDA, it may lose the covariance infor-
mation among different local geometry structures, such as the
columns here. This is because in equalities (9) and (10), sum-
mation of the covariance information of data after a 2D-LDA
transform and the eliminated covariance information by 2D-
LDA between different local geometry structures is just the co-
variance information of data after a special 1D-LDA transform,

where w2dT
S2d

b w2d is the between-class covariance informa-

tion and w2dT
S2d

w w2d is the within-class covariance informa-
tion induced by the 2D-LDA transform w2d . Hence 2D-LDA
does not completely utilize global geometric information of an
image. Though w̃ is a special row · col( = n) dimensional vec-
tor; however, equalities (9)–(10) suggest 1D-LDA could pre-
serve those information.

Although some recent studies [28,33] have indicated that
2D-LDA is a special block-based algorithm; however, the re-
lationship between 1D-LDA and 2D-LDA has not been further
explored theoretically as shown in equalities (9) and (10) be-
fore. Based on them, we here provide a new way to reveal that
those part-based local geometric structures are considered sep-
arately and show the covariance information between them is
not taken into account by 2D-LDA in theory.

Furthermore, the relationship formulated by Lemma 1 could
in fact provide a more in-depth insight view. The following
theorem then tells such an interesting issue.

Theorem 1. 1 D-LDA can have higher Fisher score than 2D-
LDA if the following cases are valid:

L∑
k=1

Nk

N

col∑
j=1,h=1,j �=h

(Uk(j) − U(j))(Uk(h) − U(h))T = 0,

(12)
1

N

L∑
k=1

Nk∑
i=1

col∑
j=1,h=1,j �=h

(Xk
i (j) − Uk(j))(Xk

i (h)

− Uk(h))T = 0. (13)

Proof. In such a case, the following relations hold:

w̃TSbw̃ = w2dT
S2d

b w2d , (14)

w̃TSww̃ = w2dT
S2d

w w2d . (15)
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Since w̃ is just a special n-dimensional vector, hence it is valid
that:

max
w2d∈Rrow

w2dT
S2d

b w2d

w2dTS2d
w w2d

� max
w∈Rn

wTSbw
wTSww

. (16)

That is, 1D-LDA can obtain higher Fisher score than
2D-LDA. �

One situation when equalities (12) and (13) are valid is the
case that columns with different indexes of image matrices are
statistically independent. A further interpretation of equality
(16) in such case could be provided from another point of view
in next section.

3.3. 2D-LDA: a Bayes optimal feature extractor under
sufficient conditions

It is known that for two-class classification problem 1D-LDA
will be Bayes optimal if data are normally distributed with equal
covariance matrices within each class [4,5]. Then what is the
situation for 2D-LDA? The analysis here attempts to seek the
sufficient conditions when 2D-LDA would be Bayes optimal
for two-class classification. Finally, the differences between
1D-LDA and 2D-LDA will be discussed when those sufficient
conditions are satisfied or not.

Suppose X = [X(1), . . . , X(col)] is a random Rrow×col ma-
trix, where X(j) ∈ Rrow, j=1, . . . , col. Let p(X) and p(X(j))

be the probability density functions of X and X(j), respec-
tively, and let p(X|Ck)and p(X(j)|Ck) be the class-conditional
probability density functions of class Ck . Then it is valid that

p(X) = p(X(1), . . . , X(col)),

p(X|Ck) = p(X(1), . . . , X(col)|Ck).

If X(1), . . . , X(col) are independent, we then have

p(X) =
col∏
j=1

p(X(j)), p(X|Ck) =
col∏
j=1

p(X(j)|Ck). (17)

Given two classes C1 and C2, to classify X using Bayesian
decision principle, it is said X ∈ C1 if and only if
p(C1|X) > p(C2|X) else X ∈ C2. Note that P(Ck|X) =
p(X|Ck)P (Ck)

p(X)
, where P(Ck) is the prior probability of class Ck .

If X(1), . . . , X(col) are assumed to be independent,1 then

P(Ck|X) =
col∏
j=1

p(X(j)|Ck)

p(X(j))
P (Ck), (18)

log(P (Ck|X)) =
col∑
j=1

{log(p(X(j)|Ck)) − log(p(X(j)))}

+ log(P (Ck)). (19)

1This condition could be strict and a discussion will be given at the end
of this section.

