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Abstract
Deep learning has shown its human-level performance in various applications. However, current deep learning
models are characterized by catastrophic forgetting of old knowledge when learning new classes. This poses a
challenge such as in intelligent diagnosis systems where initially only training data of a limited number of diseases
are available. In this case, updating the intelligent system with data of new diseases would inevitably downgrade its
performance on previously learned diseases. Inspired by the process of learning new knowledge in human brains,
we propose a Bayesian generative model for continual learning built on a fixed pre-trained feature extractor. In this
model, knowledge of each old class can be compactly represented by a collection of statistical distributions, e.g.,
with Gaussian mixture models, and naturally kept from forgetting in continual learning over time. Unlike existing
class-incremental learning methods, the proposed approach is not sensitive to the continual learning process and
can be additionally well applied to the data-incremental learning scenario. Experiments on multiple medical and
natural image classification tasks reveal that the proposed approach outperforms state-of-the-art approaches that
even keep some images of old classes during continual learning of new classes.
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1 Introduction
Deep learning models, particularly convolutional neural
networks (CNNs), have demonstrated human-level per-
formance in various applications, such as in healthcare
[1–4], surveillance [5–8], and machine translation [9, 10].
However, particularly in the healthcare domain, most in-
telligent diagnosis systems are limited to the diagnosis of
only one or a few diseases and cannot be easily extended
once deployed, and therefore cannot diagnose all diseases
of certain tissues or organs (e.g., skin or lung) as medi-
cal specialists do. Since collecting data of all (e.g., skin or
lung) diseases is challenging due to various reasons (e.g.,
privacy and limited data sharing), it is impractical to train
an intelligent system diagnosing all diseases at once. One
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possible solution is to make the intelligent system have the
continual or lifelong learning ability, such that it can con-
tinually learn to diagnose more and more diseases with-
out resourcing (or resourcing few) original data of previ-
ously learned diseases [11]. Such continual learning of new
classes may also appear in other applications such as in
automated retail stores [12]. However, current intelligent
models are characterized by catastrophic forgetting of old
knowledge when learning new classes [13–15].

Researchers have recently proposed multiple types of
continual learning approaches to reduce catastrophic for-
getting of old knowledge particularly in deep learning
models [16–20]. The overall objective is to help the up-
dated classifier accurately recognize both new and old
classes, when only data of new classes and few (or even
no) data of old classes are available during classifier updat-
ing. However, almost all existing approaches modify the
feature extraction part of the classifiers either in parame-
ter values or in structures during continual learning of new
classes. In contrast, humans seem to learn new knowledge
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by adding memory of the learned new information without
modifying the (e.g., visual) perceptual pathway. Therefore,
one possible cause of catastrophic forgetting in existing
models is the change in the feature extraction part (cor-
responding to the perceptual pathway in human brains)
when learning new knowledge. With this consideration,
we propose a generative model for continual learning built
on a fixed pre-trained feature extractor, which is different
from all existing (discriminative) models. The generative
model can naturally prevent knowledge of each old class
from being forgotten without storing original images of old
classes or regenerating synthetic images during continual
learning. Experiments on two skin disease classification
tasks and two natural image classification tasks demon-
strate that the proposed approach outperforms state-of-
the-art approaches which even keep some images of old
classes during continual learning. The proposed approach
provides a new direction for the investigation of contin-
ual learning, i.e., exploring effective ways to represent and
store knowledge of each class based on a fixed but power-
ful feature extractor. Note that this work is an extension of
the previous conference publication [21] in the following
aspects.

1) In the methodology, the statistical distribution of
each feature output for each class is extended from
the parametric Gaussian mixture model (GMM) to
the non-parametric Kernel density estimation (KDE).
Empirical evaluation indicates that both methods are
effective in the representation of statistical
distributions for the proposed method.

2) The application and effectiveness of the proposed
method are extended from general class-incremental
learning to two new scenarios, i.e., few-shot
continual learning and data-incremental learning.

3) Empirical comparisons with very recent
state-of-the-art continual learning methods were
performed.

4) The effect of feature output size on continual
learning performance is extensively evaluated.

5) Qualitative evaluation was performed on the
separability of distributions between classes.

6) Two natural image datasets, CIFAR100 and CUB200,
were employed to further support the effectiveness
and superiority of the proposed method. In addition,
extensive sensitivity study of hyper-parameters was
performed on these new datasets.

7) A comprehensive literature review is included.

2 Related work
There are typically two types of continual learning prob-
lems, task-incremental and class-incremental. Task-incre-
mental learning presumes that one model is incremen-
tally updated to solve an increasing number of tasks, of-

ten with multiple tasks sharing a common feature extrac-
tor but having task-specific classification heads. Task iden-
tification is presumed to be available during inference, i.e.,
users know which classification head should be applied
when predicting the class label of new test data. This set-
ting is impractical for intelligent diagnosis systems where
old and new diseases need to be diagnosed together. In
contrast, class incremental learning presumes that one
model is incrementally updated to predict more and more
classes sharing a single classification head. This approach
is more relevant to the continual learning of new diseases.
Thus, our study focuses on the class-incremental learn-
ing problem. Existing approaches to the two types of con-
tinual learning can be roughly divided into four groups:
regularization-based, expansion-based, distillation-based,
and regeneration-based.

Regularization-based approaches often estimate model
components (e.g., kernels in CNNs) crucial for old knowl-
edge, and try to change them as little as possible with
the help of regularization loss terms when learning new
knowledge [16, 22–28]. The importance of each model pa-
rameter can be measured by the sensitivity of the loss func-
tion to changes in the model parameter, as in the elas-
tic weight consolidation (EWC) method [16], or by the
sensitivity of the model output to small changes in the
model parameter, as in the memory aware synapses (MAS)
method [29]. The importance of each kernel in a CNN
model can be measured based on the magnitude of the ker-
nel (e.g., L2 norm of the kernel matrix), as in PackNet [27].
Regularization may also be designed to ensure that cer-
tain gradient-based measurement is not increased during
learning for the stored data of old tasks in the memory, as
in GEM [30] and its extensions A-GEM [31], or to update
the model only in certain feature subspace that is irrelevant
to the old knowledge, as in LOGD [32] and Adam-NSCL
[33]. A new model architecture can be designed such that
part of the model is allowed to be more easily updated than
the others as in AANet [34].

