IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 35, NO. 7, JULY 2025

7143

DAT: Dual-Branch Adapter-Tuning for
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Abstract— Parameter-Efficient Fine-Tuning methods based on
vision-language models (such as CLIP) for few-shot learning have
recently received considerable attention. However, previous works
only fine-tune either the image or text branch, breaking the
alignment of the original two branches, meanwhile fine-tuning
both branches of the CLIP would inevitably introduce more
trainable parameters and likely cause more severe over-fitting
due to the limited training data. In this study, we propose
a novel Dual-branch Adapter-Tuning framework (DAT), which
collaboratively trains the visual adapter and textual adapter
added to the two branches of the original CLIP with multiple
consistency constraints. By effectively utilizing the semantically
detailed class-specific prompts and outputs of the original
CLIP to guide the fine-tuning of both branches, our method
gains exceptional adaptation ability to the downstream few-shot
learning tasks and alleviates the over-fitting issue, meanwhile
maximally preserving the generalization ability of the original
CLIP model. Our proposed framework has achieved superior
performance on diverse datasets under various few-shot learning
settings compared to the existing approaches. The source code is
available at https://github.com/SandyXi/DAT.

Index Terms— Vision-language model, parameter-efficient fine-
tuning, few-shot learning.

I. INTRODUCTION

EW-SHOT learning [1], [2], [3], [4], [5], [6], [7], (8],
[9] aims to enable the model to well perform a new task
after training the model with limited task-specific samples. For
image classification tasks, traditional approaches to few-shot
learning rely on training the model with training images and
class labels, which fails to fully utilize the rich semantic
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Fig. 1. Performance comparison between different methods (in different

colors) under the 16-shot setting. X-axis: accuracy on the ImageNet dataset;
Y-axis: averaged performance over 11 datasets.

textual information of each class and limits the trained model’s
effectiveness to a close-set of categories. Recently, large-scale
foundational vision-language models (VLMs) [10], such as
CLIP (Contrastive Language-Image Pre-training) [11], [12],
have shown exceptional performance on zero-shot and few-
shot learning tasks. CLIP leverages a collection of 400 million
text-image pairs gathered from the internet and trains the
model by contrastive learning, which enables the model to
encode both text and images into a unified semantic space
without retraining, even in an open-vocabulary situation. How-
ever, due to the massive scale of the VLMs, it is impractical
to fully fine-tune the model in few-shot scenarios.

For that reason, subsequent methods known as Parameter-
Efficient Fine-Tuning (PEFT) [13], [14] have emerged with
lightweight fine-tuning of VLMs. During the fine-tuning
process, the parameters of the pre-trained model are fixed,
while only a small number of newly added parameters are
tuned for any downstream task. Currently, the PEFT approach
based on CLIP for few-shot learning is generally catego-
rized into the prompt-tuning paradigm and the adapter-tuning
paradigm. The former paradigm adds learnable tokens called
“prompt” to the inputs of the model to enable better alignment
between the text and image modalities, such as CoOp [15]
and CoCoOp [16], while the latter paradigm adds lightweight
trainable network modules called “adapter” somewhere in the
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pre-trained CLIP, achieving better adaptation to the down-
stream tasks, such as CLIP-Adapter [6] and Tip-Adapter [17].

However, these methods are faced with a dilemma. On the
one hand, to increase the adaptation ability of CLIP to the
downstream tasks, it is expected to fine-tune both the text
branch and the image branch of CLIP, since fine-tuning
only one of the two modalities would break the original
alignment of the two branches [18]. On the other hand,
fine-tuning both modalities would inevitably introduce more
trainable parameters or modules, which in turn would likely
lead to more severe over-fitting of the fine-tuned model to
the limited training data. For example, researchers attempted
adding both textual and visual adapters into CLIP but observed
a performance drop compared to the single visual adapter
fine-tuning [6]. Similarly, adding trainable parameters to both
text and image features also caused decreased performance
compared to adding trainable parameters to the text features
only [19].

To address this dilemma, we propose a novel Dual-branch
Adapter-Tuning (DAT) framework with the help of mul-
tiple consistency constraints. This framework contains an
image-modality branch and a text-modality branch, where the
trainable visual adapter and the textual adapter are added
to the visual branch and the textual branch, respectively.
Compared to relevant studies [6], our approach alleviates
the over-fitting issue and significantly improves the model’s
performance in the case of dual-branch fine-tuning condition,
thanks to the whole well-designed framework. When learning
to recognize a set of visual classes with limited training
images, more descriptive prior knowledge generated from
GPT-3 for each visual class is encoded in the text-modality
branch to more effectively guide the visual learning. To help
remain well aligned between the two modalities and alleviate
the over-fitting issue during dual-branch training process, two
types of consistency constraints are proposed for training of
the textual adapter and the visual adapter. Specifically, the tex-
tual adapter and the visual adapter are trained collaboratively
with feature consistency constraint enforcing that the visual
feature representations is well aligned with the textual feature
representations, such that the rich semantic knowledge of
each class can be effectively absorbed into the trained model.
To alleviate the over-fitting issue, the original relationship
between the two outputs from the pre-trained CLIP image
encoder and the text encoder for each training image is
utilized as logit consistency constraint to guide the training
of both adapters, such that the visual feature representations
and the textual feature representations after adapter tuning
are largely similar to the two embedding features from the
original CLIP. In this way, the desired generalization ability
of the original CLIP would be largely preserved after adapter
tuning. Extensive empirical evaluations on 11 diverse image
classification datasets and under various few-shot learning
settings (see Figure 1 for an example) confirm the effectiveness
and generalizability of our proposed DAT framework. The
contributions of this study are summarized below.

« A novel dual-branch adapter-tuning framework for few-

shot learning. To the best of our knowledge, this is the
first learning framework via which visual and textual
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adapters together can be added to CLIP to effectively
improve few-shot learning performance.

o Multiple consistency constraints to help train the model
with the guidance of class-specific prior knowledge and
the original CLIP. In particular, more descriptive knowl-
edge of each visual class and the desired generalization
ability of the original CLIP can be well absorbed into the
trained model.