If all the j th columns X(j) of the kth class Ck are normally
distributed with mean Mk(j) and covariance matrix �j

k , i.e.,

p(X(j)|Ck) = (2�)−row/2|�j
k |−1/2 exp{− 1

2 (X(j)

− Mk(j))T(�j
k )

−1(X(j) − Mk(j))},

log(p(X(j)|Ck)) = − row

2
log 2� − 1

2 log |�j
k | − 1

2 (X(j)

− Mk(j))T(�j
k )

−1(X(j) − Mk(j)) (20)

then the Bayes classifier function gk(X) can be formulated as

gk(X) = log(P (Ck|X))

=
col∑
j=1

{
− row

2
log 2� − 1

2
log |�j

k | − 1

2
(X(j)

−Mk(j))T(�j
k )

−1(X(j) − Mk(j)) − log(p(X(j)))

}
+ log(P (Ck)). (21)

In practice, utilizing the maximum likelihood principle, Mk(j)

and �j
k could be estimated by

M̂k(j) = (Nk)
−1

Nk∑
i=1

Xk
i (j) = Uk(j), (22)

�̂j
k = (Nk)

−1
Nk∑
i=1

(Xk
i (j) − Uk(j))(Xk

i (j) − Uk(j))T, (23)

where Xk
i (j) is the j th column of the ith sample matrix of class

Ck as defined previously.
Then, based on equalities (17)–(23), the following theorem

first gives the sufficient conditions when 2D-LDA would be
Bayes optimal for two-class classification problem. Its proof
can be found in Appendix B.

Theorem 2. For two-class classification problem, 2D-LDA in
terms of equality (3) is Bayes optimal if the following conditions
hold:

(1) Columns with different indexes of image matrices are in-
dependent, i.e., equality (17).

(2) Columns with the same index of image matrices within each
class are normally distributed, i.e., equality (20), and the
covariance matrices are equal as follows:

�̂j1
k1

= �̂j2
k2

= S̃w, ∀j1 �= j2, k1 �= k2,

S̃w =
2∑

k=1

col∑
j=1

P(Ck, j)

⎧⎨
⎩(Nk)

−1
Nk∑
i=1

(Xk
i (j)

−Uk(j))(Xk
i (j) − Uk(j))T

⎫⎬
⎭ ,

P(Ck, j) = Nk · (N · col)−1. (24)

(3) Differences between any two columns with the same index
of two class mean matrices are equal except some scalar
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scaling, i.e., there exist si �= 0, i = 1, . . . , col, such that

�U = si(U1(i) − U2(i)) = sj (U1(j) − U2(j)),

∀i �= j, i, j = 1, . . . , col. (25)

Those sufficient conditions could help understand some find-
ings presented. It is because if condition (1) is satisfied then
it is true why 2D-LDA in terms of equality (3) eliminates the
relations between different columns, and if conditions (2)–(3)
are valid it would be interpretable that why 2D-LDA estimates
its between-class scatter matrix by averaging the between-class
scatter matrices over all column indexes and also model the
within-class scatter matrix by averaging the within-class scatter
matrices over all column indexes.

Being Bayes optimal, 2D-LDA presented above, how-
ever, requires more conditions than 1D-LDA. Then, what
are the differences between 1D-LDA and 2D-LDA when
those conditions in Theorem 2 are satisfied or not satis-
fied? We finally give a discussion below. First, we note that
for any given X = [X(1), . . . , X(col)], its vector form is
x = [X(1)T, . . . , X(col)T]T. Then it is true that

p(X) = p([X(1), . . . , X(col)]) = p([X(1)T, . . . , X(col)T])
= p([X(1)T, . . . , X(col)T]T) = p(x), (26)

p(X|Ck) = p(x|Ck), (27)

p(Ck|X) = p(Ck|x). (28)

Hence the declaration “X ∈ C1 if and only if p(C1|X) >

p(C2|X), else X ∈ C2” is equivalent to the one “X ∈ C1 if
and only if p(C1|x) > p(C2|x), else X ∈ C2.” Therefore for
two-class classification problem, we could have the following:

(1) If those sufficient conditions (1)–(3) in Theorem 2 are sat-
isfied, both 1D-LDA and 2D-LDA are Bayes optimal. The
vector-form sample x=[X(1)T, . . . , X(col)T]T is then nor-
mally distributed with equal covariance matrix within each
class under conditions (1)–(2), and the covariance matrix
of x within class Ck is indicated by equality (29) below
under condition (1):

E[(x − E[x|Ck])(x − E[x|Ck])T|Ck]

= E

⎡
⎢⎢⎢⎣
⎛
⎜⎜⎝

X(1) − E[X(1)|Ck]
...