Regularization-based approaches could help models
keep old knowledge in the first few rounds of continual
learning where little new knowledge needs to be learned.
However, it would become increasingly difficult to con-
tinually learn new knowledge, particularly at later rounds
of continual learning, because more and more kernels in
CNNs become crucial and therefore should be kept un-
changed to increase old knowledge.

To make models more flexible in learning new knowl-
edge, expansion-based approaches are developed to mod-
ify model structures by adding new kernels, layers, or even
sub-networks when learning new knowledge [17, 35–43].
For example, Aljundi et al. [35] proposed employing an
additional network for a new task and training an ex-
pert model to make decisions about which network to
use during inference. It turns a class-incremental learn-
ing problem into a task-incremental problem at the cost
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of additional parameters. As another example, Yoon et
al. proposed a dynamically expandable network (DEN)
[17] by selectively retraining the network and expand-
ing kernels at each layer if necessary. Most expansion-
based and regularization-based approaches were initially
proposed for task-incremental learning, although some of
them (e.g., EWC) can be extended for class-incremental
learning. One exception is the recently proposed state-
of-the-art method DER [40] and the simple DER [41],
where the feature extractor trained at each round of con-
tinual learning is aggregated into the updated classifier
over class-incremental learning. In addition to CNN back-
bones, the Transformer backbone was also recently used
in class-incremental learning [42], where learnable task-
specific input tokens at the last self-attention block of the
Transformer are learned at each round.

In comparison, distillation-based approaches can be di-
rectly applied to continual learning of new classes by dis-
tilling knowledge from the old classifier (for old classes)
to the new classifier (for both new and old classes) while
learning new knowledge [18, 19, 44–48], where the old
knowledge is often implicitly represented by soft outputs
of the old classifier with a stored small amount of old im-
ages and/or new classes of images as the inputs. A distil-
lation loss is added to the original cross-entropy loss dur-
ing training the new classifier, where the distillation loss
helps the new classifier have similar relevant output com-
pared to the output of the old classifier for any input image.
The well-known methods include the learning without for-
getting (LwF) [18], incremental classifier and representa-
tion learning (iCaRL) [19], and the end-to-end incremental
learning (End2End) [46]. More recently, the distillation has
been extended to intermediate CNN layers, either by keep-
ing feature map activation unchanged as in the learning
without memorizing (LwM) [49], or by keeping the spatial
pooling unchanged along the horizontal and vertical di-
rections as in PODNet [50], or by keeping the normalized
global pooling unchanged at last convolutional layers as in
learning a unified classifier incrementally by rebalancing
(UCIR) [51].

These distillation-based methods achieve state-of-the-
art performance for the class-incremental learning prob-
lem. However, such methods would become insufficient
with continual learning of more classes, either because
stored old data become too small to be representative for
each old class, or because the outputs of the old classifier
with new classes of data as inputs cannot represent the
knowledge of old classes due to underlying differences be-
tween new classes and each old class.

In addition, regeneration-based approaches have also
been proposed particularly when no old data are available
while learning new classes. The basic idea is to train an
auto-encoder [52–54] or generative adversarial network
(GAN) [20, 55–57] to produce enough realistic data for
each old class when learning new classes. The potential

issue is that fine-grained lesion features may not be well
learned by the generative model, which would result in un-
satisfying synthetic data when updating the intelligent di-
agnosis system. Different from all the existing approaches,
we propose a simple but effective generative model that is
based on a fixed pre-trained feature extractor and does not
store any old data.

3 A generative model for continual learning
The proposed method is inspired by two interesting find-
ings in neuroscience. One finding is that most infants can-
not form episodic memory before 3 years old [58–60], and
the other finding is that humans continually form mem-
ory from infants to elderly people [61]. One hypothetical
explanation is that the visual pathway in younger infants’
brains might be rapidly changing with daily visual stim-
uli from their surroundings and then become firm with
little change after approximately 3 years of age. Humans
can continually learn new visual knowledge through their
whole lives, probably because they form new memories
about the new knowledge, but without changing the visual
pathway which works as a visual feature extractor. This
could help explain why current deep learning models are
characterized by catastrophic forgetting of old knowledge,
i.e., model parameters or model structures from the fea-
ture extractor part are always changed to some extent in
almost all continual learning approaches. With this con-
sideration, we propose a human-like continual learning
framework, i.e., first pre-training a feature extractor, then
fixing the feature extractor and forming new memory for
new knowledge. In the following part, we will introduce
one general way to pre-train the feature extractor, one sta-
tistical method to represent the memory, and one Bayesian
model to predict the class of any new (test) data after con-
tinual learning each time.

3.1 Fixed pre-trained feature extractor
An ideal feature extractor should output two different
feature vectors if two input images were visually differ-
ent, meanwhile visually more similar inputs should re-
sult in more similar feature vectors from the feature ex-
tractor. The visual feature extractor (i.e., visual pathway)
in younger infants is probably taught in a certain self-
supervised way, although the mechanism of self-supervision
in the infant brain has not been explicitly understood
[59]. While it is worth exploring various self-supervised
learning approaches (e.g., auto-encoder) to train a feature
extractor, here we leave the self-supervision exploration
for future work, and adopt a simpler but widely used ap-
proach, i.e., pre-training a CNN classifier with a relatively
large number of images whose classes or domains are rel-
evant but different from those in the task of interest and
then using the pre-trained CNN feature extractor (often
consisting of all the convolutional layers; Fig. 1, top row)
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for the continual learning classification task of interest. It
is expected that the pre-trained feature extractor would
probably be powerful enough to discriminate different in-
put images in the task of interest. Experiments in this study
verify that even such a simple approach using a fixed pre-
trained feature extractor can already help significantly re-
duce catastrophic forgetting of old knowledge with the
proposed generative approach. It is worth noting that, dur-
ing continual learning of new classes in the classification
task of interest, the pre-trained feature extractor is fixed
and not updated. The knowledge of each learned new class
is represented and stored as described in the following sub-
section.

