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Boundary-Guided Contrastive Learning for
Semi-Supervised Medical Image Segmentation

Yang Yang , Jiaxin Zhuang , Guoying Sun , Ruixuan Wang , and Jingyong Su

Abstract— Semi-supervised learning methods, com-
pared to fully supervised learning, offer significant potential
to alleviate the burden of manual annotations on clini-
cians. By leveraging unlabeled data, these methods can
aid in the development of medical image segmentation
systems for improving efficiency. Boundary segmentation
is crucial in medical image analysis. However, accurate
segmentation of boundary regions is under-explored in
existing methods since boundary pixels constitute only
a small fraction of the overall image, resulting in sub-
optimal segmentation performance for boundary regions.
In this paper, we introduce boundary-guided contrastive
learning for semi-supervised medical image segmentation
(BoCLIS). Specifically, we first propose conservative-to-
radical teacher networks with an uncertainty-weighted
aggregation strategy to generate higher quality pseudo-
labels, enabling more efficient utilization of unlabeled data.
To further improve the performance of segmentation in
boundary regions, we propose a boundary-guided patch
sampling strategy to guide the framework in learning dis-
criminative representations for these regions. Lastly, the
patch-based contrastive learning is proposed to simulta-
neously compute the (dis)similarities of the discriminative
representations across intra- and inter-images. Exten-
sive experiments on three public datasets show that our
method consistently outperforms existing methods, espe-
cially in the boundary region, with DSC improvements of
20.47%, 16.75%, and 17.18%, respectively. A comprehensive
analysis is further performed to demonstrate the effective-
ness of our approach. Our code is released publicly at
https://github.com/youngyzzZ/BoCLIS.

Index Terms— Semi-supervised learning, image segmen-
tation, contrastive learning, mean teacher network.
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I. INTRODUCTION

AUTOMATED and precise segmentation of organs,
lesions, and tissues is of paramount importance in med-

ical diagnosis and understanding disease progression, as it
provides clinicians with valuable and insightful information.
In recent years, supervised learning approaches empowered
by neural networks have emerged as powerful tools, achieving
state-of-the-art performance in various medical image segmen-
tation tasks [1], [2], [3]. This success can largely be attributed
to the availability of large-scale annotated datasets. However,
the acquisition of pixel-wise annotations on a large scale is
labor-intensive, expensive, and demands specialized expertise.
Therefore, it is crucial and practically relevant to develop
methods that can alleviate these requirements.

Semi-supervised learning methods [4], [5], [6], [7], [8],
[9] offer promising directions in addressing this challenge,
as they require only a minimal amount of annotations and
generate pseudo-labels for a significant portion of unlabeled
data. These pseudo-labels are then utilized to train the
segmentation network, effectively reducing the reliance on
expensive pixel-wise annotations and enabling more efficient
and cost-effective training. Previous semi-supervised learning
approaches have made significant advancements in improving
the accuracy of medical image segmentation, with consistency
regularization based [10], [11] and pseudo-label based [12],
[13], [14] methods emerging as the two main streams. For
consistency regularization based approaches, it relies on the
assumption that model predictions should remain consistent
under various perturbations [10], [11], such as data augmen-
tation or feature perturbation. To enforce this consistency,
common techniques involve minimizing the mean square
error or the Kullback-Leibler divergence between the outputs
obtained from different perturbations [15]. By minimizing the
differences of output labels, these approaches ensure a con-
sistent prediction across different perturbations. Alternatively,
pseudo-label based methods [16], [17] involve initializing the
model with labeled data to generate initial predictions for
unlabeled data. The annotated labels from the labeled data,
along with the pseudo-labels generated from the predictions
of the previous iteration, are then used as ground-truths to
iteratively update the network. The pseudo-label generation is
periodically updated as the model is trained, with the expec-
tation that label quality will be progressively improved during
the training process. However, pseudo-label based methods
still face the challenge that the initial model is heavily based
on a limited amount of labeled data for initialization, resulting
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Fig. 1. Motivation of our proposed boundary-guided contrastive learning.
(A) Exemplary segmentation results, marked in different colors, are
presented to highlight the differences for the challenging boundary region
on the BraTS2020 dataset. (B) Illustration of feature clusters with density
estimation on ACDC dataset. Features are extracted from the model
before the classification layer without accessing true labels. We randomly
select 1000 pixel points for each class to perform t-SNE [25] with a
perplexity parameter of 32.

in unsatisfactory segmentation performance [18]. This limited
segmentation ability can lead to the generation of low-quality
pseudo-labels, which subsequently hinders the training process
and impedes the improvement of model performance [19].
While some efforts [14], [16], [20] have been made to incor-
porate uncertainty estimates to mitigate the adverse effects
caused by the poor quality of pseudo-labels, there remains
significant potential for further improvement in this regard.

In semi-supervised learning, there is an additional challenge
that has yet to be resolved. While current methods trained with
limited annotations perform well in segmenting the main parts
of foreground regions, they are susceptible to generating mis-
classified predictions in boundary regions, preventing further
improvements in segmentation performance [21]. As shown
in Fig. 1 (A), current state-of-the-art semi-supervised meth-
ods, such as PatchCL [22], PLCT [9] and MCF [23], fail
in accurate segmentation of boundaries. This situation is
attributed to the severe scarcity of finely labeled data in
semi-supervised learning training datasets, where the boundary
region pixels represent only a minuscule proportion of total
labeled pixels [24]. Fig. 1 (B) reveals that significant density
variations persist within each cluster, indicating varying levels
of learning difficulty among representations. Current methods
face challenges in effectively learning the intricate details of
the boundary regions.

Motivated by the above analysis, we propose a novel
boundary-guided contrastive learning framework for medical
image segmentation (BoCLIS). We have made efforts from
two aspects. We propose conservative-to-radical teacher net-
works to improve the overall segmentation performance of
the model and introduce boundary-guided contrastive learning

to improve the model’s segmentation performance in bound-
ary regions. Specifically, we design conservative-to-radical
teacher networks with uncertainty-weighted aggregation to
improve the quality of pseudo-labels. For the teacher net-
works, we assign a gradually increasing momentum for EMA
updates, allowing the update paces to shift from conserva-
tive to radical and resulting in slightly different predictions.
These predictions, along with their corresponding pixel-/voxel-
wise uncertainty, are utilized to generate a more reliable
aggregation label for the student network by employing an
uncertainty-weighted aggregation strategy. To achieve accurate
segmentation results in boundary regions, a new sampling
strategy, termed boundary-guided patch sampling, is intro-
duced to contrastive learning. This sampling strategy selects
patches with the guidance of target’s boundary, directing
the attention of the network towards boundary regions. The
designed contrastive loss function further encourages our
framework to learn the (dis)similarity of patch-level represen-
tative features in hidden space.