« Extensive empirical evaluations on multiple datasets con-
firm the effectiveness of our proposed framework, with
state-of-the-art few-shot learning performance achieved.

II. RELATED WORK
A. Vision-Language Models

Vision-Language Models (VLMs), such as CLIP [11],
ALIGN [20] and FILIP [21], are pre-trained using large-scale
datasets of image-text pairs from the internet. Typically, VLMs
employ contrastive learning to bring matched image-text pairs
closer into a unified embedding space and push unmatched
pairs further apart, containing rich multi-modal representa-
tions. While VLMs have achieved impressive performance,
fine-tuning VLMs in few-shot scenarios still remains a chal-
lenge to strike a balance between downstream tasks and prior
knowledge. Our approach tackles this challenge by employing
multiple consistency constraints during the model training
process, which helps reduce over-fitting to limited training
data in few-shot learning while fully leveraging rich prior
knowledge encoded by CLIP.

B. Few-Shot Learning Based on CLIP

Few-shot learning involves training the model on a small
set of samples per class and aiming for better generaliza-
tion to unseen samples. Methods such as meta-learning [22],
[23], [24], [25], [26], [27], data augmentation [28], [29]
and metric learning [30], [31] have been widely applied in
few-shot learning. For example, LCCRN [27] introduces a
local content-enriched module to learn the discriminative local
features and a cross-reconstruction module to fully engage
the local features with the appearance details obtained from
a separate embedding module, with both modules working
together to better classify fine-grained images. TADRNet [26]
proposes a task-aware dualrepresentation network for few-shot
action recognition, which learns how to adapt video represen-
tations to novel tasks in a meta-learning manner. DSD [25]
introduces a regularized dense-sparse-dense fine-tuning flow
for regularizing the capacity of pre-trained networks and
achieving efficient few-shot domain adaptation. These works
use a meta-learning approach to train models and only test the
performance of the models in a specific and single scenario.
Recently, the emergence of CLIP has opened up new possi-
bilities for few-shot learning. For example, Cross-Modal [32]
enhances the performance of image modality by mapping
different modalities information into the same representation
space. CALIP [5] utilizes a parameter-free attention mech-
anism to guide the interaction between the image and text
modalities. CLAP [33] introduces a class-adaptive linear probe
objective, whose balancing term is optimized via an adaptation
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of the general Augmented Lagrangian method tailored to this
context. CLIP4STR [34] transforms CLIP into a scene text
reader, which is a simple yet effective STR method built upon
image and text encoders of CLIP. However, due to the large
scale of CLIP and the reality that full fine-tuning of CLIP with
small-scale data is impractical, the Parameter-Efficient Fine-
Tuning (PEFT) approach [13], which was originally applied in
NLP, has been gradually applied to the image classification.
The prevailing PEFT methods based on CLIP for few-shot
learning tasks can be categorized into two groups, i.e., prompt-
tuning based and adapter-tuning based.

1) Prompt-tuning on CLIP: CoOp [15] and CoCoOp [16]
optimize continuous learnable prompts in the text branch,
enabling better adaptation of the text encoder to downstream
tasks. TaskRes [19] introduces learnable parameters to the text
features while keeping the pre-trained CLIP parameters frozen,
enabling more flexible task-specific knowledge exploration.
Descriptor and Word Soups [35] greedily selects a small set
of textual descriptors and assembles a chain of words using
generic few-shot training data, then calculates robust class
embeddings using the selected descriptors to increase out-of-
distribution target accuracy.

2) Adapter-tuning on CLIP: CLIP-Adapter [6] and SgVA-
CLIP [36] add an adapter in the image branch, while
Tip-Adapter [17] treats images and labels as key-value pairs
stored in a cache model and initializes the key parameters as an
adapter. However, these adapter-tuning methods only fine-tune
the image branch. In contrast, our approach involves adding
adapters on both the text and image sides and fine-tuning with
the help of multiple consistency constraints, ensuring com-
plete adaptation of the multi-modality model as a whole and
providing greater flexibility in aligning visual and language
representations.

III. METHOD

In this section, we first revisit CLIP and overview the
framework of our method, and then introduce the details of
each modality and the inference process.

A. Preliminary

CLIP consists of an image encoder and a text encoder,
which are used to encode images and text into the same
embedding space respectively, and has shown promising per-
formance for zero-shot and few-shot classification tasks. For
example, for the zero-shot classification task which involves
totally C classes, any test image x can be passed through
the image encoder to obtain the image feature vector rep-
resentation f € RP*! where D is the dimensionality of
the feature vector space. Then each of the C class name is
respectively filled into the vanilla category prompt templates,
such as “A photo of a [CLASS]”, which in turn is fed to the
text encoder to obtain the text feature vector representation
te,c € {1,2,...,C}. The degree of the image x belonging
to the c-th g{ass can be measured by the cosine similarity

s(f, t) = e between the image feature vector f and the

text feature vector t. of the c-th class. Then, the probability
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of x belonging to the c-th class can be estimated by
exp(s(f, t)/7)
plelx) = =& < (1)

> exp(s(f.t))/T)

where T represents the learned temperature of CLIP.

B. The Few-Shot Learning Framework

1) Framework Overview: Our few-shot learning framework
is illustrated in Figure 2. It consists of a text-modality branch
(Figure 2, upper half) and an image-modality branch (Figure 2,
lower half). In the image-modality branch, a pre-trained
image encoder is adapted with a lightweight learnable visual
adapter, leading to the adapted visual encoder (‘Adapted Visual
Encoder’). The output of the adapted visual encoder is then
fed into a multilayer perceptron (‘MLP’) as the classifier head
for category prediction of the input image. Along the text-
modality branch, prior knowledge of each visual category is
initially represented in the form of textual descriptions of the
category name and its various properties, and such descriptive
prior knowledge is then encoded by a pre-trained and fixed
text encoder (‘CLIP Text Encoder’). Considering that the
alignment between the original pre-trained text encoder and
image encoder has been impaired due to the adapted visual
encoder, a learnable textual adapter (‘T.A.”) is proposed to be
attached on top of the fixed text encoder, such that the encoded
prior knowledge is transformed to be more easily aligned with
the visual representation of images from the same category.
The output of the textual adapter for each visual category
can be considered as the learnable textual prototype for that
category.