3.2 Memory formation
Different from state-of-the-art continual learning ap-
proaches, which often store a small number of original im-
ages for each old class, the proposed approach stores not
original images but the statistical information of each class
based on the feature extractor outputs of all training im-
ages belonging to the class. Here, each element of the out-
put feature vector is assumed to represent a certain type of
visual feature. Then, based on the class of training images,
the distribution of each feature is estimated and collected
together to form the memory of the knowledge of the spe-
cific class (Fig. 1, second and third rows, each row for one
class). Formally, denote by Dc = {xi, i = 1, . . . , Nc} the set of
training images for class c, zi = [zi1, zi2, . . . , zik , . . . , ziK ]T the
L2-normalized output feature vector from the feature ex-
tractor for the input image xi, and f = [f1, f2, . . . , fk , . . . , fK ]T

the vector of random variables representing the output of
the feature extractor, and then the statistical distribution
of the k-th feature fk for class c can be represented by a

probability density distribution p(fk|c, Dc),

p(fk|c, Dc) = g
({zik , i = 1, . . . , Nc}

)
, ∀k ∈ {1, . . . , K}, (1)

where g(·) could be any appropriate distribution estima-
tor. Here a Gaussian mixture model (GMM) with a small
number of S components is adopted to represent g(·) for its
simplicity. Since each Gaussian component can be com-
pactly represented by its mean and standard deviation,
in total, only 2 · S · K numbers are stored in the mem-
ory to represent the knowledge of each class. Dc is omit-
ted from p(fk|c, Dc) in the following for simplicity. Fig-
ure 2 demonstrates representative distributions of eight
randomly selected features for three classes, which clearly
indicates that there exist differences in the statistical dis-
tributions of individual features between classes. Note that
here, a K-dimensional Gaussian is not used to represent
the distribution of the K-dimensional feature vector be-
cause the multi-dimensional Gaussian not only requires
storing more parameters per class in the memory, but also
more importantly, requires many more training data to ob-
tain good estimate of the mean and covariance matrix for
each class. However, in general, only hundreds of training
images are available for each class, and such a small num-
ber of images are often far from sufficient to estimate the
mean and covariance matrix of the high-dimensional fea-
ture vector.

3.3 Bayesian model for prediction
Based on the statistical distributions of visual features for
each class, we propose a generative classification model
with the Bayesian rule for prediction. Given a test image

Figure 1 Fixed pre-trained feature extractor (top) and memory formation (middle to bottom). The feature extractor is pre-trained and fixed during
continual learning. The memory of each class is represented by a set of statistical distributions over features
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Figure 2 Representative statistical distributions of eight randomly selected features for three classes from the CIFAR100 dataset. Each class is from a
different continual learning round. Each row is for one class, and each column represents the statistical distributions of the same feature for three
different classes. In each subfigure, the curve represents the GMM approximating the histogram of the feature based on all training images of the
class

xj, denote by zj = [zj1, zj2, . . . , zjk , . . . , zjK ]T the correspond-
ing output from the feature extractor, and p(c|zj) the prob-
ability of the test image belonging to class c. Then, based
on the Bayes rule, we can calculate

p(c|zj) =
p(zj|c) · p(c)

∑M
m=1 p(zj|m) · p(m)

, (2)

where M is the number of classes learned thus far. Con-
sidering that potential correlations between certain fea-
ture components are probably caused by co-occurring vi-
sual parts of a specific class of objects, it can be assumed
that different feature components fk ’s are conditionally in-
dependent given specific class c. Then, the logarithm of
Equation (2) gives

log p(c|zj) =
∑

k

log p(fk = zjk|c) + log p(c) – α, (3)

where α = log
∑

m p(zj|m)p(m) can be considered a con-
stant for different classes. In Equation (3), the likelihood
function value p(fk = zjk|c) for each feature element k can
be directly obtained based on the previously stored knowl-
edge p(fk|c) (Equation (1)) in the memory. The prior p(c)
for class c can be simply estimated based on the ratio of
the number of training images for this class over the to-
tal number of training images of all learned classes thus
far, i.e., p(c) = Nc/

∑
m Nm. Note that in this case, the num-

ber of training images for each class needs to be stored
in the memory such that p(c) can be easily updated when
new classes’ knowledge is learned as above (Equation (1)).
Based on Equation (3), the class of the test image xj would
be directly predicted as the one with the highest value of
log p(c|zj) over all classes learned thus far. The proposed
method is summarized in Algorithms 1 and 2.