The main contributions of this work are summarized below:

• We develop an innovative semi-supervised segmentation
scheme by designing a conservative-to-radical teacher
learning with the uncertainty-weighted strategy. Unlike
previous works with setting varied initialization or
architecture to generate model diversity, our framework
maintains identical initialization and architecture across
teacher networks while implementing conservative-to-
radical momentum coefficients in the EMA process. This
framework maintains the teacher model diversity across
the update iterations and significantly improves the qual-
ity of pseudo-labels generated by the teacher networks,
allowing for more efficient utilization of both labeled and
unlabeled data.

• We propose an efficient boundary-guided patch sampling
strategy that leverages the locations and uncertainty esti-
mates of patches to direct the framework in learning
discriminative representations for these regions. Addi-
tionally, we introduce a patch-level boundary-guided
contrastive learning approach that facilitates the learning
of representations between boundary and non-boundary
regions, as well as local and global information, guided
by the target’s boundary. To the best of our knowledge,
this is the first endeavor specifically aimed at addressing
the challenge of semi-supervised boundary segmentation.

• We demonstrate our method is widely applicable to
both 2D and 3D datasets for multi-class segmentation
of lesions and organs. Compared to existing methods,
our approach achieves state-of-the-art performance across
various evaluation metrics, particularly in the accurate
segmentation of boundary regions.

II. RELATED WORK

Semi-supervised learning has emerged as a prominent and
continuously evolving research area in recent decades, with
particular relevance to medical image segmentation. In this
section, we adhere to discuss and present a comprehensive
review of the literatures that are highly relevant to our
work.
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A. Semi-Supervised Learning

1) Consistency Regularization Based: The fundamental con-
cept behind consistency regularization is that predictions
should be robust when subjected to various perturbations of the
input samples [10]. The procedure involves introducing data
or feature augmentations as well as stochastic perturbations to
the input, while maintaining the consistency of the predictions.
In the studies conducted by Li et al. [26], shape constraint
is explored through the introduction of the signed distance
map. Later, Luo et al. [15], [27] and Wu et al. [17] achieve
consistency regularization by designing special auxiliary tasks
or a mutual consistency network along with perturbations.
Similar studies [28], [29] introduce perturbations to gen-
erate slightly varied predictions and further promote their
consistency through the meticulous design of the network
architecture. Gao et al. [30] designs an Omni-Correlation
Consistency Module (OCC). The OCC module establishes
omni-correlations between the labeled and unlabeled datasets
and enforces consistency by regulating the omni-correlation
matrix of each sub-model. Chen et al. [31] further presents
decoupled consistency and begins to notice the importance of
uncertainty in pseudo-labels. Yet, it only uses the uncertainty
map as a threshold for selecting pseudo-labels and fails to
fully exploit the information embedded within the uncertainty
map.

2) Pseudo-Label Based: In the early stages, Lee [32] initial-
ized a model with a limited amount of labeled data and used it
to generate pseudo-labels for a large scale of unlabeled data.
Laine and Aila [33] further proposes a temporal ensembling
mechanism that updates the pseudo-labels by exponential
moving average (EMA) to improve their quality. Later,
Yu et al. [16] introduces an uncertainty-weighted mean teacher
(UAMT) approach that utilizes transformation consistency to
improve performance. Wang et al. [34] and Bai et al. [35]
further propose the mean teacher framework that incorporates
auxiliary tasks to facilitate the learning of distinctive features,
resulting in improved predictions. Shi et al. [36] proposed
a student network with two decoders, which is different
from most existing approaches. Each decoder applies varying
levels of penalties to misclassified background regions to
enhance model performance. Later, Miao [37] et al. introduce a
self-correcting co-training scheme improve target predictions,
aligning them more closely with ground-truth labels through
collaborative network outputs. Other methods [16], [20], [38],
with the aim of improving the quality of pseudo-labels,
introduce uncertainty or confidence estimation to generate
more reliable pseudo-labels. However, these methods solely
depend on the confidence prediction and lack the necessary
informativeness to provide reliable guidance. This deficiency
is precisely what our proposed work aims to address.

B. Semi-Supervised Learning With Contrastive Learning

With the remarkable performance of contrastive learn-
ing [39], [40], [41] in supervised learning, numerous
semi-supervised learning approaches [42], [43], [44] have
started to leverage its benefits. Alonso et al. [45] employs
a teacher-student network and uses both entropy and

contrastive loss in pseudo-labels derived from unlabeled
images. Zhuo et al. [46] and You et al. [47] also employ
contrastive loss using teacher-student networks in a similar
manner. Later, Chaitanya et al. [9] and Basak and Yin [22]
propose pixel-based and patch-level contrastive learning meth-
ods, respectively. However, their proposed contrastive learning
approaches face the challenge of effectively learning discrim-
inative features without careful selection of representative
regions. Therefore, we design a boundary-guided patch sam-
pling strategy to encourage our framework to learn more
comprehensive semantic representations.

C. Mean Teacher Network
EMA is widely used as an updated approach to ensemble

model weights, resulting in smoother and more stable model
weights [13], [16], [33], [34]. For instance, Tarvainen and
Valpola [13] proposes the use of EMA to integrate the model
weights obtained from different prior networks into a singular
ensemble model. While the EMA method can achieve a
more stable teacher model, it will cause inevitable useful
information loss during the aggregation process. Laine and
Aila [33] employs EMA to average predictions instead of
model weights, disregarding the fact that the labels obtained
in the initial stage of training may still be subpar and the
reliability of these labels. In practice, a student may access
multiple teachers, and the collective guidance from multiple
teacher networks can greatly benefit the training of the student
network [48], [49], [50]. Studies in this field can be divided
into three categories. The co-training framework [51], [52],
[53] incorporates a complementary student model, enabling
mutual supervision between both models. However, these
methods not only introduce additional computational overhead
and lose EMA stability but also fail to generate sufficient
model diversity through mere differences in initialization
and network structures. The multi-teacher alternating frame-
work [54] introduces two non-trainable teacher networks that
are momentum-updated periodically and randomly in an alter-
nate fashion. However, these methods produce model diversity
by designing alternating update strategies for teacher networks,
while also preventing each update of the teacher network
from fully benefiting from all the data. The multi-teacher
ensembling framework [29], [55], [56] encourages the student
network to iteratively update different teacher networks, each
initialized with different parameters or structures. A notable
limitation of these methods is that their teacher network
update strategies have not been sufficiently designed to
generate diverse supervision. The diversity among multiple
teacher networks is progressively reduced as they receive
continuous updates with identical momentum coefficients.
Furthermore, existing ensembling methods typically employ
averaging strategies and train the model exclusively from their
consistent predictions, while the potential benefits of learning
from the confidence remain largely unexplored. In contrast
to previous methods that rely on varied initialization or
architecture, we propose a multi-teacher framework update
strategy that maintains sufficient model diversity by setting
conservative-to-radical momentum coefficients while main-
taining the stability of EMA. The diversity of our multi-teacher
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networks persists across the update iterations. We design an
uncertainty-weighted strategy to further improve the quality of
pseudo-labels.