To the best of our knowledge, this is the first few-shot
learning framework in which both the text branch and the
visual branch contain learnable adapter modules. Since more
model parameters need to be learned in our dual-branch
adapter-tuning framework compared to existing frameworks
where only one (either text or image) branch contains learnable
parameters [6], [17], [19], it becomes more challenging to
alleviate the over-fitting issue during optimizing these dual-
branch modules. In this study, a synergistic training strategy
is proposed to collaboratively optimize the textual adapter in
the text-modality branch and the visual adapter together with
the classifier head in the image-modality branch. In particular,
to fully utilize the generalizability of the pre-trained text and
image encoders, the similarity between the outputs of the
original text and image encoders is used to guide the training
of the learnable modules in both branches, such that severe
over-fitting of the learnable modules to the limited training
images can be largely prevented.

2) Text-Modality Branch: The text-modality branch is used
to encode the prior knowledge of each visual category and to
help guide the training of the image-modality branch. While
most previous studies simply feed the vanilla text prompts
for each visual class (e.g., “A photo of a [CLASS]”) to the
pre-trained and fixed text encoder to obtain the prior knowl-
edge representation, such prior knowledge is solely based on
the class name and therefore often lacks detailed class-specific
information (e.g., various properties and characteristics of the
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Fig. 2.
descriptive prompts corresponding to each class are used to obtain the textual prototypes through the CLIP’s frozen text encoder and the trainable textual
adapter. In the image-modality branch (Left, lower half), an image is fed to the adapted visual encoder and the multilayer perceptron (MLP) to obtain the
image feature vector f¢ and the logit vector z™ respectively. The textual adapter, the visual adapter within the adapted visual encoder, and the MLP are jointly
trained by the feature consistency loss L, the logit consistency losses L 1 and L 7, and the cross-entropy loss L. The architectures of the textual adapter
and the adapted visual encoder are illustrated on the upper right and the lower right respectively, while the process of obtaining zero-shot CLIP logit vector
z° is drawn in the right center.

visual class). In order to encode more prior knowledge for
each class, multiple descriptive prompts with more detailed
class information are generated based on the recently proposed
strategy in CuPL [37], where each descriptive prompt corre-
sponds to the output from the GPT-3 [38] by enquiring it in
different ways (e.g., “Describe what a(n) [CLASS] looks like”
or “How can you identify a(n) [CLASS]?”). Here 50 generated
descriptive prompts per class (Table I) are respectively fed to
the pre-trained text encoder, and for simplicity, the 50 output
vectors from the text encoder are averaged to represent the
detailed prior knowledge for the class. In contrast, the encod-
ing of the vanilla prompts from the fixed text encoder can be
considered to represent rough prior knowledge of the class.
It is important to note that the structure of CLIP text encoder
is the same as that of BERT [39], which means that both the
detailed and the rough representations are extracted from the
[cls] token of the pre-trained CLIP text encoder.

Both the detailed and the rough representations of the prior
knowledge for each class are fed to the learnable textual
adapter module (‘T.A.’; Figure 2, top right). The two prior
knowledge representations are fused simply with the addition
operator, considering that concatenation or additional learnable
fusion layer would cause more learnable parameters. The sim-
ply fused prior knowledge representation is then transformed
by the trainable textual adapter. The textual adapter consists of
a trainable down-projection layer and a trainable up-projection
layer, each of which is followed by a rectified linear unit
(ReLU) activation [40]. To be consistent with the dimension
D of the visual encoder output, the output dimension of the
up-projection layer is set to D, while the output dimension
of the down-projection layer is simply set to D/2. A skip
connection as in ResNet [41] is included in the trainable

An overview of our framework for few-shot image classification. In the text-modality branch (Left, upper half), the vanilla prompts and a set of

textual adapter, such that the two projection layers are trained
to learn just the residual between the fused prior knowledge
representation and image encodings of the same class, such
residual learning is expected to reduce the risk of over-fitting
of the textual adapter to the limited training images in the
few-shot scenario, as confirmed in the relevant ablation study
(See Addition ablation study).

The output of the textual adapter for each class can be
considered as the learnable textual prototype of the class. Let
jt. denote the learnable textual prototype of the c-th class. For
each input image x from the image-modality branch, the output
f? of the adapted visual encoder can be compared with each
textual prototype in the form of cosine similarity cos(f*, u.) =
m Such cosine similarities over all the C classes are
collected to form a vector z* € R€*! which will be used to

help train both the textual adapter and the visual adapter.
3) Image-Modality Branch: The image-modality branch is

used not only to extract visual features from each input image
and predict the class of the input image, but also to help guide
the training of the textual adapter in the text-modality branch.
The pre-trained image encoder by default is from CLIP. When
the backbone of the pre-trained CLIP image encoder is CNN
followed by a self-attention pooling layer (Figure 2, lower
right, blue), the image encoder is adapted by including a
parallel visual adapter on top of the last convolutional layer of
the pre-trained image encoder (‘V.A.’; Figure 2, lower right,
orange). The pre-trained image encoder is frozen and only the
visual adapter is trainable. Specifically, the input of the visual
adapter is the feature maps of the last convolutional layer
rather than the feature vector output of the final self-attention
pooling layer, considering that more visual information exists
in the feature maps than in the pooled feature vector, and
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TABLE I

DEMONSTRATIVE TEXTUAL DESCRIPTIONS OF DIFFERENT CLASSES. THE
TEXTUAL DESCRIPTION OF EACH CLASS IS OBTAINED BY ASKING
GPT-3 IN DIFFERENT WAYS

class name Textual description from GPT-3
goldfish A goldfish has a long, gold body with back fins.
abbey The abbey is a large, old building made of stone.

tiger shark Tiger sharks are large, predatory sharks.
gnocchi Gnocchi are small, doughy dumplings.