The advantages of the proposed approach over existing
continual learning approaches are clear. First, the knowl-
edge of each old class is statistically represented by the

Algorithm 1 Incremental learning of class c
Input: Dc = {xi, i = 1, . . . , Nc} \\ the set of training images

for class c
Output: p(fk|c, Dc) \\ the statistical distribution of the k-

th feature
1: F ← the pre-trained feature extractor;
2: for i = 1, 2, . . . , Nc do
3: zi = L2(F(xi)); \\ extract features of each image and

perform L2 normalization
4: end for
5: for k = 1, 2, . . . , K do
6: p(fk|c) = g({zik , i = 1, . . . , Nc}); \\ perform distribu-

tion estimator (e.g., GMM) for each feature
7: end for

Algorithm 2 Bayesian model for prediction
Input: xj \\ a test image
Output: predicted class label y∗

1: F ← the pretrained feature extractor;
2: zj = L2(F(xj)); \\ extract features of the test image and

perform L2 normalization
3: for c = 1, 2, . . . , C do \\ C: number of learned classes
4: log p(zj|c) = 0;
5: for k = 1, 2, . . . , K do
6: log p(zj|c) = log p(zj|c) + log p(fk = zjk|c); \\ es-

timate log likelihood
7: end for
8: log p(c|zj) = log p(zj|c) + log p(c); \\ from Equation

(3), omitting constant α

9: end for
10: y∗ ← arg maxc=1,...,C log p(c|zj)

set of likelihood functions (Equation (1)) and compactly
stored in the memory. Our approach does not need to store
any original images for each old class in the memory and
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instead only stores the Gaussian mixture model (GMM)
parameters (together with the dataset size for each class).
When learning a set of new classes at each continual learn-
ing stage, the stored GMM parameters are collected from
the memory and then used by the Bayesian rule for class
probability prediction. In contrast, almost all the strong
baselines (including those state-of-the-art methods) need
to store a small subset of old images per class (e.g., a total
of 2000 images) in the memory, and each stored old image
will be used together with the new classes of images as in-
put to the model for model training. Therefore, old knowl-
edge will not be forgotten over continual learning of new
classes. In comparison, old knowledge will be inevitably
and gradually forgotten over multiple rounds of continual
learning in existing approaches, either due to the changes
in the feature extractor or due to the reduced number of
original images to be stored in the limited memory. Sec-
ond, the final performance of the proposed approach over
multiple rounds of continual learning is not affected by
the number of learning rounds and the number of new
classes added in each round. In contrast, in existing ap-
proaches, more rounds of continual learning with smaller
number of new classes added each time would often lead
to worse classification performance at later round of con-
tinual learning. Therefore, the proposed approach is more
robust to various continual learning conditions with little
forgetting of old knowledge.

4 Experimental evaluation
4.1 Experimental setup
The proposed approach was extensively evaluated on a di-
verse group of image datasets, including two natural im-
age datasets and two medical skin image datasets. Medi-
cal image datasets are normally quite different from nat-
ural image datasets in terms of appearance and textures.
Each dataset is briefly summarized as follows (also see Ta-
ble 1).

CIFAR100 [62] is a dataset of natural images of daily ob-
jects, including various animals, plants, outdoor and in-
door scenes, and vehicles. It consists of 100 classes, 500
training images and 100 test images for each class. The size
of each image is quite small, only 32 × 32 pixels.

Table 1 Datasets for diverse image classification tasks, from
natural to medical images, small scale to relatively large scale, and
general to fine-grained classifications. Image size varies greatly in
Skin40. [120, 500] means that image width and height vary in the
range between 120 and 500 pixels

Dataset #Classes Training set Test set Image size

CIFAR100 100 50,000 10,000 32× 32
CUB200 190 5694 5496 [120, 500]
Skin7 7 8010 2005 600× 450
Skin40 40 2000 400 [260, 1640]

CUB200 [63] is a dataset of bird species typically used for
fine-grained recognition [64]. It contains 11,788 images for
200 categories, approximately 60 images per class. Note
that although part locations, binary attributes and bound-
ing boxes are provided, only image-level species labels are
used in our classification experiments. For experiments on
the CUB200 and the CIFAR100 datasets, the adopted fixed
feature extractor is directly from the pre-trained CNN
model (e.g., VGG-Net [65] or ResNet101 [66]) based on
the ImageNet dataset [67], where the last fully connected
layer is removed and the remaining part is used for the
feature extractor. Considering that the pre-trained feature
extractor is based on the ImageNet dataset, the TinyIm-
ageNet dataset, which is a subset of ImageNet and often
adopted for continual learning, was not used in the experi-
ments here. Additionally, for a similar reason, the ten com-
mon classes (Black footed Albatross, Laysan Albatross,
Sooty Albatross, Indigo Bunting, American Goldfinch,
Ruby throated Hummingbird, Green Violetear, Blue Jay,
Dark eyed Junco and Red breasted Merganser) between
CUB200 and ImageNet were removed from CUB200, re-
sulting in 190 classes for continual learning on the CUB200
dataset.

Skin7 [68] is a skin lesion dataset from the challenge of
dermoscopic image classification held by the International
Skin Imaging Collaboration (ISIC) in 2018. It consists of
7 disease categories; each image is of size 600 × 450 pix-
els. This dataset presents severe class imbalance, with the
largest class 60 times larger than the smallest class.

Skin40 is a subset of 193 classes [69] of skin disease im-
ages collected from the Internet. The 40 classes with rel-
atively more number of images (60 images per class) were
chosen from the 193 classes to form the Skin40 dataset,
while the remaining 153 classes (10 to 40 images per class)
were used to train a CNN classifier whose final classifica-
tion layer was then removed to form the fixed feature ex-
tractor in most experiments relevant to the Skin7 and the
Skin40 datasets. Notably, there is no overlap between the
153 classes (for training the feature extractor in advance)
and the classes in Skin7 and Skin40 (for continual learning
evaluation).

During training the feature extractor based on the 153
skin image classes, each image was randomly cropped
within the scale range [0.8, 1.0] and then re-sized to 224 ×
224 pixels, followed by random horizontal and vertical flip-
ping. The mini-batch stochastic gradient descent (batch
size 32) was used to train the feature extractor, with an
initial learning rate of 0.01 and then divided by 10 at the
35th, 70th, and 105th epoch, respectively. Weight decay
(0.0005) and momentum (0.9) were also applied. The fea-
ture extractor was trained for 120 epochs with observed
convergence.