D. Boundary in Segmentation

Boundary problem is a fundamental aspect of medical
imaging with a well-established historical foundation [57],
[58], [59]. Some previous efforts [60], [61], [62] propose
various mechanisms to refine the segmentation maps from
coarse to fine. For example, Yuan et al. [63] introduced a
model-agnostic post-processing scheme that estimates an off-
set map based on the original prediction to improve boundary
quality in segmentation results. Other studies [64], [65], [66]
also directly exploit the boundary information to improve the
segmentation. For instance, Peng et al. [67] proposed circular
convolution for efficient feature learning on boundary regions,
though it is prone to mis-segmentation caused by grayscale
non-uniformity and noise sensitivity. Wang et al. [68] intro-
duced a boundary-aware context neural network that captures
detailed boundary information at each stage but suffers from
the added complexity of feature fusion. Furthermore, some
boundary-guided methods [69], [70], [71], [72] aim to design
specialized boundary-guided modules for effectively extracting
boundary information. However, these methods are limited to
focusing solely on the information within boundary regions
while ignoring the connections between boundary and non-
boundary regions. Unlike previous approaches that learn
boundary information from the features of the entire image,
we propose a boundary-guided contrastive learning approach,
where the boundary-guided sampling strategy enables our
framework to directly learn the (dis)similarities between
the representations of boundary and non-boundary regions,
thereby improving the model’s segmentation capability in
boundary regions.

III. METHODOLOGY

Given a limited labeled dataset Dl = {(xl
i , yl

i )}
Nl
i=1, and

massive unlabeled images Du = {xu
i }

Nu
i=1, the goal of

semi-supervised medical image segmentation is to mine effec-
tive supervision from unlabeled images with the help of limited
annotations, ultimately achieving comparable segmentation
performance to its fully supervised counterpart.

Observing that current semi-supervised learning meth-
ods [9], [22], [23] perform unsatisfactorily in boundary
region segmentation, we made efforts to improve segmentation
performance from both an overall and a boundary-specific
perspective. The overview of the proposed BoCLIS framework
is illustrated in Fig. 2. Built upon conservative-to-radical
teacher networks, as described in Section III-A, our frame-
work incorporates two main novel components. The first
is conservative-to-radical teacher learning, as described in
Section III-B. The second is boundary-guided contrastive
learning, as detailed in Section III-C. These components work
together through a two-step process. First, the conservative-
to-radical teacher networks employ gradually increasing
momentums for the EMA updates to generate slightly different

predictions with corresponding uncertainty maps. Subse-
quently, the student network can learn from more reliable
aggregation labels derived from the predictions and uncertainty
maps to improve overall segmentation performance. Second,
the student network is equipped with a contrastive module,
which applies a boundary-guided patch sampling strategy
to extract representative features, particularly from boundary
regions. It then drives features of the same class toward
the approximated cluster centers while pushing features of
different classes farther apart, dynamically shrinking cluster
volume and enhancing intra-cluster compactness. This process
ultimately results in improved performance in boundary region
segmentation.

A. Update Strategy for Conservative-to-Radical Teacher
Networks

In the teacher-student network paradigm of semi-supervised
learning, the teacher network effectively exploits semantic
information from unlabeled data to generate pseudo-labels,
guiding the training of the student network. However, most
existing methods [16], [34] employ a single teacher network
to generate pseudo-labels, which may not yield high-quality
pseudo-labels with extremely limited labeled data, leading to
the unsatisfactory performance of student network. Consider-
ing fully exploiting the massive semantic information within
unlabeled data, the conservative-to-radical teacher networks
are introduced. The student network f S

θ , parameterized by θ ,
is optimized by gradient descent, while the m-th teacher
network f T

ζm
is updated using the EMA of the student as

follows:

ζ t
m = (1 − αm)ζ t−1

m + αmθ t , αm ∈ [κ1, κ2], (1)

where t tracks the step number, and αm is the momentum
coefficient [73] to control the pace of update. Here, as αm
increases progressively with m, the update paces of teacher
networks shift from conservative to radical, allowing their
diversity preserved across the update iterations. For each
unlabeled image, the predictions of the teacher networks are
aggregated to generate a confident and robust supervision
label. This aggregation label, denoted by p̄u , guides the student
network training.

B. Conservative-to-Radical Teacher Learning

1) Learning with Labeled Data: For labeled data Dl , we use
Cross-Entropy (CE) loss to train segmentation network for
Nl labeled images {(xl

i , yl
i )}

Nl
i=1 ∈ Dl , which can be formed

as,

Ls = −
1
Nl

1
H W

Nl∑
i=1

H W∑
j=1

ℓC E (pl
i, j , yl

i, j ), (2)

where pl
i, j denotes the probability generated by the student

network on the j-th pixel in the i-th labeled image and yl
i, j

denotes the piexl-wise corresponding annotations. H and W
represent the height and width of the input image, respectively.
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Fig. 2. Overview of the boundary-guided contrastive learning for semi-supervised medical image segmentation framework (BoCLIS). In the
conservative-to-radical teacher learning, each labeled image xl is exclusively fed into the student network for fully supervised learning. Each
unlabeled image xu is processed by the conservative-to-radical teacher networks to generate the uncertainty-weighted aggregation label. In the
boundary-guided contrastive learning, the aggregation labels are employed to select representative regions.

2) Learning with Unlabeled Data: For each unlabeled
image xu , we first employ the conservative-to-
radical teacher networks to obtain M predictions
{pu,1, pu,2 . . . , pu,m, . . . , pu,M

}, where pu,m
= f T

ζm
(xu). The

dimension of pu,m is H × W × C , with C representing the
total number of classes for segmentation. Considering that
the teacher networks generate pseudo-labels for unlabeled
data without the help of corresponding supervisory signals,
the results pu,m obtained by the teacher network may be
unreliable. Therefore, we introduce an uncertainty-weighted
aggregation strategy to refine the generated pseudo-labels.
The uncertainty for the m-th preliminary prediction can be
calculated as,

H(pu,m) = −

C∑
c=1

pu,m
c log pu,m

c , (3)

where pu,m
c is the pixel-wise probability of class c. The

entropy of the prediction for class c only reflects the con-
fidence in belonging to this class. H(pu,m

i, j ) captures both the
confidence in class c and the uncertainty in the remaining
C − 1 classes. Since entropy reflects the uncertainty degree of
information, pixels with low uncertainty, i.e., high confidence,
should have a greater impact on the aggregation prediction.
This impact can be represented by a weight value ωm

=

e−H(pu,m )/
∑M

k=1 e−H(pu,k ). Then, the uncertainty-weighted

aggregation prediction p̄u can be defined as p̄u
=

∑M
m=1 ωm

·

pu,m . For the student network, consistency cost for Nu unla-
beled images can be defined as the CE loss:

Lu = −
1

Nu

1
H W

Nu∑
i=1

H W∑
j=1

ℓC E (qu
i, j , p̄u

i, j ), (4)

where qu
i, j denotes the probability corresponding to the

j-th pixel of the unlabeled image xu
i from student net-

work, and p̄u
i, j is the aggregated prediction of teacher

networks. In general, the conservative-to-radical teacher
networks generate slightly different predictions and also
estimate the corresponding uncertainty maps for any unla-
beled input. The uncertainty-weighted aggregation strategy
further improves the quality of pseudo-labels by considering
the confidence. Then, the student network is supervised by
more reliable aggregation labels under the guidance of the
conservative-to-radical teacher networks.