X(col) − E[X(col)|Ck]

⎞
⎟⎟⎠
⎛
⎜⎜⎝

X(1) − E[X(1)|Ck]
...

X(col) − E[X(col)|Ck]

⎞
⎟⎟⎠

T
∣∣∣∣∣∣∣∣∣
Ck

⎤
⎥⎥⎥⎦

=
⎡
⎣E[(X(1) − E[X(1)|Ck])(X(1) − E[X(1)|Ck])T|Ck] 0 0

0
. . . 0

0 0 E[(X(col) − E[X(col)|Ck])(X(col) − E[X(col)|Ck])T|Ck]

⎤
⎦ , (29)

where the estimations of E[(X(j) − E[X(j)|Ck])(X(j) −
E[X(j)|Ck])T|Ck], j =1, . . . , col, k=1, 2 are equal under
condition (2).

(2) If only conditions (1)–(2) are satisfied, 1D-LDA could be
Bayes optimal, while there is no guarantee for 2D-LDA
being Bayes optimal. Hence one could recall equality (16)
which indicates that why 1D-LDA is better than 2D-LDA
in such case, i.e., condition (1).

(3) If X(1), . . . , X(col) are not independent, then 2D-LDA in
terms of equality (3) loses discriminative information in
the covariance information between different columns of
an image. Generally speaking, condition (1) is not required
for 1D-LDA to be Bayes optimal.

(4) If conditions (2)–(3) are not satisfied, then the het-
eroscedastic problem in 2D-LDA discussed cannot be
avoided.

(5) Finally, we see that if vector sample x = [X(1)T, . . . ,

X(col)T]T is normally distributed with equal class covari-
ance matrices, then 1D-LDA is Bayes optimal, but those
conditions (1)–(3)for 2D-LDA cannot be implied in such
case.

3.4. Why is 2D-LDA sometimes superior?

The above analysis on 2D-LDA is based on the equality
(3). Actually some similar conclusions could also be obtained
for its variations. First, we see that if the image matrices are
first transposed, equality (4) would become equality (3). Even
though B-2D-LDA has combined both approaches, however, it
is hard to obtain a closed form solution. So far there are at least
two ways to find a practical solution of B-2D-LDA. One way
is to drive an iterative algorithm that finds the optimal value
for w2d

l-opt while fixing w2d
r-opt and finds the optimal value for

w2d
r-opt while fixing w2d

l-opt [23,54]. Another way is to calculate
them independently and then combine them [28]. Hence the
potential drawbacks of 2D-LDA discussed above are embedded
in each process of computation of B-2D-LDA.

However, why has 2D-LDA been recently reported superior
to some 1D-LDA based algorithms experimentally? The rea-
sons may be the following:

(1) The dimensionality of the optimal feature w2d
opt extracted

by 2D-LDA is much smaller than the one wopt extracted
by 1D-LDA, while the number of samples learned for w2d

opt

is actually much larger than the one for wopt , because
for 2D-LDA each column or each row of an image is a

training sample, while for 1D-LDA only the whole image
is a training sample. Therefore, the number of parameters
estimated for w2d

opt is much less than the one for wopt and
the bias of the estimation of w2d

opt could be smaller than
the estimation of wopt .

(2) 1D-LDA is always confronted with the singularity prob-
lem. For 1D-LDA, the strategy to overcome such problem
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is crucially important. So far some standard approaches
are proposed [8,35–38,42–46]. It is known that most of the
dimension reduction techniques for 1D-LDA would lose
discriminant information, such as Fisherface and nullspace
LDA. In contrast, 2D-LDA would always avoid the sin-
gularity problem. However, some well-known standard
approaches of 1D-LDA, such as nullspace LDA and reg-
ularized LDA, have been presented to be effective and
powerful in practice, but previous experimental results
have rarely reported the comparison of 2D-LDA with
them, especially regularized LDA which is almost a pure
LDA except the additional regularization term. Thus this
paper would like to include them for comparison.

