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Abstract— Current deep learning models often catastrophically
forget the knowledge of old classes when continually learning
new ones. State-of-the-art approaches to continual learning of
image classes often require retaining a small subset of old data
to partly alleviate the catastrophic forgetting issue, and their
performance would be degraded sharply when no old data can
be stored due to privacy or safety concerns. In this study, inspired
by human learning of visual knowledge with the effective help
of language, we propose a novel continual learning framework
based on a pre-trained vision-language model (VLM) without
retaining any old data. Rich prior knowledge of each new image
class is effectively encoded by the frozen text encoder of the VLM,
which is then used to guide the learning of new image classes.
The output space of the frozen text encoder is unchanged over
the whole process of continual learning, through which image
representations of different classes become comparable during
model inference even when the image classes are learned at
different times. Extensive empirical evaluations on multiple image
classification datasets under various settings confirm the superior
performance of our method over existing ones. The source code
is available at https://github.com/Fatflower/CIL_LG_VLM/.

Index Terms— Continual learning, vision-language model, lan-
guage guidance.
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I. INTRODUCTION

DEEP learning has achieved remarkable performance in
various applications, e.g., image recognition [1], [2],

semantic segmentation [3], [4], and natural language process-
ing [5], [6], [7]. However, current intelligent systems lack the
continual or lifelong learning ability as human beings. Such
ability is crucial when new knowledge needs to be continually
learned after the intelligent system is deployed, such as in
automated retail stores [8] and learning to diagnose new
emerging diseases. When an intelligent system is updated to
learn new knowledge with training data of new classes, it often
catastrophically forgets previously learned old knowledge [9].

Multiple approaches have been proposed to alleviate such
catastrophic forgetting issue. One group of approaches pre-
sume that old knowledge is implicitly stored in model
parameters, and try to find those model parameters that are
crucial for old knowledge and keep them unchanged when
the model learns new knowledge [10], [11], [12]. However,
due to the nonlinear property of deep learning models and
complicated interactions between model parameters across
layers, value changes in some parameters would more or less
change the memory of old knowledge implicitly stored by
the whole model. On the other hand, more and more model
parameters become crucial for increasing old knowledge over
multiple rounds of continual learning. Keeping more parame-
ters unchanged would make the model difficult to learn new
knowledge in subsequent rounds.

To make the model capable of learning new knowledge
(aka ‘plasticity’) and keeping old classes of knowledge (aka
‘stability’), researchers found that retaining a small subset of
data from each previously learned class is very helpful [13],
[14], [15]. With the retained small old data, knowledge distil-
lation techniques can be employed to help update the model
such that the updated model has similar output responses at
various network layers as the old model, meanwhile, existing
model components or only newly added modules can be
fine-tuned to learn new knowledge from the training set of
new classes. In this way, old knowledge is largely preserved
in the updated model by presuming that Model A contains
knowledge of Model B if output response of Model A is
similar to that of Model B for any model input. However,
due to severe imbalance between new classes of data and
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accessible old data, the updated model is often biased toward
currently learned new classes during inference, suggesting that
knowledge distillation with limited old data is not enough to
well keep old knowledge. Class-rebalancing strategies during
model updating can only slightly alleviate the severe class
imbalance issue [16], [17], [18]. Even worse, old data may
not be accessible at all in some scenarios due to privacy or
safety concerns.

When no old data is available, prompt learning [19] built on
certain pre-trained and frozen vision models, particularly the
Vision Transformer (ViT) [1], has shown promising continual
learning performance [20], [21]. In this approach, only a set
of ‘prompts’ as part of the input to one or more model
layers are learned during continual learning. The efficacy of
this approach largely depends on the assumption that visual
features extracted from one or more layers of the pre-trained
model can effectively discriminate between old and new
knowledge, which may not be valid especially when visually
similar classes are learned at different rounds of continual
learning.

Inspired by the observation that humans can effectively
learn new visual knowledge with the help of language and by
the wide applications of pre-trained vision-language models
(VLMs) [22], [23], we propose a novel VLM-based continual
learning framework without retaining any old data. In the
framework, only the inserted light-weight visual adapters [24]
at each round of continual learning are learnable, and the prior
knowledge of each new visual class encoded by the frozen
text encoder is used to effectively guide the training of visual
adapters. Since the semantic textual space (i.e., output space of
text encoder) is unchanged over multiple rounds of continual
learning, and each class of images is clustered around the
associated distinctive and unchanged textual representation
of the same class, images from different classes (including
old and new classes) become largely differentiated in the
semantic textual space. As a result, the updated model can
well recognize both old and new classes with the help of
the unchanged semantic textual space. In addition, with the
help of mixed textual representations from multiple classes, the
model can be trained to further improve its continual learning
performance and additionally improve the out-of-distribution
(OOD) detection performance. Extensive empirical evaluations
on three image classification datasets confirm the superior
performance of the proposed framework over state-of-the-art
approaches which even use retained old data during continual
learning (see Figure 1 for an example). The main contributions
are summarized below.