C. Boundary-Guided Contrastive Learning
Current semi-supervised segmentation methods [9], [22],

[23] have achieved satisfactory accuracy for segmenting main
regions of organs or lesions. But they are unable to accu-
rately identify the boundary regions of the foreground under
segmentation. Since the boundary regions usually occupy a
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Fig. 3. The detail of boundary-guided patch sampling. The canny operator is utilized for the boundary extraction of different class regions. Boundary
patches and non-boundary patches are randomly selected with the guidance of patch uncertainty.

very small percentage of objects and tend to appear blurry,
it is difficult for the network to learn massive and meaningful
semantic information. To tackle this problem, we design a
boundary-guided contrastive learning strategy, which focuses
on learning the relationship between boundary and non-
boundary regions. The contrastive learning aims to distinguish
similar samples (posi tive) from dissimilar ones (negative),
where an anchor point in a projected embedding space is ran-
domly sampled. To extract embeddings for boundary-guided
contrastive learning, a projection head GS is introduced after
the encoder ES of the student network, as illustrated in Fig. 2.
In this section, we first introduce the strategy of selecting
posi tive and negative samples, followed by an explanation
of their use in contrastive learning.

1) Boundary-guided Patch Sampling: For a given labeled
image xl , our framework employs the student network to
generate the pixel-wise prediction pl . For an unlabeled image
xu , our framework yields two outputs, with qu from the
student network and p̄u from teacher networks. The reason
for using the aggregated prediction p̄u rather than qu in the
subsequent patch selection is that the conservative-to-radical
teacher networks generate more robust results. For simplicity,
pl and p̄u are represented by p thereafter. p̂ represents the
binarized segmentation result of p. Let Ac denote the anchor
patch that contains the whole region (all pixels) of class c
according to p̂. The patch containing an object (or some part
of it) of class c can be considered as a positive key, while
all patches of other (C − 1) classes are treated as negative
keys. Note that all patches are ensured to contain only one
class of pixels with the guidance of pixel-wise prediction.
However, most of the positive and negative keys randomly
selected in this way may not be representative, which prevents
the network from learning discriminative representations, e.g.,
boundary regions.

Therefore, we design a boundary-guided patch sampling
strategy to improve the ability of representation for our semi-
supervised framework. Specifically, the boundary regions of
the input image are obtained with the Canny operator,

{Bc
}
C
c=1 = Canny(p̂), (5)

where Bc represents the set of coordinates for boundary
pixels within the region of class c. With the guidance of
Bc, we sample different representative patches, namely the

boundary patches Ac,b containing a specific proportion of
the whole boundary region, and the non-boundary patches
Ac,n located within the region of class c far away from the
boundary. As illustrated in Fig. 3, the patch sampling process
can be summarized in three main steps. (1) The boundary Bc

is extracted from the binarized prediction p̂ using the Canny
detector. A continuous section (one connected component) of
Bc is randomly cropped and dilated to generate the boundary
patch. This boundary patch is then multiplied by the binary
mask for class c to ensure that all pixels retained in the patch
belong to class c. (2) The patch Ac, containing all pixels
belonging to class c, is obtained by cropping the original image
after multiplying it by the binary mask in p̂ that includes class
c. (3) The region in Ac is eroded to obtain the non-boundary
patches. Note that different kernels and iterations are used for
the dilation and erosion operations to ensure diversity in the
patches. The final sampled patches are obtained by multiplying
the patches from the original images with the binary masks of
Ac, Ac,b, and Ac,n .

The segmentation results from the conservative-radical
teacher networks may not be accurate, potentially causing
errors when selecting representative patches based on the
boundary of p̂. This can mislead the student network to learn
the wrong representation. Effective sampling of numerous
patches is of utmost importance. We can sample patches based
on their class confidence to reduce the negative impact of inac-
curate segmentation results. Therefore, we further design an
average patch confidence based on the pixel-wise uncertainty.
For the patches Ac,b and Ac,n , they are sent through the student
network to obtain the pixel-wise prediction p. The average
uncertainty of each patch is defined as the average entropy of
all pixels in the prediction. Since patches with high uncertainty
are more likely to contain misclassified regions, the patches
with low uncertainty are kept as a candidate set for contrastive
learning. For each image, the uncertainties for all patches are
first estimated for each class. The R patches with the lowest
uncertainties are selected to form the candidate set for both
boundary and non-boundary regions, denoted by Sc,b and Sc,n

for class c.

2) Patch-based Contrastive Learning: For a given anchor
patch Ac, all the patches of class c in Sc,b and Sc,n are
considered as posi tive keys, including 2R samples. The
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patches of the rest (C −1) classes are considered as negative
keys, encompassing 2(C − 1)R samples. These posi tive and
negative keys are sent to the student encoder and projection
head to extract the feature representations. Let Ac

i and zc
i

denote the anchor patch of class c in image xi and its feature
representation. vc+

i,k and vc−

i,r represent the feature of the k-th
posi tive and the r -th negative key for class c, respectively.
The boundary-guided contrastive loss is optimized across all
classes for N images, defined as,

Lb = −
1

NC

N∑
i=1

C∑
c=1

× log
esim(zc

i ,v
c+
i,k )/τ

esim(zc
i ,v

c+
i,k )/τ

+

2(C−1)R∑
r=1

esim(zc
i ,v

c−
i,r )/τ

, (6)

where sim(z, v) = zT v/∥z∥∥v∥ measures the cosine similar-
ity, and τ denotes the temperature scaling factor used to adjust
the scale of the similarity measurement.

The global representation zc
i is extracted from an anchor

patch including the whole region of class c in image xi .
In comparison, local representations vc+

i,k and vc−
i,r are com-

puted from the patches containing boundary and non-boundary
regions of class c and the rest (C − 1) classes, respectively.
The goal of contrastive learning is to maximize the similarity
between global and local representations for patches belong-
ing to the same class, while simultaneously minimizing the
similarity between patches in different classes. Eq. 6 only
computes the (dis)similarities in the same image, i.e., match-
ing intra-image patch representations. To learn more robust
representations, we further include inter-image representation
matching by computing (dis)similarities from different images.
Specifically, for an anchor zc

i , the representation of posi tive
keys vc+

i,k and vc+
i ′,k(i ̸= i ′) are extracted from patches within

the same image as well as from different images in the batch.
Similarly, the negative keys are extracted from patches within
the same image and different images in the batch.