In each experiment, multiple rounds of continual learn-
ing were performed, with a few (e.g., 2, 5, 10) new classes
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to be learned at each round. After each round of contin-
ual learning, the mean class recall (MCR) over all classes
learned thus far was calculated. For each experiment, the
average and standard deviation of MCR over five runs were
reported, where the five orders of classes to be continually
learned were fixed and used in the proposed approach and
baseline methods. Unless otherwise mentioned, ResNet-
101 was used as the backbone for the feature extractor, and
the dimension of feature vector K was 2048 and the num-
ber (S) of Gaussian components in each GMM model was
empirically set to 2 based on a small validation set for each
dataset.

4.2 Effectiveness of the generative model
This section evaluates the effectiveness of the proposed
approach by comparing it with recent state-of-the-art
strong baselines, including iCaRL [19], end-to-end incre-
mental learning (End2End) [46], learning a unified classi-
fier incrementally via rebalancing (UCIR) [51], distillation
and retrospection (DR) [47], learning without forgetting
(LwF) [18], adaptive aggregation networks (AANets) [34],
and separated softmax for incremental learning (SSIL)
[44]. The suggested hyper-parameter settings in the orig-
inal work were adopted unless otherwise mentioned. In
each round of continual learning, for the iCaRL, End2End,
DR, UCIR, AANets, and SSIL, which need a certain amount
of old data, the number of images stored (i.e., memory size)
for all old classes is respectively 2000 on CIFAR100, 400
on CUB200, 50 on Skin7, and 100 on Skin40. The memory
size was chosen such that the stored number of images for
each class was only a small portion of the original training
images at the last round of continual learning. For each ex-
periment, an upper-bound result was also reported (e.g.,
Fig. 3 and Fig. 4, green star) by training a non-continual
classifier with all classes of training data.

All the baselines were previously evaluated by initially
training a CNN classifier from scratch before starting con-
tinual learning. Therefore, the proposed approach was first
compared to the baselines where each initial CNN classi-
fier for each baseline was trained from scratch. In this case,
as clearly displayed in Fig. 3 (first row), the proposed ap-
proach outperforms all the strong baselines. Compared to
the strongest baseline, the absolute improvement by the
proposed approach is respectively 14.3% (first row, left)
and 9.3% (first row, right) at the last round of continual
learning when learning 5 and 10 new classes in each round,
respectively. However, the comparison could be consid-
ered unfair because the proposed approach used a pre-
trained feature extractor while the baselines did not. In
consideration of this point, the proposed approach was
also compared with the baselines where each initial CNN
classifier at the first learning round was fine-tuned from
the same pre-trained feature extractor for each baseline
method. In this case, Fig. 3 (second row; also see Ta-
ble 2) demonstrates that although some strong baselines

Figure 3 Performance comparison on natural image datasets. First
row: learning 5 (left) and 10 (right) classes at each round on CIFAR100,
with CNN classifiers initially trained from scratch for each baseline
method. Second row: learning 5 (left) and 10 (right) classes at each
round on CIFAR100, with CNN classifiers initially fine-tuned from the
same pre-trained feature extractor as that used in the proposed
approach. Third row: learning 5 (left) and 10 (right) classes at each
round on CUB200, with CNN classifiers initially fine-tuned from the
same pre-trained feature extractor. X-axis in each sub-figure
represents the accumulated number of learned classes in the
corresponding continual learning task

have slightly better performance in the first several rounds
of continual learning, the performance of most baselines
decreases faster than the proposed approach particularly
when more continual learning rounds are involved (left),
and the proposed approach performs either best (left) or
equivalently well (right) compared to the strong baselines
at the last several rounds of continual learning. The more
rounds of continual learning there are, the larger final gap
between the proposed approach and the strong baselines
at the last round of continual learning. This is further con-
firmed on the CUB200 dataset where more rounds of con-
tinual learning occurred compared to on CIFAR100 with
the same settings. As illustrated in Fig. 3 (third row, left;
also see Table 3), the classification performance of the pro-
posed approach decreases much more slowly than that of
all the baselines, and the proposed approach quickly out-
performs all the strong baselines after a few rounds of con-
tinual learning, although the same pre-trained feature ex-
tractor was initially used to fine-tune each CNN classifier
in each baseline. It can be consistently observed that the
gap between the strongest baseline and the proposed ap-
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Figure 4 Performance comparison on medical image datasets. First row (from left): learning 2, 5, 10 classes at each round on Skin40. Second row
(from left): learning 1 and 2 classes at each round on Skin7, and comparison with iCaRL with varying memory size on Skin40. X-axis in each sub-figure
represents the accumulated number of learned classes in the corresponding continual learning task

Table 2 Performance comparison on the CIFAR100 dataset. Five classes are learned at each round with CNN classifiers initially
fine-tuned from the same pre-trained feature extractor

Class # 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

LwF 98.83 90.67 84.89 79.87 74.62 69.01 63.67 60.25 56.37 53.6 49.92 47.06 42.78 40.94 37.21 34.22 33.74 32.9 31.79 31.14
DR 98.35 93.91 87.54 82.74 75.88 73.52 69.44 65.1 60.59 58.69 54.57 53.46 48.7 46.03 45.33 43.88 43.46 41.09 39.49 38.43
ICaRL 98.49 91.71 88.1 84.25 80.64 76.4 75.32 71.9 70.31 67.62 65.5 63.19 61.75 59.79 58.32 57.5 56.87 54.03 52.8 51.2
EndtoEnd 99.44 93.85 90.74 86.32 85.25 82.63 79.28 74.3 71.03 66.81 65.63 61.87 60.43 59.2 56.17 54.33 53.67 53.07 51.53 50.81
UCIR 99.11 91.93 88.56 85.76 84.41 79.84 78.95 76.57 74.59 71.5 68.86 67.42 65.17 63.75 61.54 58.37 57.6 56.02 54.36 52.16
SSIL 97.6 93.6 90.27 82.4 79.76 79.57 76.91 76.17 74.13 72.9 72.25 69.15 68.46 66.07 65.59 63.89 62.51 61.69 60.39 58.9
AANets 90.27 76.03 72.16 67.22 62.68 58.78 57.03 53.64 51.87 50.47 46.89 43.54 42.657 40.91 40.08 39.01 38.49 36.94 35.32 34.72