therefore potentially discriminative features specifically for the
few-shot learning task can be more likely preserved through
the self-attention pooling layer with the help of the visual
adapter. Here, the visual adapter is simply designed as a
convolutional layer with kernel size 1x 1 to preserve the spatial
size of the feature maps. Batch normalization (BN) [42] and
ReLU activation are adopted on top of the convolutional layer
as usual. The output of the visual adapter, containing the same
number (i.e., D) of feature channels as that of the input to
the visual adapter, is combined (by addition) with the feature
maps of the last convolutional layer from the pre-trained image
encoder, which is then spatially pooled by the pre-trained and
fixed self-attention pooling layer to generate the feature vector
output f* of the adapted visual encoder. Note that, compared
to using the only output of the visual adapter as the input
to the final self-attention pooling layer, combining the two
sets of feature maps together ensures that the extracted feature
information from the pre-trained CNN is always considered in
the self-attention pooling layer, and therefore can help alleviate
over-fitting of the overall adapted visual encoder to the limited
training images. Also note that the pre-trained image encoder
can be the ViT version [43] of the CLIP. With such an image
encoder, the trainable visual adapter becomes a fully connected
layer followed by BN and ReLU activation, with the output
dimension being the same as that of the input. The visual
adapter is inserted in front of the final projection head of ViT
to fine-tune the class token.

The output of the adapted visual encoder is finally fed
to the trainable MLP which consists of two fully connected
(FC) layers with the architecture FC—BN—ReLU—FC. The
output dimensions from the two FC layers are respectively
2D and C, considering that the lifted dimension from the first
FC may provide better learning ability. Although more model
parameters need to be learned in the MLP, the effectively
designed loss function will largely alleviate the over-fitting
issue (See relevant description below). The MLP module
allows our framework to achieve a large performance improve-
ment compared to the original CLIP on a variety of datasets
from different domains, but at the same time our framework
becomes a closed-set classification model. The combinatio of
few-shot and open-set recognition is an interesting and chal-
lenging task and we will consider as part of the future work.

4) Model Training and Inference: Our few-shot learning
framework aims to well adapt the pre-trained CLIP encoders to
the specific few-shot learning tasks with limited training data,
and meanwhile to use the generalizability of the pre-trained
encoders to alleviate the over-fitting issue of the final classifier.
This goal is achieved with the following four loss terms.

7147

a) Feature consistency loss: As for the training of the
CLIP model, both the textual adapter and the visual adapter
in our framework are collaboratively optimized such that the
visual representation of any input image from one class is
well aligned with the learnable textual prototype of the same
class. This can be achieved by minimizing the contrastive loss
function Lp,

1 N C
Lrp=—52.2 10n=0)log

n=I1 c=1

exp(s(f2, ) /7)
> exp(s (e, mj)/T)
)

where f] denotes the feature vector output from the adapted
visual encoder for the n-th training image, and . is the textual
prototype of the c-th class. 1(-) is the indicator function and
yn € {1,2,..., C} denotes the ground-truth class label for the
n-th image. N denotes the total number of training images, and
7 represents the temperature hyper-parameter. s(-, -) represents
the cosine similarity.

b) Logit consistency loss: Both the visual adapter and
the textual adapter would be likely over-fitted to the limited
training images without further constraint. To alleviate such
possible over-fitting, the knowledge in the original CLIP
model is utilized to guide the training of the two adapters.
Specifically, considering the better generalization ability of the
original CLIP model, the relational vision-language knowledge
between each image and the corresponding vanilla prompt
is captured by the original CLIP, and then such knowledge
is distilled to the visual adapter and textual adapter. For-
mally, let z) = [s(f), t1), s(f), t2), ..., s(E), tc)]T denote the
relational vision-language knowledge for the n-th training
image, where s(f7, t.) represents the cosine similarity between
the image feature vector output f) from the pre-trained
image encoder of the original CLIP and the text feature
vector output t. from the pre-trained text encoder of the
original CLIP. Actually, z, can also be considered as the
logit vector of the classifier head when CLIP is used for
zero-shot classification (see Equation 1). Similarly, let z{ =
[s(B, w1), s(£, m2), ..., s, nc)IT denote the logit vector
based on the outputs from the adapted visual encoder and the
textual adapter. Then, knowledge distillation can be achieved
by minimizing the logit consistency loss Lg. 1, i.e.,

1
Lor =55 2.2 lne —al, 3)

where z;, . is the c-th element of z;, and similarly for zj, .

With a similar rationale, to alleviate the potential over-fitting
of the MLP module in the image-modality branch, the rela-
tional vision-language knowledge from the original CLIP can
also be used to guide MLP training. Let z)' denote the output
logit vector from the MLP for the n-th training image. Then,
knowledge distillation can be achieved by minimizing the logit
consistency loss Lg 2, i.e.,

N C
1
LGo= vC z E lzp e = 2p.cls “4)
n=1c=1

where z . is the c-th element of z;'.
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TABLE I
SUMMARY OF 11 DATASETS FOR FEW-SHOT LEARNING AND FOUR TARGET DATASETS OF DOMAIN GENERALIZATION

Name Number of Classes Size (Train / Val / Test) Description

ImageNet 1000 1.28M / - /50000 Recognition of generic objects
Caltech101 100 4128 / 1649 / 2465 Recognition of generic objects
OxfordPets 37 2944 / 736 / 3669 Fine-grained classification of pets
StanfordCars 196 6509 / 1635 / 8041 Fine-grained classification of cars
Flowers102 102 4093 / 1633 / 2463 Fine-grained classification of flowers
Food101 101 50500 / 20200 / 30300 Fine-grained classification of foods
FGVCAircraft 100 3334 /3333 /3333 Fine-grained classification of aircrafts
SUN397 397 15880 / 3970 / 19850 Scene classification

DTD 47 2820/ 1128 / 1692 Texture classification

EuroSAT 10 13500 / 5400 / 8100 Land use & cover classification with satellite images
UCF101 101 7639 / 1898 / 3783 Action recognition

ImageNet-V2 1000 - /-1/10000 New test data for ImageNet
ImageNet-Sketch 1000 -/-1750889 Sketch-style images of ImageNet classes
ImageNet-A 200 -/ -17500 Natural adversarial examples of 200 ImageNet classes
ImageNet-R 200 - /- /30000 Renditions of 200 ImageNet classes

In summary, the textual adapter, the visual adapter, and
the MLP module can be jointly trained by minimizing the
combined loss L,

L=Lr+M(Lc1+Ls2)+LE, &)

where L is the conventional cross-entropy loss based on the
final classifier output in the image-modality branch. Coeffi-
cients A; and A, are used to balance these loss terms.

c) Model inference: Once the model is well trained,
it can be used to predict the class of any new image. Since
three logit vectors z%, 2™, z° are generated for any input image,
the three vectors can be assembled together for class prediction
as follows,

z=172" 4+ 012" + oz’ . (6)

where coefficients «; and «, are used to balance the contribu-
tions of the three logit vectors. The class corresponding to the
logit element with the largest value in z is the final prediction.