D. The Overall Learning Objective
Our framework consists of a student network, conservative-

radical-teacher networks for leveraging unlabeled data, and
the additional projection head for improving performance in
boundary regions. The total objective loss function can be
formulated as,

L = Ls + λ1Lu + λ2Lb, (7)

where Ls is the supervised loss only for the labeled data, and
Lu is the pseudo-label training loss for unlabeled data. Lb
is the boundary-guided contrastive loss for the whole dataset.
λ1 and λ2 are two coefficients.

IV. EXPERIMENT

A. Datasets and Evaluation
In this study, we assessed the performance of our method

and conducted a comparative analysis with several previous
works on three public datasets, including whole brain tumor

segmentation dataset (BraTS2020), left atrium segmentation
dataset (LA) and cardiac segmentation dataset (ACDC).

1) Two-Class 3D Whole Brain Tumor Segmentation: The
BraTS2020 [74] dataset consists of 496 subjects. In this
study, we used the FLAIR modality for semi-supervised
segmentation of whole tumors. These scans were randomly
divided into training (380 scans), validation (26 scans), and
testing (90 scans) sets. For pre-processing, each instance was
normalized by its channel-wise means and standard deviations.
Subsequently, intensity rescaling was performed to ensure
values fell within the range of [0, 1].

2) Two-Class 3D Left Atrium Segmentation: The LA
dataset [75] contains 100 3D gadolinium-enhanced MR imag-
ing (GE-MRI) scans with corresponding 3D left atrium
segmentation masks. Following [16], the dataset was divided
into 80 scans for training purposes and the remaining 20 scans
for evaluation. Furthermore, to prioritize the heart region, all
scans were cropped with the center of attention on this specific
area. Additionally, normalization was implemented to ensure
that the data maintained a zero mean and unit variance.

3) Three-Class 2D Cardiac Segmentation: The ACDC [76]
dataset consists of 100 MR-cine T1 3D volumes depicting car-
diac anatomy. Each image within the dataset necessitates the
segmentation of three distinct categories: the right ventricle,
left ventricle cavities, and the myocardium. Following [34],
we randomly selected 75 subjects for training, 5 subjects for
validation, and 20 subjects for testing. For pre-processing,
we rescaled the intensity of each scan to the range [0, 1].

4) Evaluation Metrics: We utilized four widely recognized
evaluation metrics: the Dice Similarity Coefficient (DSC), the
Jaccard Index (Jaccard), the 95% Hausdorff Distance (95HD),
and the Average Surface Distance (ASD).

B. Implementation Details
In this study, our method was implemented by PyTorch

on two NVIDIA GeForce 3090 GPUs. 3D-UNet [77] and
UNet [78] were employed as the segmentation backbones
for 3D and 2D datasets. The projection head for contrastive
learning was basically shallow FC layers [79], consisting of
two linear layers with batch normalization and ReLU. The
network was converged using the Adam optimizer with a
learning rate of 1e-4. Following previous work [22], [35],
the student network and contrastive module GS are randomly
initialized and pre-trained for 100 epochs using labeled data.
The teacher network is then initialized with the pre-trained
model, and the entire framework undergoes 200 epochs of
semi-supervised training. In each semi-supervised iteration,
the training batch size was set to 16, with a combination of
labeled and unlabeled images in a half-and-half ratio [15]. For
3D volumes, the sub-volumes of size 112 × 112 × 112 were
randomly cropped as input to the network. At the inference
stage, we introduced the sliding-window strategy to generate
the final segmentation results. For 2D images, the inputs were
resized to 256 × 256. To employ different teacher networks
from conservative to radical, the value range of momentum
coefficient parameter αm was determined by κ1 = 0 and
κ2 = 0.015. We set the coefficient λ1 to 0.5 to facilitate the
balance between supervised and unsupervised learning, and the
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TABLE I
QUANTITATIVE COMPARISONS WITH OTHER STATE-OF-THE-ART METHODS ON BRATS2020, LA AND 2017 ACDC DATASETS. ↑ INDICATES THAT

THE LARGER VALUES ARE BETTER AND ↓ INDICATES THAT SMALLER VALUES ARE BETTER

coefficient λ2 was set to 0.25 to improve the representation
ability of the model. Weak augmentation, such as random
rotation and crop, was employed, whereas strong augmentation
is achieved through changes in brightness. Each unlabeled
image is subjected to both weak and strong augmentations.
Half of the teacher networks are randomly assigned the weak
augmentation image, while the remaining half are assigned the
strong augmentation image.

C. Comparison With State-of-the-Art Methods
In this section, we evaluated several recent semi-supervised

approaches for segmentation tasks. The evaluated methods can
be categorized as (1) pseudo-label based: UAMT [16], Tri-U-
MT [34], CoraNet [36], MCF [23], PatchCL [22], SC-SSL [37]
and BCP [35]; (2) consistency regularization based: SASS-
Net [26], DTC [27], MC-Net+ [17], URPC [15], PLCT [9],
CAML [30], DCNet [31]. Note, PatchCL [22] and PLCT [9]
are based on contrastive learning. Furthermore, we introduced
nnU-Net [80] as a benchmark for performance comparison,
which was trained in a fully supervised manner and serves

as an upper bound. We reproduced the baseline results based
on the official codes provided by the papers. Some methods,
such as UAMT [16], SASSNet [26] and DTC [27], were only
implemented for the 3D architecture in their official codes,
so we reimplemented their method on 2D architectures to
ensure that they can work properly on ACDC datasets. Each
method was executed five times and the average outcomes
were recorded to ensure the reliability and consistency.

1) Performance on the BraTS2020 Dataset: The segmenta-
tion performance for the whole brain tumor is presented in
Table I (left half). To ensure a fair comparison, experiments
were conducted with three different labeling ratios. It is
evident that the result of our method consistently outperforms
all baselines across all settings. Specifically, in terms of
DSC, the most common metric used to evaluate segmentation
performance, our method achieves the best results at 5%,
10%, and 20% labeling ratios. For instance, with 20% labeled
data, our method shows a 1.69% improvement (87.71% vs.
86.02%) compared to the second-best method, DCNet. As the
labeled data is reduced to 10% and 5%, the performance gains
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Fig. 4. Visual comparisons between the proposed method and baseline methods (third to seventh column) from one image on BraTS2020. During
training, 5% of the training samples were annotated. Red and yellow contours denote ground-truth and prediction boundaries, respectively. Last row
(in red): view of the 3D segmentation lesions.

increase from 2.82% to 4.31%, highlighting our method’s
ability to effectively leverage unlabeled data, especially in
low-labeling scenarios. For the other metrics, our method
achieves the highest Jaccard values of 71.24%, 75.61%, and
78.24%, while recording the lowest 95HD values of 12.03,
9.13, and 8.15, as well as the lowest ASD values of 3.17,
2.46, and 2.12, respectively. As illustrated in Fig. 4, while
other baselines fail to accurately identify ambiguous boundary
regions (indicated by blue arrows in the 2D views), our
method precisely segments the entire tumor region. The whole
segmentation results (indicated by ellipses in 3D views) in the
last row further confirm the superior accuracy of our method
(second column) in detecting both ambiguous and boundary
regions.