Ours 94.4 90.9 86.26 83.55 82.24 77.46 75.37 73.55 72.08 70.48 69.34 67.43 66.55 65.62 63.42 63.26 62.31 62.43 61.62 60.47

Table 3 Performance comparison on the CUB200 dataset. Ten classes are learned at each round with CNN classifiers initially fine-tuned
from the same pre-trained feature extractor

Class # 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

LwF 97.15 84.95 77.62 64.79 61.71 58.49 57.56 51.23 46.39 44.85 40.61 37.89 35.54 30.34 28.88 25.33 23.92 20.65 20.96
DR 97.16 87.34 79.68 67.84 64.79 62.5 60.86 58.2 52.14 50.14 51.34 44.44 42.57 38.31 35.5 35.63 29.71 29.46 27.11
ICaRL 97.34 89.38 85.21 79.15 71.9 67.72 65.69 59.7 58.86 57.55 55.46 52.69 51.13 50.25 47.79 45.69 44.22 42.57 41.59
EndtoEnd 98.25 92.13 88.55 87.8 77.97 74.7 73.27 67.26 65.24 60.53 61.22 57.08 53.39 51.44 51.75 46.21 43.28 41.7 40.74
UCIR 98.62 91.85 91 88.98 75.94 74.77 70.73 67.25 65.19 63.5 62.01 59.12 58.3 57.93 50.39 49.4 47.46 46.2 45.94
SSIL 99.64 93.13 88.1 85.69 74.49 72.99 71.45 70.35 69.39 67.81 66.4 67.67 65.11 64.16 62.5 61.04 61.12 59.28 57.93
AANets 83.32 66.33 58.31 55.58 55.51 57.09 60.51 60.79 60.15 58.69 60.62 58.98 57.25 55.77 54.17 51.85 50.64 47.93 45.03

Ours 83.55 84.71 76.04 73.52 71.65 69.92 66.8 67.46 68.14 67.92 66.91 65.28 63.18 62.18 61.22 60.8 60.49 59.03 59.19

proach becomes increasingly larger with more rounds of
continual learning.

As expected, Fig. 3 also shows that the final-round per-
formance of the proposed approach is not affected by the
number of new classes to be learned in each round. The
performance of the proposed approach is approximately
60% in MCR in the last round of continual learning on both

the CIFAR100 and the CUB200 datasets, regardless of how
many rounds of continual learning are performed and how
many new classes are learned in each round. In compari-
son, the final performance of each baseline becomes worse
with more rounds of continual learning (correspondingly
with a smaller number of new classes to be learned at each
round; also see Fig. 5, right). In addition, the performance
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Table 4 Performance comparison on the SKin40 dataset. Two classes are learned at each round with CNN classifiers initially fine-tuned
from the same pre-trained feature extractor

Class # 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

LwF 98.75 65.62 60 56.25 49.25 46.25 42.85 36.08 32.07 29.62 26.28 27.15 23.75 23.22 22.8 21.48 20 17.77 15.52 13.78
DR 96.67 70.59 65.33 61.47 55.13 49.18 45.17 39.18 35.16 31.4 28.51 27.14 25.41 25.04 24.13 23.6 22.55 19.43 18.33 15.32
ICaRL 96.67 94.17 88.87 84.17 78.66 74.72 72.14 70.02 70.18 64.17 59.97 55.91 52.81 50.95 47.11 45 41.27 37.87 36.57 35.33
EndtoEnd 98.33 92.5 84.45 80.42 72 67.5 61.43 56.45 51.3 51.67 46.52 44.72 42.82 43.93 36.67 34.06 36.28 30.83 29.19 25.25
UCIR 97.77 95.14 90.13 86.13 79.12 76.43 74.55 72.13 70.61 65.13 60.53 57.11 51.33 48.17 45.12 43.63 40.78 35.51 34.33 32.12
SSIL 100 90.12 68.33 70.51 66.42 62.51 60.01 56.25 51.11 48.33 50.54 47.92 48.08 41.43 39.33 37.81 35.88 35.34 33.16 30.75
AAnet 91 69.35 67.6 65.29 64.39 60.67 60.76 58.94 54.36 53.15 51.34 49.69 49.25 48.49 47.42 45.59 46.28 44.57 45.6 44.78

Ours 100 96.5 95.67 89.75 86.2 82.83 83.57 81.25 81.44 77.6 77 76.17 76.08 74.64 70.4 70.62 67.18 66.28 63.58 63.1

Figure 5 Continual learning performance on CIAF100 with smaller
memory (left) or more learning rounds (right). Left: learning 5 classes
at each round with only 1000 images stored in the memory. Right:
learning 2 classes at each round. The CNN classifiers were initially
fine-tuned from the same pre-trained feature extractor

of existing state-of-the-art methods is seriously affected by
the number of old data stored in the memory. As Fig. 5
(left) demonstrates, performance of the strong baselines
significantly decreases when the memory size is reduced
from 2000 to 1000, while the proposed approach is not af-
fected by the memory size at all. These results clearly sup-
port that the proposed Bayesian generative model is effec-
tive in reducing the catastrophic forgetting of old knowl-
edge, probably because the knowledge of old classes is kept
unchanged in the form of statistical distribution over con-
tinual learning.