(3) The data set selected for comparison is important. More-
over in the experiment, we will find that the final classi-
fier is indeed an impact in evaluating the performances of
1D-LDA and 2D-LDA. However, it is also not suggested
before.

4. 1 D-LDA vs. 2D-LDA: experimental comparison

Besides theoretical comparison, a comprehensive experi-
mental comparison between 1D-LDA and 2D-LDA is also

Table 1
Brief descriptions of databases and subsets used

Database/subset Number of
persons

Number
of faces
(per person)

Database/
subset
size

Image size

FERET 255 4 1020 92 × 112
CMU-NearFrontalPose-
Expression

68 15 1020 60 × 80

CMU-Illumination-
Frontal

68 43 2924 60 × 80

CMU-11-Poses 68 11 748 60 × 80

Fig. 1. Illustrations of some face images (images are resized to show): (a) FERET; (b) CMU-Illumination-Frontal; (c) CMU-NearFrontalPose-Expression;
(d) CMU-11-Poses.

performed here. The main goal is to compare them under the
case when the number of training samples for each class is lim-
ited or when the number of discriminant features used is small.
Some existing views will be broken. Experimental results are
reported on FERET [55] and CMU [56] databases. As either
2D-LDA or 1D-LDA is actually used for discriminant feature
extraction, a final classifier is employed for classification in the
feature space. Two such classifiers, namely nearest neighbor
classifier (NNC) and nearest class mean classifier (NCMC) are
employed to evaluate the performances. They are always pop-
ularly used for evaluation of the LDA-based algorithms and it
will be shown that the final classifier would have an impact on
the performances of some algorithms. Note that in almost all
published papers regarding 2D-LDA only NNC is selected as
the final classifier [21–23,27,29,30].

We compare some standard 1D-LDA based algorithms with
some standard 2D-LDA based algorithms. The compared 1D-
LDA based algorithms involve Fisherface, nullspace LDA and
regularized LDA. For comparison, they are renamed as “1D-
LDA, Fisherface”, “1D-LDA, nullspace LDA” and “1D-LDA,
regularized LDA”. Regularized LDA is implemented by equal-
ity (2) with � = 0.005. For 2D-LDA, we have implemented its
three standard algorithms, i.e., equalities (3)–(5). For compari-
son, they are also renamed as “unilateral 2D-LDA, left” (equal-
ity (3)), “unilateral 2D-LDA, right (equality (4)), and “bilateral
2D-LDA” (equality (5)), where the number of iteration in “bi-
lateral 2D-LDA” is set to be 10. Noting that regularized LDA
is almost a pure 1D-LDA except the regularization term added
to the within-class scatter matrix, hence it is valuable to take it
into comparison.

4.1. Introduction to databases and subsets

A large subset of FERET [55] is established by extract-
ing images from four different sets, namely Fa, Fb, Fc and
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duplicate. It consists of 255 persons, and for each individual
there are four face images undergoing expression variation,
illumination variation, age variation, etc.

Three subsets of CMU PIE [56] are also established, called
“CMU-NearFrontalPose-Expression”, “CMU-Illumination-
Frontal” and “CMU-11-Poses”. The subset “CMU-Near-
FrontalPose-Expression” is established by selecting images
under natural illumination for all persons from the frontal
view, 1

4 left\right profile and below\above in frontal view. For
each view, there are three different expressions, namely natu-
ral expression, smiling and blinking [56]. Hence there are 15
face images for each object. The subset “CMU-Illumination-
frontal” consists of images with all illumination variations in
Frontal view under the background light off and on. The subset
“CMU-11-Poses” consists of images across 11 different poses
of each person, including 3

4 right profile, half right profile,
1
4 right profile, frontal view, 1

4 left profile, half left profile,
3
4 left profile, below in frontal view, above in frontal view
and two surveillance views, and all images are under natural
illumination and natural expression.

The data sets used are briefly summarized in Table 1 and
some face images are illustrated in Fig. 1. Note that all images
are linearly stretched to full range of pixel values of [0, 1].

Table 2
Range of the number of training samples for each class

Database Range

FERET [2 : 1 : 3]
CMU-NearFrontalPose-Expression [2 : 1 : 8]a

CMU-Illumination-Frontal [2 : 1 : 8]
CMU-11-Poses [2 : 1 : 8]

a[2 : 1 : 8] means the number of training samples for each class ranges
from 2 to 8 with step 1.
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Fig. 2. Recognition rate vs. number of discriminant features on FERET; training number is three for each class. (a) Final classifier: NCMC. (b) Final classifier:
NNC.