2) Performance on the LA Dataset: As shown in Table I
(middle half), our method demonstrates clear superiority by
achieving significantly better performance across all settings
compared to other methods. With only 5% labeled data, our
method achieves an impressive DSC of 88.93%, marking
a substantial improvement of 1.54% over the BCP. Inter-
estingly, pseudo-label based methods, such as UAMT and
Tri-U-MT, show lower performance than consistency-based
methods when only 5% of the training data is labeled. This
reduced performance may be due to the inability of a single
teacher network to provide reliable and accurate pseudo-labels
to the student network for effective supervision, especially
when there is an extremely limited amount of labeled data for
training. To address this, our method employs conservative-
to-radical teacher networks, which better utilize the additional
information from the unlabeled data. As a result, it achieves
the highest DSC of 90.16% and Jaccard index of 82.50% in the
10% labeled data setting. Furthermore, when the labeled data
ratio increases to 20%, our model achieves results comparable

TABLE II
QUANTITATIVE COMPARISONS BETWEEN OUR METHOD (WITH AND

WITHOUT CP PREPROCESSING) AND THE BCP METHOD ON

THE 2017 ACDC DATASET. ↑ INDICATES THAT THE LARGER

VALUES ARE BETTER AND ↓ INDICATES THAT

SMALLER VALUES ARE BETTER

to nn-UNet (which is trained with 100% labeled data), with a
DSC of 90.91%, compared to the upper bound model’s DSC
of 92.74%.

3) Performance on the ACDC Dataset: Our method was fur-
ther evaluated and compared to other approaches on a 3-class
2D segmentation task. The results of all methods are presented
in Table I (right half). Similar outcomes were observed on
the ACDC dataset, where our method demonstrated the best
performance compared to other approaches in the setting of
10% and 20% labeled data. Although the performance of our
method in the 5% labeled setting is lower than that of BCP,
with a DSC of 87.03%, Jaccard of 76.21%, 95HD of 4.75,
and ASD of 1.69, our method outperforms BCP in the 10%
and 20% labeled settings. One possible reason BCP performs
better than our method on the ACDC dataset under the 5%
annotation setting is that BCP leverages the Copy-Paste [81]
data preprocessing strategy, which can construct the precise
distribution of the entire dataset with as few as three annotated
samples (5% labeled) in ACDC dataset and align the empirical
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distributions of labeled and unlabeled features [35]. However,
as the annotated data increases to 10% or 20%, the advan-
tage of the Copy-Paste strategy diminishes. To validate this
hypothesis, we integrated the Copy-Paste (CP) preprocessing
strategy into our approach, as shown in Table II. The results
indicate that under the 5% annotation setting on the ACDC
dataset, our method achieved a significant improvement, with
a DSC of 87.63%, a Jaccard of 76.91%, a 95HD of 4.49, and
an ASD of 1.23, all surpassing those of BCP. As the annotated
data increases to 10%, the performance improvement from CP
preprocessing in our method becomes less significant.

It is noteworthy that our method still maintains obviously
superiority compared to the two contrastive learning based
methods, i.e., PLCT [9] and PatchCL [22]. The reason is
that PLCT [9] only considers feature contrast at the pixel
level, while PatchCL [22] extends the comparison to the patch
level, but still ignores the relationship between patches in
boundary regions and patches in non-boundary regions. As a
result, previous semi-supervised methods fail to accurately
delineate the boundary regions, while in our method, boundary
regions are effectively captured (in Fig. 4) with the help of
boundary-guided patch sampling.

Another surprising observation is that as the labeled data
decreases to 10% and 5%, the performance gains increase,
highlighting that our method allows to effectively exploit
unlabeled data for performance improvement, especially in
smaller labeled scenario.

4) Performance on the Boundary Region: DSC, the most
common segmentation evaluation metric, considers the entire
overlap between the segmentation result and ground-truth,
which is insensitive to boundary regions if the overlapping
area is large. To more comprehensively evaluate the segmen-
tation performance of different methods in boundary regions,
we defined the pixel band obtained from ground-truth after
extending the edge by 10 pixels for DSC evaluation. Across
the BraTS2020, LA, and 2017 ACDC datasets, our method
consistently outperformed the strongest baseline PatchCL by
20.47%, 16.75%, and 17.18% in terms of DSC, respec-
tively, when trained with only 5% labeled images (Fig. 5).
The impact of boundary-guided patch sampling strategy on
boundary region segmentation performance has also been
further explored. This significant performance gain further
demonstrates that our proposed boundary-guided contrastive
learning enables the network to learn representative features
in boundary regions.

D. Sensitivity Study

In this section, we performed comprehensive experiments to
explore the sensitivity of the components in our framework.

1) Sensitivity of Teacher Network Numbers M: The number of
pseudo-labels for each input is decided by the hyper-parameter
M , which determines the quality of aggregation labels and
plays a vital role in stable training. As shown in Fig. 6, we set
M from 2 to 8 to investigate its effects. It can be observed that
appropriately increasing the number of teacher networks can
stably improve segmentation performance. Note that if the M
is greater than 4, our method is insensitive to it.

Fig. 5. Performance on boundary regions from our method with or
without boundary-guided patch sampling strategy and other baselines on
BraTS2020, LA 2017 ACDC datasets, with 5% (upper) and 10% (lower)
labeled images used for training.

Fig. 6. Performance of our method on BraTS2020, LA and 2017
ACDC datasets with different teacher network numbers of M, where 5%
labeled images were used for model training. Dashed lines represent the
performance of the strongest baselines.

2) Sensitivity of Weight Balance λ1 and λ2: We validate the
sensitivity of the weights λ1 and λ2 in Eq. 7, which are used
to control the trade-off between the semi-supervised learning
and the contrastive learning in the total loss. To evaluate their
impact, we uniformly vary the values of λ1 and λ2 within
the range of [0, 1] with an increment of 0.25. We conduct
the experiments on three datasets with 5% labeled scans
for training. From Table III, it is evident that the perfor-
mance is relatively stable across different weight values of
λ1 and λ2.