The proposed approach works effectively not only on the
natural image datasets, but also on medical datasets. As
depicted in Fig. 4 (also see Table 4 and Table 5), with a
certain number of new classes to be continually learned at
each round on both the Skin40 and Skin7 datasets, the pro-
posed approach always performs better than all the strong
baselines particularly at later rounds of continual learn-
ing, although the same pre-trained feature extractor was
used to initially fine-tune the CNN classifier for each base-
line method (which is the default setting in the following
sections). Even with more images of old classes stored for
the representative strong baseline iCaRL, the proposed ap-
proach still performs better (Fig. 4, second row, last), again
supporting that the proposed approach is more effective in
preventing old knowledge from being forgotten.

Table 5 Performance comparison on the SKin7 dataset. One
class is continually learned at each round with CNN classifiers
initially fine-tuned from the same pre-trained feature extractor

Class # 2 3 4 5 6 7

LwF 85.54 40.82 30.15 25.56 22.27 20.09
DR 85.71 55.83 45.36 35.53 32.16 27.73
ICaRL 88.86 66.53 58.22 52.5 47.98 47.09
EndtoEnd 85.26 61.83 58.25 56.29 47.53 46.44
UCIR 89.2 68.12 59.33 54.52 50.17 49.77
SSIL 81.57 53.92 40.05 31.84 27.06 24.79
AANets 91.51 64.81 57.25 54.88 53.4 50.14

Ours 83.91 77.47 69.63 61.72 58.64 58.44

4.3 Generalizability and robustness of the generative
model

The proposed approach is a general framework that can
employ different feature extractor backbones or use differ-
ent ways to represent and store old knowledge in specific
applications. As Table 6 shows, the proposed approach
performs consistently better than strong baselines on all
the four datasets with different feature extractor back-
bones (Vgg19, ResNet18, ResNet34 and ResNet101), sup-
porting that the proposed approach is not limited to spe-
cific feature extractor structures.

Additionally, the proposed approach is not limited to
the specific Gaussian mixture model (GMM) representa-
tion for old knowledge. For example, in addition to the
parametric GMM model, the well-known nonparametric
Kernel density estimation (KDE) was also used to approx-
imate the statistical distribution of each feature output,
where the kernel width is empirically determined based
on a small validation set from each dataset. Figure 6 de-
picts that the proposed approach based on KDE works
equivalently well compared to that based on GMM for the
representation of old knowledge. Because the proposed
approach is not limited to specific ways to represent old
knowledge, a potentially more effective representation of
old knowledge would increase the performance of contin-
ual learning by the proposed approach. This remains to be
explored in future work.
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Table 6 Performance on various feature extractor backbones. The results after the last round of continual learning were reported, with
1 (Skin7), 5 (Skin40), 5 (CIFAR100), and 5 (CUB200) new classes per round

Dataset VGG19 ResNet18 ResNet34 ResNet101

LwF iCaRL IR Ours LwF iCaRL IR Ours LwF iCaRL IR Ours LwF iCaRL IR Ours

CIFAR100 20.7 35.3 39.4 48.9 26.4 48.3 43.7 57.2 27.9 49.6 44.5 61.8 31.1 51.2 52.2 60.5
CUB200 11.3 28.1 26.6 46.3 14.2 30.1 32.2 54.9 14.4 31.2 33.7 56.5 15.2 33.6 35.2 59.2
Skin7 18.9 39.7 38.3 46.5 19.8 44.3 46.2 55.6 20.1 46.9 48.3 56.8 20.1 47.1 49.8 58.4
Skin40 27.4 33.6 32.5 52.8 30.4 41.8 37.1 61.9 31.1 42.3 39.5 62.8 31.2 43.1 40.2 63.1

Figure 6 Performance comparison between GMM and KDE models
for old knowledge representation respectively on CIFAR100 (first row)
and CUB200 (second row), when learning 5 (first column) or 10
(second column) new classes at each round

To evaluate the robustness of the generative model, the
GMM with varying numbers of Gaussian components and
different orders of classes to be continually learned were
tried during continual learning. As clearly displayed in
Fig. 7, the generative model works stably with different
numbers of Gaussian components in the GMM on all
four datasets, although GMM with two components works
slightly better than GMM with fewer or more components.
Note that the proposed approach still outperforms all the
strong baselines when the number of GMM components
is larger than two. In addition, with six different orders of
classes to be continually learned, the performance of the
proposed approach does not change at the last round of
continual learning, while the performance of the repre-
sentative iCaRL baseline method clearly varies with dif-
ferent class orders (Fig. 8). This is because knowledge of
each previously learned old class is compactly stored and
is not changed throughout the whole process of continual
learning by the proposed approach. In comparison, almost
all the strong baseline methods inevitably update the fea-
ture extractor during continual learning, which would then
change the representation of each stored old data and fur-
ther change the representation of old knowledge, differ-
ently with different orders of classes to be learned.

Figure 7 Stable performance with varying GMM components on
Skin7 (first row, left), Skin40 (first row, right), CIFAR100 (second row,
left) and CUB200 (second row, right). At each round of continual
learning, 1, 5, 10, and 10 new classes were continually learned,
respectively, on Skin7, Skin40, CIFAR100, and CUB200 datasets

Figure 8 Final-round learning performance with different class orders
during continual learning on Skin40. Five new classes were
continually learned at each round. Different numbers in the x-axis
represent different sequences of class orders

4.4 Wide application scenarios of the generative model
One reason to explore continual learning techniques is

due to the difficulty in collecting data from all classes. Such
difficulty may cause another two challenging problems,
few-shot continual learning where only a few number of
training images are available for each new class at each
round of continual learning, and data-incremental contin-
ual learning where the classifier would be updated contin-
uously with new data of existing classes (rather than with



Yang et al. Visual Intelligence             (2023) 1:5 Page 11 of 14

Figure 9 Few-shot continual learning performance on CIFAR100 and
CUB200. Only 10 training images are available for each new class
during continual learning on CIFAR100 (first row) and CUB200 (second
row), with 5 (first column) or 10 (second column) new classes learned
each time

data of new classes). To check whether the proposed ap-
proach works effectively in the scenario of few-shot con-
tinual learning, in the experiment, only 10 training images
for each new class were provided to update the model for
each method. The memory size was set to 200 for all the
baseline methods, which need to store a small set of orig-
inal images. As illustrated in Fig. 9, while the strongest
baseline method changes with varying datasets and num-
bers of learned new classes per round, the best perfor-
mance is always from the proposed approach. This clearly
supports that the proposed approach still works effectively
even if only a limited number of data are available during
continual learning.