4.2. Comparison

For each data set, the comparisons involve two parts. In the
first part, the number of training samples for each class is fixed,
and the average recognition rates of an algorithm with respect to
different numbers of discriminant features are presented. Based
on these results, we then illustrate the best average recogni-
tion rates of an algorithm with respect to different numbers of
training samples for each class in the second part. Results are
reported based on NCMC and NNC, respectively. Additionally,
for an algorithm tested on a data set, if the number of discrim-
inant features used is fixed and there are Num_T training sam-
ples for each class, then the test procedure will be repeated 10
times. For each time, Num_T samples are randomly selected
from each class to establish the training set and the rest are for
testing. The average recognition rate is got finally.

4.2.1. Recognition rate vs. number of discriminant features
This section first presents the experimental results to show

how the average recognition rates of the LDA-based algorithms
change depending on the number of extracted discriminant fea-
tures used when the number of training samples for each class
is fixed. In Table 2, the range of the variation of the number
of training samples for each class is indicated. Since the ex-
perimental analysis would like to focus on comparing different
LDA algorithms in the small sample size case that is when the
training sample size for each class is limited, so the average
recognition rates are not reported when the number of training
samples for each class is more than 8 over three CMU subsets.
Solving the small sample size problem is a strong motivation
for many proposed LDA algorithms in the past several years,
including the compared ones in this paper.

For an algorithm, suppose its maximum number of discrim-
inant features is Num_AF . Then its all features are ordered
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Fig. 3. Recognition rate vs. number of discriminant features on “CMU-NearFrontalPose-Expression”; training number is two for each class in (a)–(b) and
training number is seven for each class in (c)–(d). (a) Final classifier: NCMC. (b) Final classifier: NNC. (c) Final classifier: NCMC. (d) Final classifier: NNC.

according to their corresponding eigenvalues in a descen-
dant order, since the eigenvalue of each feature could be
treated as a measurement of the discriminative ability. Fi-
nally, the top Num_F features are selected to evaluate the
recognition performance, where we would let Num_F =
5, 10, 15, 20, . . . , Num_AF . Additionally, the scheme for
“bilateral 2D-LDA” is explained as follows. “bilateral 2D-
LDA” has bilateral projections, while the maximum numbers
of features with respect to two different side projections are
always different. Hence, if there are Num_F features selected
for “bilateral 2D-LDA”, it means the top Num_F features are
selected for both projections, respectively. If the value Num_F

has exceeded the maximum number of features of one of the
projections, then all features of that projection would be used.

Due to the limited length of the paper, only some fig-
ures describe the experiment results could be illustrated. For
FERET database, we present the results when the number of
training samples for each class is three (Fig. 2); for “CMU-

NearFrontalPose-Expression” and “CMU-11-Poses”, it is 2
and 7 in Figs. 3 and 5; for “CMU-Illumination-Frontal” it is 3
and 7 in Fig. 4. The sample size of FERET is limited so we
only present the case when the number of training samples for
each class is three; for “CMU-Illumination-Frontal” the result
when the number of training samples for each class is 3 rather
than 2 is presented, because the performance of Fisherface
increases notably as observed later in Fig. 7 when NCMC is
used. The best average recognition rates with respect to differ-
ent numbers of training samples for each class will be totally
reported in the next section.

From the experimental results above, it could observed that
the 2D-LDA based algorithms always achieve their best perfor-
mances when the number of discriminant features is retained
appropriately small while the performances of them would
sometimes degrade if more features are used. Interestingly, the
1D-LDA based algorithms may also achieve their best perfor-
mances sometimes when an appropriately small set of features
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Fig. 4. Recognition rate vs. number of discriminant features on “CMU-Illumination-Frontal”; training number is three for each class in (a)–(b) and training
number is seven for each class in (c)–(d). (a) Final classifier: NCMC. (b) Final classifier: NNC. (c) Final classifier: NCMC. (d) Final classifier: NNC.