3) Sensitivity of Momentum Coefficient Range [κ1, κ2]: The
update space of each teacher network is adjusted by the hyper-
parameter αm . As the parameters αm continue to increase
within the range of [κ1, κ2], the update paces of the teacher
model change from conservative to radical. We first discuss the
setting of gradually increasing αm . Specifically, we set each
αm in Eq. 1 by equally dividing the value range of the [κ1, κ2]

according to the number of teacher models, with M = 4 and
κ1 = 0 by default. Each αm is individually to applied the
corresponding teacher network f T

ζi
, resulting in a robust and

accurate aggregation label. In Table IV (upper half), the DSC
performance of our method is presented with different value
range of αm . The results demonstrate that in different settings
of the labeled data ratio, the DSC performance remains
comparable across varing κ2 values. This suggests that our
method is relatively insensitive to changes in the momentum
coefficient within a reasonable range. To further investigate
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TABLE III
SENSITIVITY OF HYPER-PARAMETERS λ1 AND λ2 IN DSC ON BRATS2020, LA AND ACDC DATASET, RESPECTIVELY

TABLE IV
SENSITIVITY ANALYSIS OF THE MOMENTUM COEFFICIENT SETTING

STRATEGY AND VALUE RANGE ON THE BRATS2020 DATASET. DSC IS
USED AS THE METRIC TO EVALUATE SEGMENTATION PERFORMANCE

TABLE V
SENSITIVITY ANALYSIS OF THE PATCH SELECTION STRATEGY AND

REPRESENTATION MATCHING SCHEME ON THE ACDC DATASET.
DSC IS USED AS THE METRIC TO EVALUATE

SEGMENTATION PERFORMANCE

the effectiveness of the strategy with gradually increasing
αm , we perform a comparison by setting the αm randomly
within the value range of [κ1, κ2]. As illustrated in Table IV
(lower half), the results demonstrate our designed gradually
increasing strategy obtains gains on performance.

4) Sensitivity of Patch Representation: Here, we investigate
our patch sampling method with three noteworthy aspects: (1)
Patch selection strategy: For the patches Ac,b and Ac,n , their
average patch uncertainties are used to select representative
patches. As a baseline, random patch sampling selects patches
without considering their uncertainty. In Table V, it is obvious
that the average patch uncertainty strategy is consistently better
than the random patch strategy. (2) Number of selected
patches: We set the memory space of the positive and negative
key sets to 10, 15, and 20, respectively. It is noticed that
increasing the number of selected patches from 10 to 15 results
in a marginal improvement. Furthermore, the performance
is relatively stable when the number is increased further
from 15 to 20. This suggests that our method is insensitive
to the number of patches selected within a reasonable range.
(3) Representation matching scheme: For an anchor rep-
resentation zc

i , the positive keys vc+
i,k and the negative keys

TABLE VI
SENSITIVITY ANALYSIS OF THE METRIC LEARNING ON THE

BRATS2020 AND 2017 ACDC DATASETS. DSC IS USED AS

THE METRIC TO EVALUATE SEGMENTATION PERFORMANCE

vc−
i,r are computed from within the same image for matching

intra-image patch representations, while the positive keys
vc+

i ′,k(i ̸= i ′) and the negative keys vc−
i ′,r as the supplements for

matching inter-image patch representations. To investigate the
impact of the matching scheme on segmentation performance,
we employed two different approaches in our experiments: one
limiting the anchor representation, positive keys, and negative
keys to originate from the same image (intra-matching), and
the other allowing these representations and keys to come from
different images (inter-matching). It is evident that inter-level
matching can consistently improve the segmentation perfor-
mance.

5) Sensitivity of Different Metric Learning: We validate the
effectiveness of the boundary-guided contrastive loss by com-
paring it with other metric losses, specifically triplet loss [82]
and center loss [83]. Triplet loss: For an anchor representation
zc

i , we calculate its Euclidean distance to both the positive
keys vc+

i,k , vc+
i ′,k and the negative keys vc−

i,r , vc−
i ′,r . Center loss:

The cluster center is estimated as the average of all in-class
representations, and then the distance between each sample
and its corresponding class center is calculated. As shown
in Table VI, the boundary-guided contrastive loss performs
better than triplet loss and center loss on the BraTS2020
and 2017 ACDC datasets. Compared to triplet loss and center
loss, our method directly optimizes dis(similarity) relation-
ships between samples and learns more representative feature
representations, achieving a better balance between inter-class
separation and intra-class compactness.

E. Analysis of the Boundary Refinement Method

To further evaluate the effectiveness of our framework in
boundary regions, we quantitatively and qualitatively com-
pare our method with other baselines using a model-agnostic
post-processing method, SegFix [63], on the BraTS2020
and 2017 ACDC datasets. Table VII presents the performance
of our method and other semi-supervised baselines using
SegFix. While SegFix consistently improves the DSC of the
baselines, our method outperforms the baselines with SegFix,
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TABLE VII
QUANTITATIVE RESULTS OF THE PROPOSED METHOD AND OTHER

STATE-OF-THE-ART METHODS WITH BOUNDARY REFINEMENT ON THE

BRATS2020 AND 2017 ACDC DATASETS. DSC IS USED AS THE

EVALUATION METRIC TO ASSESS PERFORMANCE

Fig. 7. Visual comparisons between the proposed method and PatchCL
with boundary refinement from different subjects on the BraTS2020
dataset. During training, 5% of the training samples were annotated.
Red and yellow contours denote ground-truth and prediction boundaries,
respectively.

achieving DSC increases of 3.7% and 2.63% on the two
datasets with 5% labeled data. One reason is that SegFix
primarily focuses on refining pixels near the boundary of
predictions, which does not lead to substantial improvements
in overall segmentation performance. As illustrated in Fig. 7,
misclassified regions (indicated by blue arrows) far from the
boundary cannot be effectively refined by SegFix.

F. Impact of the Boundary-Guided Contrastive Learning
in Pseudo-Labels

One important claim is that our boundary-guided con-
trastive learning significantly improves the quality of the
pseudo-labels. We present the quantitative and visualization
results comparing the pseudo-labels generated by our method
with those from the ablated version of our method without
boundary-guided contrastive learning, using different subjects
from the BraTS2020 dataset. Under the 5% annotation setting,
the DSC between the pseudo-labels generated by our method
and the ground truth is 86.31%, the Jaccard is 74.42%, the
95HD is 8.96, and the ASD is 2.29. In comparison, the
ablated version without boundary-guided contrastive learn-
ing achieved a DSC of 82.14%, a Jaccard of 70.79%, a
95HD of 12.41, and an ASD of 3.46. As shown in Fig. 8,
the pseudo-labels produced by our approach (second row)
demonstrate superior accuracy in identifying boundary regions
(indicated by blue arrows), outperforming the ablated version
without boundary-guided contrastive learning (third row). This
may explain why our method achieves better performance
than other baselines, particularly in segmenting ambiguous and

TABLE VIII
QUANTITATIVE COMPARISONS WITH OTHER STATE-OF-THE-ART

METHODS ON PANCREAS-NIH DATASET. ↑ INDICATES THAT THE

LARGER VALUES ARE BETTER AND ↓ INDICATES THAT

SMALLER VALUES ARE BETTER

TABLE IX
QUANTITATIVE COMPARISONS WITH OTHER STATE-OF-THE-ART

METHODS ON DRIVE DATASET. ↑ INDICATES THAT THE LARGER

VALUES ARE BETTER AND ↓ INDICATES THAT

SMALLER VALUES ARE BETTER

boundary regions. It is important to note that the ground-truth
was not accessible during model training and is only provided
for boundary comparison.