IV. EXPERIMENTS
A. Experimental Setup

1) Datasets: We conduct our few-shot evaluation on
11 datasets which cover a wide range of distinct recognition
tasks, including two datasets of generic objects (i.e., Ima-
geNet [44] and Caltech101 [45]), five datasets for fine-grained
classifications of pets, cars, flowers, food and aircraft
(i.e., OxfordPets [46], StanfordCars [47], Flowers102 [48],
Food101 [49] and FGVCAircraft [50]), one dataset for scene
classification (i.e., SUN397 [51]), one dataset for texture
classification (i.e., DTD [52]), one dataset for satellite images
(i.e., EuroSAT [53]), and one dataset for action recognition
(i.e., UCF101 [54]). For domain generalization evaluation,
we use ImageNetV2 [55], ImageNet-Sketch [56], ImageNet-
A [57], and ImageNet-R [58] as out-of-distribution datasets
and ImageNet as in-distribution dataset. Please see Table II
for more dataset details.

2) Settings: To evaluate our framework in extremely scarce
data situations, we train the model using 1/2/4/8/16-shot
images per class and then evaluate the model on the test set
of all images. For domain generalization, we train our model
on 16-shot ImageNet images per class and evaluate the model

TABLE III
AVERAGE ACCURACY FROM DIFFERENT METHODS OVER 11 DATASETS

Shot Setup 1 2 4 8 16
Zero-shot CLIP :  58.77

Linear-probe CLIP 36.67 47.61 57.19 64.98 71.10
CoOp 59.59 62.32 66.77 69.89 73.42
WiSE-FT 59.09 61.80 65.29 68.43 71.64
ProGrad 62.61 64.90 68.45 71.41 73.96
CLIP-Adapter 62.67 65.55 68.61 71.40 74.44
Tip-Adapter 62.33 64.62 66.54 68.50 70.32
Tip-Adapter-F 64.62 66.65 69.67 72.45 75.83
PLOT 62.59 65.23 68.60 71.23 73.94
Tip-Adapter-F + PLOT 65.45 68.63 71.23 73.49 76.20
Cross-Modal 64.66 67.68 70.59 73.97 77.22
Cross-Modal Linear-probe 64.13 66.95 70.31 72.96 75.97
Cross-Modal Adapter 64.40 67.57 70.78 73.35 75.94
TaskRes 64.28 67.55 70.28 73.35 75.78
CLAP 62.79 66.07 69.13 72.08 74.57
DAT (ours) 65.99 68.69 72.49 75.57 79.14

on the different out-of-distribution test sets without any fine-
tuning technique.

3) Implementation Details: By default, we employ ResNet-
50 as the backbone for the CLIP image encoder, along with
the corresponding Transformer [59] for the text encoder.
During the training period, we apply random cropping and
random horizontal flipping to each image, then resize it to
224 x 224 pixels for all datasets. The batch size is set to 128 for
the ImageNet and 64 for other datasets. On all datasets, the
model is trained for 200 epochs with an initial learning rate
of 0.001. We utilize the AdamW optimizer [60] with a weight
decay of le™> and cosine annealing learning rate scheduling.
The hyper-parameter 7 in Lr is set to 0.1 for all experiments.
By default, X1 is set to 0.5 and X, is set to 3.0. o1 and « are
tuned on the validation sets. During the inference stage, only
center cropping and resizing are applied to each test image.

B. Performance Comparison

1) Few-Shot Learning: Table III presents a comparison
between our method and other approaches in terms of average
performance across 11 datasets for the 1/2/4/8/16-shot settings.
The compared methods include CLIP [11], CoOp [15], WiSE-
FT [61], ProGrad [62], CLIP-Adapter [6], Tip-Adapter [17],
Tip-Adapter-F [17], PLOT [63], Cross-Modal [32], CLAP [33]
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Fig. 3. The performance comparison in few-shot learning on 11 datasets. Averaged performance is presented in the upper-left figure, which demonstrates

the superiority of our approach. Detailed numerical results can be found in Table IX.

and TaskRes [19], and our method exhibits state-of-the-art
performance. For example, we achieve an average performance
gain of nearly 2 percentage points over 11 datasets under the
16-shot setting. Even in scenarios with extremely limited data
(e.g., 1/2-shot), we still achieve the best average performance
compared to other methods. Figure 3 illustrates the perfor-
mance comparison of our method against other approaches
across all datasets, and Table IX lists the full numerical
results of our method under various few-shot settings for each
dataset. Notably, on the FGVCAircraft dataset, our method
achieves a performance gain of over 10 percentage points
under the 16-shot setting compared to the TaskRes. Similarly,
on the UCF101 dataset, our method achieves a performance
gain of nearly 4 percentage points under the same setting
compared to the TaskRes. Overall, our approach achieves
optimal performance in various settings, demonstrating that
our DAT framework for few-shot learning is able to better
align the text branch and image branch of the CLIP model,
and achieves better adaptation ability on downstream tasks.