is retained. However, sometimes their performances would first
descend and then ascend as more features are used. Such sce-
nario could be obviously observed in Fig. 3(a)–(b) and Fig. 5.
A recent developed theory on LDA by Martínez and Zhu has
told the fact that not all discriminant features are good for clas-
sification [57]. Hence a small set of features would sometimes
get its best accuracy. Of course it is not always the case, since
the 2D-LDA based algorithms do not degrade too much in Fig.
3(c)–(d) when more features are used and the 1D-LDA based
algorithms perform better and better in Fig. 4 when more fea-
tures are used. However, it could be found that if all features of
the 1D-LDA based algorithms are used, the performances are
always almost the same as their best ones acquired, but it is not
always the case for the 2D-LDA based algorithms. Therefore,
the experimental results indicate how to select the proper num-
ber of features would potentially be a more serious problem for
the 2D-LDA based algorithms than that for the 1D-LDA based
algorithms.

The experiments have also broken the existing viewpoint that
2D-LDA could always achieve better performance than 1D-
LDA when only fewer discriminant features are used [21,22],
since it is also found that regularized LDA and nullspace LDA
could achieve their best performances and perform better than
the 2D-LDA based algorithms on data sets FERET (Fig. 2),
“CMU-NearFrontalPose-Expression” (Fig. 3) and “CMU-11-
Poses” (Fig. 5(c)–(d)) when fewer features are used. Note that
even Fisherface could perform better than some 2D-LDA based
algorithms if a little more discriminant features are employed
sometimes.

4.2.2. Recognition rate vs. number of training samples
This section shows how the best average recognition rate of

an algorithm changes depending on the number of training sam-
ples for each class. Except FERET database, all experimental
results are presented in figures. In all tables and figures, the best
average recognition rates for fixed number of training samples
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Fig. 5. Recognition rate vs. number of discriminant features on “CMU-11-Poses”; training number is two for each class in (a)–(b) and training number is
seven for each class in (c)–(d). (a) Final classifier: NCMC. (b) Final classifier: NNC. (c) Final classifier: NCMC. (d) Final classifier: NNC.

for each class are reported. For each algorithm, the best aver-
age recognition rate is the highest one among the correspond-
ing average recognition rates with respect to different numbers
of discriminant features, which are reported in the last section.
It would be a fair comparison, as the number of discriminant
features used has an obvious impact on the performance of an
algorithm as observed in the first part.

From the experiments, it could be observed that the 2D-LDA
based algorithms almost always perform better than Fisher-
face except the experiment on “CMU-Illumination-Frontal”
(Fig. 7) where Fisherface performs the best by using NCMC
there when the number of training samples for each class is
larger than three. Though it is known that Fisherface loses dis-
criminant information [35,36,42,58], however it has also been
known that Fisherface was first proposed to handle various
illuminations [8] for face recognition, while images in “CMU-
Illumination-Frontal” are just corrupted by illuminations and

no other variations exist there. The performance of Fisherface
would dramatically reduce if other variations, such as pose or
expression, are involved. However, we observe that regularized
LDA and nullspace LDA always obtain superior performances
than the 2D-LDA based algorithms on some data sets. This
could be obviously found from the experiments on the data
sets FERET (Table 3),“CMU-NearFrontalPose-Expression”
(Fig. 6) and “CMU-11-Poses” (Fig. 8). Note that Nullspace
LDA would perform the same no matter NCMC or NNC is used.
It is because the projection on the nullspace of the within-class
scatter matrix has already transformed each training sample to
its class center [37]. Other than nullspace LDA, the superiority
of regularized LDA is more notable no matter which final clas-
sifier is used. It may be because regularized LDA only adds a
small regularization to the within-class scatter matrix and it is
almost a purely naive Fisher’s LDA algorithm while nullspace
LDA still discards some discriminant information [58].



W.-S. Zheng et al. / Pattern Recognition 41 (2008) 2156–2172 2167

Table 3
Best average recognition rate on FERET

Final classifier NCMC (%) NNC (%)

Number of training samples for each class 2 3 2 3

1D-LDA, Fisherface 63.51 76.20 63.59 71.61
1D-LDA, nullspace LDA 76.10 85.10 76.10 85.10
1D-LDA, regularized LDA 77.35 87.53 77.37 88.27
Bilateral 2D-LDA 75.84 83.33 76.29 87.14
Unilateral 2D-LDA, right 65.63 70.12 68.78 81.18
Unilateral 2D-LDA, left 73.51 81.29 72.51 83.10
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Fig. 6. Recognition rate vs. number of training samples on “CMU-NearFrontalPose-Expression”. (a) Final classifier: NCMC. (b) Final Classifier: NNC.
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Fig. 7. Recognition rate vs. number of training samples on “CMU-Illumination-Frontal”. (a) Final classifier: NCMC; (b) Final classifier: NNC.