G. Analysis of Challenging Boundary Regions

We further verify the effectiveness of the proposed method
on data with very thin structures and more challenging bound-
ary regions. To evaluate segmentation performance on such
data, we conduct experiments on the Pancreas-NIH [84] and
DRIVE [85] datasets. The Pancreas-NIH dataset consists of
82 cases, with 58 used as the training set, 4 as the validation
set, and 20 as the test set. Table VIII presents the segmentation
results, demonstrating that our method consistently surpasses
all baselines across various settings. For example, under the
5% setting, our method achieves a DSC of 80.31%, a Jaccard
of 68.87%, a 95HD of 7.43 and an ASD of 2.87, marking
a significant DSC improvement of 3.05% over the second-
best method, PatchCL. To more comprehensively evaluate the
segmentation performance of different methods in boundary
regions, we defined the pixel band obtained from ground-truth
after extending the edge by 10 pixels for DSC evaluation. Our
method consistently outperformed the second-best baseline
PatchCL by 17.98% and 12.13% in terms of DSC on boundary
regions, respectively, when trained with only 5% and 10%
labeled images (Fig. 9). The visualization results shown in
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Fig. 8. Visual comparisons of pseudo-labels between the proposed method (second row) and the ablated version of the proposed method without
boundary-guided contrastive learning (third row) from different subjects on the BraTS2020 dataset. During training, 5% of the training samples were
annotated. Red and yellow contours denote ground-truth and pseudo-label boundaries, respectively.

Fig. 9. Performance on boundary regions from our method with or
without boundary-guided patch sampling strategy and other baselines
on Pancreas-NIH dataset, with 5% and 10% labeled images used for
training.

Fig. 10 indicate that our method is able to accurately segment
the boundary regions, even when the foreground regions are
more imbalanced. We further investigate the performance
of the proposed method on thinner structures. The DRIVE
dataset consists of 40 retinal images, with 18 used as the
training set, 2 as the validation set, and 20 as the test set.
The retinal vessel image contains many thin vessels and the
segmentation result is illustrated in Table IX. It is obvious that
our method is competitive with other methods by achieving
the best results with the highest DSC of 78.42%, Jaccard of
67.03%, 95HD of 2.31 and ASD of 0.12, in the 10% labeled
setting. We further visualize the vessel segmentation results,
including those of PatchCL, PLCT, CAML, MC-Net+ and our
method, as shown in Fig. 11. We can observe that our method
detects more thin vessel pixels with low contrast than other
baselines.

H. Ablation Study
The further detailed ablation studies are performed on the

BraTS2020 dataset to show the effectiveness of each com-
ponent we designed. Note that the average patch uncertainty

TABLE X
ABLATION STUDY OF OUR DESIGNED MODULES ON THE BRATS2020

DATASET. CRT, UWA, PLC AND BGS DENOTE THE

CONSERVATIVE-TO-RADICAL TEACHER NETWORKS,
UNCERTAINTY-WEIGHTED AGGREGATION, PATCH-LEVEL

CONTRASTIVE LEARNING AND BOUNDARY-GUIDED

PATCH SAMPLING, RESPECTIVELY

selection strategy and M = 4 are set by default in the
following experiments. Fig. X reveals that, (1) the most signif-
icant performance improvements (the DSC gains are 24.96%
and 23.13%, respectively) are achieved by introducing the
conservative-to-radical teacher networks, denoted as CRT, (i.e.,
improving the quality of aggregation labels) compared to the
single-teacher network; (2) the proposed uncertainty-weighted
aggregation strategy, referred UWA, can consistently improve
the segmentation performance, achieving DSC gains of 0.73%
and 0.65%; (3) introducing patch-level contrastive learning
module, denoted as PLC, results in DSC improvements of
7.54% and 6.06%. Note that our proposed method considers
the (dis)similarities between local and global representations
as well as intra- and inter-images, which greatly promotes the
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Fig. 10. Visualization results of the proposed method from different subjects on the Pancreas-NIH dataset. During training, 5% of the training
samples were annotated. Red and yellow contours denote ground-truth and prediction boundaries, respectively.

Fig. 11. Visual comparisons between the proposed method and baseline methods (fourth to seventh column) from different subjects on the DRIVE
dataset. During training, 10% of the training samples were annotated.

utilization of unlabeled data to achieve better performance;
(4) further designing the boundary-guided patch sampling,
denoted as BGS, obtains the gains of 4.51% and 3.02% in
DSC. The results suggest that strengthening the comparison
between boundary region and whole region representations is
beneficial to the segmentation performance of the model.

I. Limitations and Future Work
However, our method has some limitations. (1) Model

design still requires multiple teacher networks, introducing
extra computation. (2) The range of momentum is manually
determined based on experimental results. (3) For the patch
selection strategy, current uncertainty estimates are based
on previous work [22] and are limited, which will affect
the efficiency of selecting representative patches. (4) More
model architectures, such as Transformer, are deserved to
adapt to our framework. However, the limited amount of
available data in medical imaging may be the reason why
the Transformer architecture has not been widely adopted in
current semi-supervised learning methods [86]. In future work,
we will be dedicated to addressing the above limitations. For

instance, the development of an automated strategy for setting
the momentum range can effectively optimize the training
process. Additionally, we notice that Zhang et al. [21] proposes
the Best-model Moving Average (BMA) strategy to update
the teacher model, which could be further introduced into our
framework.

V. CONCLUSION

In this paper, we have proposed a novel semi-supervised
method based on conservative-to-radical teacher networks
with patch-level boundary-guided contrastive learning. The
conservative-to-radical update strategy is designed to main-
tain teacher model diversity, while the integration of
uncertainty-weighted aggregation helps the teacher networks
effectively utilize the extra semantic information inherent in
unlabeled data. These networks can significantly improve the
quality of the pseudo-labels, as the reliable supervision for
the student network. To overcome the formidable challenge
of boundary segmentation, we design a boundary-guided
patch sampling strategy and patch-level boundary-guided
contrastive learning to guide our framework to learn more
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discriminative representations in boundary regions. The
proposed conservative-to-radical teacher networks and the
boundary-guided patch sampling strategy are easily applicable
to other segmentation networks, which indicates the usability
and scalability of our method. A comprehensive evaluation on
three public datasets has shown our method achieves the best
performance under different limited annotation settings.
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