2) Generalization Ability: Table IV demonstrates the
domain generalization ability of our method, where the model
is trained on the source dataset and tested on the target
datasets. The model is trained on the average of three random
seeds of the 16-shot ImageNet images per class and evaluated
on four out-of-distribution datasets. Our method overall shows
stronger capability in domain generalization, confirming its
robustness and transferring ability. On the ImageNet-A dataset,

TABLE IV

DOMAIN GENERALIZATION PERFORMANCE COMPARISON. MODELS ARE
TRAINED ON THE AVERAGE OF THREE RANDOM SEEDS OF SOURCE

DATASET WITH 16-SHOT SETTING AND TESTED ON TARGET
DATASETS
Target
Methods
-V2 -Sketch -A -R Average

Zero-shot CLIP 51.34 3332 21.65 56.00 40.58
Linear-probe CLIP 45.97 19.07 12.74 34.86 28.16
CoOp 55.40 34.67 23.06 56.60 4243
CLIP-Adapter 52.67 32.04 20.12 54.75 39.90
Tip-Adapter-F 57.11 36.00 20.60 57.98 42.92
PLOT 55.11 33.00 21.86 55.61 41.40
Cross-Modal Linear-probe 55.30 33.10 20.00 56.40 41.20
Cross-Modal + WiSE-FT 56.60 35.60 22.60 59.50 43.58
TaskRes 57.00 3443 21.50 58.13 42.77
Word soup (ViT-B/16) 63.00 49.00 50.40 77.20 59.90
CLAP (ViT-B/16) 64.06 47.66 48.40 76.70 59.21
DAT (ours, RN50) 58.51+0.12 37.05+0.15 23.01+0.16 60.79+0.05 44.84
DAT (ours, ViT-B/16) 64.21+0.07 49.51+0.20 48.59+0.23 77.70+0.14  60.00

our method slightly underperforms compared to CoOp [15]
and Word soup [35], which may be attributed to the fact
that ImageNet-A consists of real-world adversarially filtered
images that can fool current ImageNet classifiers. However,
we still achieve the best average performance on the four out-
of-distribution datasets.

In addition, our learning framework is not limited to the
image encoder backbone ResNet-50. As Table V shows,
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TABLE V

FEW-SHOT LEARNING PERFORMANCE ON IMAGENET WITH DIFFERENT
BACKBONES UNDER THE 16-SHOT SETTING
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TABLE VII

ABLATION STUDY OF OUR METHOD ON THREE REPRESENTATIVE
DATASETS UNDER THE 16-SHOT SETTING

Backbone RN50 RN101 ViT-B/32 ViT-B/16 Components Datasets
Zero-shot CLIP 58.18 61.62 62.05 66.73 Lp La,1 LG,2 V.A.  TA. ImageNet Caltechl01l  OxfordPets
CoOp 62.95 66.60 66.85 71.92
CLIP-Adapter 63.59 65.39 66.19 7113 . 62"; 92-78 89?1
Tip-Adapter-F 65.51 68.56 68.65 73.69 64.8 92.65 88.17
TaskRes 65.73 68.73 69.17 73.90 v v 65.76 23.06 9031
v v 65.23 92.86 88.99
DAT (ours) 67.01 70.08 69.42 74.54 v v v 65.83 93.27 90.45
v v v v 65.92 93.23 90.02
v v v v 66.40 93.26 90.40
v v v v 65.64 92.09 89.51
TABLE VI v v v v 66.50 93.43 90.60
FEW-SHOT LEARNING COMPUTATION EFFICIENCY BETWEEN DIFFERENT v v v v 66.83 93.71 90.54
METHODS ON IMAGENET UNDER THE 16-SHOT SETTING v % % v v 67.01 94.04 90.90
Methods Training Epochs Parameters Accuracy
Zero-shot CLIP - - - 58.18
CALIP (training free) - - - 60.57 TABLE VIII
Tip-Adapter (training free) - - - 62.03 ABLATION STUDY OF DOMAIN GENERALIZATION CLASSIFICATION
CoOp 14h 200 0.01IM 62.95 ON FOUR OUT-OF-DISTRIBUTION DATASETS UNDER THE
CLIP-Adapter (single-branch fine-tuning) ~ 50min 200 0.52M 63.59 16-SHOT SETTING
CLIP-Adapter (dual-branch fine-tuning) 50min 200 1.04M 60.70
Tip-Adapter-F Smin 20 16.3M 65.51
Components Datasets
DAT 40mi 200 9.38M 67.01
(ours) mn VA. TA. V2 -Sketch A R
v 58.26 36.37 21.51 59.98
v 57.89 36.76 22.19 60.29
when replacing it with ResNet-101, ViT-B/32, and ViT-B/16 v v 58.60 37.01 22.85 60.87

respectively, our method still achieves optimal performance
compared to current state-of-the-art methods.

Furthermore, we also use other vision-language model to
demonstrate the effectiveness of our approach. As a self-
supervised pre-training version of CLIP, SLIP [64] can achieve
higher accuracy in DAT framework, the performance gain on
the ImageNet under the 16-shot SLIP condition is around 7%
in accuracy compared to the 16-shot CLIP condition.

C. Computation Efficiency

We compare the computing efficiency between DAT and
existing methods in Table VI. We test by an NVIDIA GeForce
RTX 3090 GPU and report the performance on 16-shot Ima-
geNet classification. As shown in Table VI, CLIP-Adapter
dual-branch fine-tuning has more trainable parameters com-
pared to single-branch fine-tuning, however, it results in a
performance decrease. Tip-Adapter-F, on the other hand, has
a shorter training time but has more trainable parameters
and poor performance. In contrast, our method also employs
dual-branch fine-tuning, and better overcomes the over-fitting
problem caused by the increase of training parameters and
obtains better classification performance under few-shot sam-
ples conditions.

D. Ablation Study

Ablation study is performed on three representative datasets.
As shown in Table VII, removing any one of the key
components (feature consistency loss L, logit consistency
losses L¢,1 and Lg,2, visual adapter V.A., and textual adapter
T.A.) will cause degraded performance (rows 6th-10th vs. last
row), confirming the role of each component in improving
the few-shot learning performance. Without the feature con-
sistency loss Lr and logit consistency loss Lg.1 + Lg.2,

solely inclusion of the visual adapter will cause decreased
performance (2nd row vs. Ist row), probably because more
trainable parameters in the model without any consistency loss
would likely cause more severe over-fitting in few-shot learn-
ing. However, the performance is significantly improved by
incorporating the feature consistency loss and logit consistency
loss during model training (rows 3rd and 7th vs. 2nd row),
even with the incorporation of the textual adapter compared to
including the visual adapter only (5th row and rows 8th-10th
vs. 2nd row), highlighting the importance and effectiveness
of these consistency constraints. Meanwhile, when removing
T.A. from the framework (7th row), the model shows a clear
performance drop on all three datasets (7th row vs. 11th row),
demonstrating the importance of T.A.. The small difference
between rows 3rd and 5th indicates that T.A. would not work
effectively without the help of the logit consistency losses Lg, 1
and Lg, 2, which confirms that the proposed logit consistency
losses are essential for T.A. (and V.A.).