Actually, some 2D-LDA based algorithms do not perform well
over some challenging data sets. For instance, both “unilateral
2D-LDA, left” and “unilateral 2D-LDA, right” do not have sat-
isfied performances on “CMU-NearFrontalPose-Expression”
and “CMU-11-Poses” no matter if NCMC or NNC is used, and

“unilateral 2D-LDA, right” does not perform well over “CMU-
Illumination-Frontal” using NCMC. However, “bilateral
2D-LDA” would perform more stable. It outperforms some
1D-LDA based algorithms on “CMU-Illumination-Frontal”
data set, and it performs the best especially when only two
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Fig. 8. Recognition rate vs. number of training samples on “CMU-11-Poses”. (a) Final classifier: NCMC. (b) Final classifier: NNC.

samples for each class are used for training as shown in
Figs. 5(a)–(b) and 8.

From the experimental results, it is found that the perfor-
mance of 2D-LDA is sometimes sensitive to the final classifier.
As indicated by Table 3 and Figs. 6–8, most 2D-LDA based
algorithms could improve their recognition performances ob-
viously if NNC rather than NCMC is used. In contrast, the
1D-LDA based algorithms are less sensitive. For Fisherface,
NCMC may be more preferred, but for regularized LDA, us-
ing NNC would be a little better. However, it does not mean
the 2D-LDA based algorithms would outperform the 1D-LDA
based algorithms if NNC is employed.

Hence there is no convinced evidence that the 2D-LDA based
algorithms could always outperform the 1D-LDA based algo-
rithms if the number of training samples for each class is small,
and it also breaks the existing view on this issue [27,28].

In fact, some experimental results above also agree with
some published results [21–23,28] that some 2D-LDA based
algorithms like “bilateral 2D-LDA” and “unilateral 2D-LDA,
right” are reported to always get superior performance to Fish-
erface. However, it is not always true due to the experimental
results reported on “CMU-Illumination-Frontal”, in which im-
ages are only purely undergoing illumination. Compared with
the published papers, more extensive comparisons have been
provided between 1D-LDA and 2D-LDA, by comparing the
performances of them depending on the number of discrimi-
nant features used and the number of training samples for each
class. Moreover, some existing views are broken. In addition,
we find that just a small regularization term could thoroughly
enhance the performance of 1D-LDA like regularized LDA.
The comparison between regularized LDA and the 2D-LDA
based algorithms has not been reported before.

5. Summarization

In order to investigate when vector-based LDA would be
better, we present theoretical and experimental analyses be-

tween 1D-LDA and 2D-LDA. The findings are briefly listed
below:

(1) 2D-LDA would also be confronted with the heteroscedastic
problem, and it would be more serious for 2D-LDA than
1D-LDA.

(2) Relationship between 1D-LDA and 2D-LDA are explored
and modeled in equalities. It gives a new way to find 2D-
LDA actually loses the covariance information between
different local structures, while 1D-LDA could preserve
such information. It is further found that the Fisher score
of 1D-LDA is higher than the one gained by 2D-LDA in
the extreme case.

(3) For two-class classification problem, the sufficient condi-
tions for 2D-LDA being Bayes optimal are given. Discus-
sions between 1D-LDA and 2D-LDA are also presented
when those sufficient conditions are satisfied or not, sup-
porting the other findings in this paper.

(4) Existing views are broken in the experiment and it is found
there is no convinced evidence that 2D-LDA would al-
ways outperform 1D-LDA when the number of training
samples for each class is small or when the number of
discriminant features used is small. Sometimes 1D-LDA,
especially regularized LDA, performs better. Besides the
choice of final classifier, it is also found that selecting the
appropriate number of features would be a more serious
problem in 2D-LDA than that in 1D-LDA.