For data-incremental continual learning, with a few new
images provided for each class at each round, it can be ob-
served that the performance of the proposed approach in-
creases over rounds of continual learning, while the rep-
resentative iCaRL method cannot effectively improve its
learning performance shortly after the memory used in
iCaRL becomes full (Fig. 10). This is probably because the
proposed approach can naturally update the representa-
tion of each class with more data, without discarding the
information of data that previously appeared. In compari-
son, the performance of the updated classifier by existing
methods often depends on the limited original data stored
in memory and the data that appeared more recently. Note
that the existing methods would perform even worse with-
out storing old data by memory. This experiment demon-
strates that the proposed approach can be used to handle
two types (i.e., class-incremental and data-incremental) of
continual learning, while existing methods can only handle
the class-incremental learning task.

Figure 10 Data-incremental continual learning performance on
CIFAR100 (left) and CUB200 (right). All classes are available from the
beginning, but only 10 (CIFAR100) or 1 (CUB200) new images are
available for each class at each round of continual learning. Memory
size is respectively set 2000 (left) and 400 (right) for the representative
method iCaRL

Figure 11 Effect of feature extractor on continual learning. More
classes (X-axis) used to train feature extractors result in better
performance on Skin7 (left) and Skin40 (right). Note that the classes
used to train the feature extractor are not overlapped with the set of
classes to be learned during continual learning

4.5 Effect of the feature extractor
The proposed approach is based on a fixed pre-trained
feature extractor. To confirm that better feature extrac-
tors would help the generative model perform better in
continual learning, the original 153 classes of skin image
data used for training the feature extractor (before starting
to continually learn new skin disease classes) were grad-
ually reduced to only 10 classes, each time using such a
reduced number of classes to train the feature extractor,
and then the performance of the proposed approach at
the last round of continual learning on both the Skin7 and
Skin40 datasets was calculated. As illustrated in Fig. 11,
more classes used for training the feature extractor gener-
ally result in better performance of the proposed approach.
The feature extractor trained by more classes of data would
probably have learned to extract more types of features and
therefore could be more generalizable to a new but rele-
vant domain. Consistent with the observation and expla-
nation, when the feature extractor is fixed by random pa-
rameter weights (i.e., without any training), the classifier in
continual learning showed the worst performance (MCR is
21% on Skin7, 6% on Skin40; not shown in Fig. 11). These
results strongly suggest that exploring better ways to ob-
tain a better feature extractor would further improve per-
formance of the generative model in continual learning.
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Figure 12 Continual learning performance with different numbers of
feature outputs. First row: learning 5 (left) and 10 (right) new classes at
each round on CIFAR100. Second row: learning 5 (left) and 10 (right)
classes at each round on CUB200. Curves in different colors
correspond to different numbers of feature outputs during continual
learning

Another factor in the feature extractor that potentially
affects continual learning performance is the size of the
feature extractor outputs. In general, more outputs could
represent more types of feature information and there-
fore help the proposed approach represent richer infor-
mation in each class. To confirm this hypothesis, varying
numbers of feature outputs were randomly sampled from
the original 2048 outputs, and then continual learning was
performed based on the randomly sampled feature out-
puts. As demonstrated in Fig. 12, the performance clearly
decreases when the number of feature extractor outputs
used is fewer than 1000, with more drops in performance
corresponding to fewer outputs. Interestingly, the perfor-
mance changes little when the number of feature extrac-
tor outputs decreases from the original 2048 to 1248. This
may be because some outputs are highly correlated, such
that removal of some of the outputs would not affect the
representation power by the remaining outputs. This pro-
vides an opportunity to use a relatively smaller number of
outputs for knowledge representation when memory re-
sources are very limited. A similar finding was obtained
when directly pre-training a feature extractor with differ-
ent numbers of output features or applying PCA to the
high-dimensional feature vector output of a pre-trained
and fixed feature extractor (Fig. 13).

5 Conclusion
In this study, we propose a Bayesian generative model for
continual learning of new classes. The model does not up-
date the feature extractor but generates statistical infor-
mation to represent the knowledge of each class. With-
out storing any original data, the generative model can
prevent knowledge of each old class from being forgot-
ten and outperforms existing state-of-the-art approaches,

Figure 13 Continual learning performance with different numbers of
feature outputs based on alternative strategies to obtain features. Left:
the ResNet101 backbone was modified by adding one additional fully
connected layer on top of the last convolutional layer and then
pre-trained with the ImageNet dataset, and the feature vector output
of the added FC layer is used for subsequent analysis. Right: PCA was
applied to reduce the output vector of the originally pre-trained
ResNet101 with the ImageNet dataset, where the principal
components were obtained based on the ImageNet dataset as well

which often store a small amount of old data. The model
is not limited to any specific feature extractor backbone
and the ways to represent statistical information, and the
final-round performance is not affected by the process of
continual learning such as the number of new classes to
be learned each time or the number of rounds of continual
learning. In addition to continually learning new classes,
the model can also consistently improve the classification
performance by continuously learning from new data of
existing classes. This study suggests a new direction to
solve the catastrophic forgetting issue in continual learn-
ing, i.e., exploring effective ways to represent knowledge
based on certain fixed but powerful pre-trained feature ex-
tractor. Better pre-trained feature extractor could also be
explored to further improve the performance of the gen-
erative approach.
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