Additionally, we place the results of domain general-
ization ablation experiments containing only V.A. or T.A.
in Table VIIIL. It can be observed that in the domain gener-
alization classification, except for the ImageNet-V2 dataset
which is just the new test data for ImageNet, and V.A.
is playing a more dominant role. For the remaining three out-
of-distribution datasets, due to the training images of ImageNet
being of the same class as the test images of three out-of-
distribution datasets but with a large difference in image styles,
it is the text-branch of T.A. that plays a more critical factor
in the categorization process.

Overall, each component helps and the performance gain
comes from the combination of the model’s structure and
the losses functions. From the perspective of model structure,
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TABLE IX
FULL NUMERICAL RESULTS OF PERFORMANCE COMPARISON ON FEW-SHOT LEARNING
Method Setting  ImageNet Caltechl01 OxfordPets StanfordCars Flowers102 Foodl01 FGVCAircraft SUN397 DTD EuroSAT UCF101 Average
Zero-Shot CLIP 58.18 86.29 85.77 55.61 66.14 7131 17.28 5852 4232 3756 61.46 58.77
Linear-probe CLIP  full-shot ~ 73.30 89.60 88.20 78.30 96.10 86.40 49.10 7330 7640 9520 81.60 80.68
Linear-probe RN50 full-shot ~ 74.30 90.80 92.40 49.90 90.80 71.30 48.50 60.50 7230  96.70 71.20 74.43
Linear-probe CLIP 22.07 70.62 30.14 24.64 58.07 30.13 12.89 3280 2959  51.00 41.43 36.67
CoOp 57.15 87.53 85.89 55.59 68.12 74.32 9.64 6029 4439  50.63 61.92 59.59
CLIP-Adapter 61.20 88.60 85.99 55.13 73.49 76.82 17.49 61.30 4580  61.40 62.20 62.67
Tip-Adapter-F 1-shot 61.13 89.33 87.00 58.86 79.98 77.51 20.22 62.50 49.65 59.53 64.87 64.62
TaskRes 61.90 88.80 83.60 59.13 79.17 74.03 21.40 6233 5020  61.70 64.77 64.28
CLAP 58.50 88.38 83.64 56.35 79.90 73.00 20.62 61.15 4746  59.21 62.48 62.79
DAT (Ours) 61.88 89.70 87.49 59.79 78.85 77.62 22.17 6345 5290  66.36 65.66 65.99
Linear-probe CLIP 31.95 78.72 43.47 36.53 73.35 42.79 17.85 4444 3948  61.58 53.55 47.61
CoOp 57.81 87.93 82.64 58.28 77.51 72.49 18.68 59.48 4515  61.50 64.09 62.32
CLIP-Adapter 61.52 89.37 86.73 58.74 81.61 77.22 20.10 63.29 5148  63.90 67.12 65.55
Tip-Adapter-F 2-shot 61.69 89.74 87.03 61.50 82.30 77.81 23.19 63.64 5372  66.15 66.43 66.65
TaskRes 62.63 90.27 84.63 63.70 86.57 75.17 24.13 6497 5513  65.83 70.00 67.55
CLAP 58.50 89.79 84.93 61.40 84.22 74.94 23.21 63.31  53.05 65.63 67.77 66.07
DAT (Ours) 62.70 90.22 87.95 62.62 85.18 71.73 24.09 65.96 57.33  72.09 69.76 68.69
Linear-probe CLIP 41.29 84.34 56.35 48.42 84.80 55.15 23.57 5459 5006  68.27 62.23 57.19
CoOp 59.99 89.55 86.70 62.62 86.20 73.33 21.87 6347 5349  70.18 67.03 66.77
CLIP-Adapter 61.84 89.98 87.46 62.45 87.17 77.92 22.59 6596 56.86  73.38 69.05 68.61
Tip-Adapter-F 4-shot 62.52 90.56 87.54 64.57 88.83 78.24 25.80 66.21 57.39 74.12 70.55 69.67
TaskRes 63.57 90.97 86.33 67.43 90.20 76.10 25.70 6727  60.70  73.83 70.93 70.28
CLAP 60.73 90.62 86.51 65.50 87.66 75.92 25.65 6599 58.85  73.15 69.88 69.13
DAT (Ours) 63.70 92.05 88.72 67.08 91.84 78.24 29.49 68.68 62.77  81.51 73.33 72.49
Linear-probe CLIP 49.55 87.78 65.94 60.82 92.00 63.82 29.55 62.17 5656  76.93 69.64 64.98
CoOp 61.56 90.21 85.32 68.43 91.18 71.82 26.13 6552 5997 7673 71.94 69.89
CLIP-Adapter 62.68 91.40 87.65 67.89 91.72 78.04 26.25 67.50  61.00 77.93 73.30 71.40
Tip-Adapter-F 8-shot 64.00 91.44 88.09 69.25 91.51 78.64 30.21 68.87 6271 7793 74.25 72.45
TaskRes 64.67 92.40 87.17 71.83 94.73 76.40 31.50 68.73 6477  79.33 75.33 73.35
CLAP 62.98 91.45 87.75 70.35 92.06 77.42 28.97 68.61 6324  76.66 73.34 72.08
DAT (Ours) 65.11 92.49 90.05 73.35 95.78 79.03 36.54 71.06  66.37  83.90 77.58 75.57
Linear-probe CLIP 55.87 90.63 76.42 70.08 94.95 70.17 36.39 67.15 6397 8276 73.72 71.10
CoOp 62.95 91.83 87.01 73.36 94.51 74.67 31.26 69.26  63.58  83.53 75.71 73.42
CLIP-Adapter 63.59 92.49 87.84 74.01 93.90 78.25 32.10 69.55 6596 8443 76.76 74.44
Tip-Adapter-F 16-shot 65.51 92.86 89.70 75.74 94.80 79.43 35.55 7147 6655 8454 78.03 75.83
TaskRes 65.73 93.43 87.83 76.83 96.03 77.60 36.30 70.67 67.13  84.03 77.97 75.78
CLAP 65.02 91.93 88.51 75.12 94.21 78.55 33.59 70.78  66.41  80.07 76.29 74.57
DAT (Ours) 67.01 94.04 90.90 79.84 97.93 80.14 46.53 7316 70.51  88.65 81.79 79.14
74 @ ImageNet (ours) 74 @ ImageNet (ours) 74 8- ImageNet (ours) 74 8- ImageNet (ours) 74 —8— ImageNet (ours)
-~ ImageNet best baseline -~ ImageNet best baseline -~ ImageNet best baseline -~ ImageNet best baseline -~ ImageNet best baseline
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Fig. 4.  Sensitivity study on the Imagenet and DTD datasets. Our method (solid curves) consistently outperforms the best baseline (dashed lines) across