However, it is known that 2D-LDA could always avoid the
singularity problem of within-class scatter matrix while 1D-
LDA would be always confronted with it in practice. Moreover,
for 2D-LDA each column or each row of an image could be
treated as a training sample while only the whole image could
be a sample for 1D-LDA. Hence, from the bias estimation point
of view, 2D-LDA might be more stable since more samples are
actually used for learning.
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Finally, it is stressed that this paper does not aim to declare
which algorithm is the best. We investigate into the question by
presenting a fair comparison between 1D-LDA and 2D-LDA
in both theoretical and experimental sense. The goal of the
extensive comparisons is to explore the properties of 2D-LDA,
present its disadvantages and some inherent problems, and find
when 1D-LDA would be better. Even though some 2D-LDA
based algorithms do not perform as well as some standard 1D-
LDA based algorithms in the experiments, it still does not mean
2D-LDA is not effective sometimes.

In conclusion, our findings indicate that using the matrix-
based feature extraction technique would not always result in a
better performance than using the traditional vector-form rep-
resentation. The traditional vector-form representation is still
useful.
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Appendix A. Proof of Lemma 1

As indicated at the beginning of Section 3, we note that
xk
i = [Xk
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i (col)T]T. Then we have
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Using equalities (6)–(7) and equalities (8), (11), the lemma is
then proved.

Appendix B. Proof of Theorem 2

Based on equalities (21)–(23), substituting the estimates
of the means and the covariance matrices and eliminating the
ineffective ingredients that do not affect the classification result
in formula (21) would yield the following Bayes classifier:

gk(X) =
col∑
j=1

{
−1

2
log |�̂j

k | − 1

2
(X(j) − Uk(j))T(�̂j

k )
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}
+ log(P (Ck)). (B.1)

Under the condition (2) in the theorem, �̂j
k are equal. We hence

further have
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j=1

{
−1

2
log |S̃w| − 1

2
(X(j) − Uk(j))T(S̃w)−1(X(j)

−Uk(j))

}
+ log(P (Ck))

=
col∑
j=1

{
−1

2
log |S̃w| − 1

2
(X(j))T(S̃w)−1X(j)

+ (Uk(j))T(S̃w)−1X(j)

−1

2
(Uk(j))T(S̃w)−1Uk(j)

}
+ log(P (Ck)).
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By eliminating the ineffective terms again, the Bayes classifier
gk(X) could be further reduced and formulated as

gk(X)=
col∑
j=1

{
(Uk(j))T(S̃w)−1X(j) − 1

2
(Uk(j))T(S̃w)−1Uk(j)

}
+ log(P (Ck)) (B.2)

Therefore, for two-class classification, it is said X ∈ C1 if and
only if g1(X) > g2(X), i.e.,

col∑
j=1

{
(U1(j))T(S̃w)−1X(j) − 1

2
(U1(j))T(S̃w)−1U1(j)

}
+ log(P (C1))

>

col∑
j=1

{
(U2(j))T(S̃w)−1X(j)− 1

2
(U2(j))T(S̃w)−1U2(j)

}
+ log(P (C2)).

Then we could say X ∈ C1 if and only if
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Finally, under the condition (3) in the theorem, i.e., �U =
si(U1(i)−U2(i))=sj (U1(j)−U2(j)), ∀i �= j, i, j=1, . . . , col,
we then obtain the declaration that X ∈ C1 if and only if
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else X ∈ C2.
Next, the following shows why 2D-LDA in terms of equal-

ity (3) would be a Bayes optimal feature extractor for two-
class classification problem under the conditions indicated in
Theorem 2. First, for two-class classification problem, S2d

b =∑col
j=1 S2d

b,j and S2d
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j=1 S2d
w,j , where
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Note that S2d
b,j and S2d

b could be written equivalently below
based on N = N1 + N2 and equality (25):

S2d
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Second, it is known that the optimal feature of 2D-LDA in
terms of equality (3) for two-class classification problem would
satisfy �optw2d

opt = (S2d
w )−1S2d

b w2d
opt , �opt > 0. Hence we have

w2d
opt = (�opt )
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Since (�opt )
−1 N1N2

N2 (
∑col

j=1 (sj )
−2�UT)w2d

opt is a scalar value,
then we have

w2d
opt ∝ (S2d

w )−1�U. (B.6)

Furthermore, it is easy to verify S2d
w =col · S̃w. Comparing with

equality (B.4), we then have

w2d
opt ∝ wbayes . (B.7)

It means the discriminant feature of 2D-LDA is in proportion
to the Bayes optimal feature obtained in equality (B.4). They
are the same except some scalar scaling under the conditions
indicated by the theorem.
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