different hyper-parameter settings.

we use dual-branch adapters to ensure sufficient adaptation
of the multi-modality model as a whole and provide greater
flexibility in aligning visual and language representations,
meanwhile using MLP module to generate a new logit vector
for better image classification. From the perspective of loss
functions, we use logit consistency loss L1 and Lg2 to
achieve the knowledge distillation to alleviate the over-fitting
issue, meanwhile using feature consistency loss Lp to well
align the image branch and the text branch during the training
process. The design of the model structure and the loss
functions together make our method achieve the best overall
performance.

E. Additional Ablation Study

In addition to the ablation experiments for each of the
important components, we show more ablation experiments

in Table X to demonstrate the effectiveness of our proposed
framework. Additional ablation study is also performed on
three representative datasets, including ImageNet, Caltech101
and OxfordPets. The experimental setup includes:

No skip connection in textual adapter: We add skip
connection to the textual adapter (T.A.) module to mitigate
the possibility of over-fitting on the text branch. The results
without skip connection and not utilizing prior knowledge
from the original pre-trained text encoder are shown in the
first row of Table X.

No skip connection in adapted visual encoder: We add
skip connection to the adapted visual encoder so that the
original feature maps and the feature maps are fine-tuned by
the visual adapter (V.A.) through the addition function to better
mitigate the over-fitting in few-shot scenarios. The results
without skip connection and utilizing only the fine-tuned
feature maps are shown in the second row of Table X.
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TABLE X

ADDITIONAL ABLATION STUDY OF OUR METHOD ON THREE REPRESEN-
TATIVE DATASETS UNDER THE 16-SHOT SETTING

Datasets
Ablation Setup

ImageNet Caltech101 OxfordPets
No skip connection in textual adapter 66.75 92.98 89.86
No skip connection in adapted visual encoder  65.79 92.74 89.34
Visual adapter after pooling layer 65.83 92.58 90.02
Removing descriptive prompts 66.85 93.51 90.11
MLP reduced to one linear layer 66.74 93.06 90.16
Class prediction without Zero-shot logits 66.96 93.71 90.79
Directly applying LoRA to the CLIP encoder  65.72 93.06 89.18
Original DAT framework 67.01 94.04 90.90

Visual adapter after pooling layer: We consider that
more visual information exists in the feature map than in
the feature vector, and in order to better utilize such visual
information, we use the visual adapter (V.A.) to fine-tune the
feature map rather than the feature vector. We place the visual
adapter after the self-attention pooling layer and replace the
1 x 1 convolutional layer with the fully connected layer in the
third row of Table X.

Removing descriptive prompts: We use descriptive
prompts with more detailed class information to encode more
prior knowledge for each class, enriching the properties and
characteristics of each visual class. The results of using only
vanilla prompts without descriptive prompts are shown in the
fourth row of Table X.

MLP reduced to one linear layer: We use two fully
connected layers in the MLP to provide better learning abil-
ity. The results of transforming the dimension from D (the
dimensionality of the feature vector space) to C (the number
of classes) using only one linear layer are shown in the fifth
row of Table X.

Class prediction without zero-shot logits: In order to
demonstrate that the DAT framework plays a dominant role
through the categorized Adapted logit vector z* and MLP logit
vector z" obtained by training process, the results without
zero-shot logit vector z° during the class prediction stage
(Equation 6 without zero-shot logit vector z?) are placed in
the sixth row of Table X, and competitive results are obtained
to show the effectiveness of our framework.

Directly applying LoRA to the CLIP encoder: To demon-
strate the effectiveness of our designed adapters, the results
of applying LoRA directly to CLIP encoder without using
adapters are shown in the seventh row of Table X. We found
that using LoRA does not give us as good results as the
adapters we have devised. We think that this is because the
token vectors are fine-tuned using LoRA in Self-attention
Pooling Layer, whereas the visual adapter we designed is
used to fine-tune the feature maps, considering that more
visual information exists in the feature maps than in the
token feature vectors, and therefore potentially discriminative
features specifically for the few-shot learning task can be more
likely preserved with the help of the visual adapter.

FE. Sensitivity Study

The sensitivity of our method to the hyper-parameters,
ie., A1 and A, (Equation 5), o; and «» (Equation 6), and
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7 (Equation 2), is evaluated on two representative datasets
Imagenet and DTD. As Figure 4 shows, by varying each
hyper-parameter in certain range, the performance of our
method varies a bit but it always outperforms the best baseline.
This suggests that our method is largely insensitive to the
choice of hyper-parameter values.

V. CONCLUSION

In this study, we propose a novel dual-branch adapter-tuning
few-shot learning framework, where both the textual adapter
and the visual adapter can be effectively optimized with the
help of feature consistency and logit consistency constraints.
Extensive evaluations on multiple image classification datasets
and under various few-shot settings consistently suggest that
our method outperforms current state-of-the-art methods for
few-shot learning. Our learning framework provides a solution
when pre-trained encoders of multiple modalities all need to
be adapted for downstream tasks.
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