• A novel and effective VLM-based continual learning
framework. It does not retain any old data and uses the
rich textual knowledge of each visual class to guide the
training of visual adapters in the fixed textual space.

• First time to show an unchanged semantic textual space
together with rich textual descriptions of each class is
effective to help continual learning of visual classes.

• First time to show faked textual OOD representations can
help improve both continual learning and OOD detection
of visual classes.

Fig. 1. Continual learning performance from different methods on
CIFAR100 (10 classes per round) and ImageNet-R (20 classes per round).
‘Last-ACC’/‘Last-MCR’: accuracy/mean class recall after learning all classes.

• Extensive empirical evaluations on multiple benchmarks,
with state-of-the-art performance achieved.

II. RELATED WORK

Continual learning approaches can be grouped into four cat-
egories: regularization-based, model expansion-based, knowl-
edge distillation-based, and pre-trained model-based.

Regularization-based methods [5], [10], [12], [25], [26]
focus on identifying and minimally altering crucial com-
ponents of the model for retention of previously learned
knowledge while acquiring new knowledge. The importance of
model parameters is often assessed based on their sensitivity to
changes in the loss function. For example, SOUL [5] designs a
local topology preservation loss to prevent the topological rela-
tionship of the learned feature space from drifting; spWC [12]
prioritizes past tasks based on key performance indicators
such as accuracy, ensuring that when learning new tasks, the
model selectively retains knowledge from more difficult past
tasks. While effective in preserving old knowledge at the initial
phases of continual learning, they tend to gradually accumulate
a large number of safeguarded parameters, which eventually
hinders the learning of new knowledge.

Expansion-based methods learn new knowledge by mod-
ifying the structure of the network, e.g., by adding layers,
subnetworks, or a new feature extractor [18], [27], [28],
[29]. An example is MoBoo [28], which designs a memory-
enhanced attention mechanism for new knowledge into an
updated classifier. However, such methods often cause model
size increased quickly over rounds of continual learning.

In contrast, knowledge distillation-based methods [15], [30],
[31], [32] distill old knowledge from old model into the
new one, which typically involves using a small number of
stored old data. However, their effectiveness decreases as more
knowledge is learned, mainly due to insufficient representation
of old knowledge by the stored small data.

In addition, with the increasing popularity of visual pre-
trained models, methods utilizing pre-trained models have
been proposed to preserve old knowledge while learning
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Fig. 2. VLM-based continual learning. (a) CIL-PVLM [33] adds an adapter
into the visual part of the VLM. (b) AttriCLIP [34] adds learnable prompts into
the textual part of the VLM. (c) PROOF [35] adds task-specific projections
into both visual and textual parts of the VLM with a cross-attention module
to fuse the visual and textual information. (d) Ours uses the rich textual
knowledge of each visual class to guide the training of the image encoder
in an unchanged textual space.

new knowledge [20], [21], [36], [37], [38]. They effectively
utilize the knowledge of the pre-trained vision models and
can achieve promising performance using efficient fine-tuning
of the parameters. However, these methods, which mainly
rely on visual information for decision-making, often strug-
gle with the misclassification of targets with similar visual
features. With recent development of large vision-language
models (VLMs) [22], [23], [39], [40], [41], several approaches
have applied pre-tained VLMs to continual learning [33],
[34], [35]. However, they change the textual output space
of the text encoder over continual learning (Figure 2b, 2c),
not using existing rich prior knowledge of each visual class
(Figure 2a, 2b, 2c), and requiring retained old data when
learning new knowledge (Figure 2a, Figure 2c). In contrast,
our VLM-based method utilizes rich knowledge of each visual
class and the fixed semantic textual space to effectively guide
the training the of image classifier.

III. METHOD

In class-incremental learning (CIL) without retaining old
data, the model learns a certain number (ct ) of new classes at
the t-th round (also called t-th task) of continual learning based
on the training set of the solely ct new classes, and no data of
any previously learned classes are involved. In the t-th round,
after finishing learning the ct new classes from the t-th task,
the model is expected to recognize all the Ct = c1+c2+. . .+ct
classes learned so far.

A. Framework Overview

We propose a continual learning framework based on a pre-
trained vision-language model (VLM) (Figure 3). The core
idea is using language to guide the training of the image
classifier when the classifier learns to recognize new image
classes, motivated by human learning of visual knowledge
with the effective help of language. The architecture of the
framework mainly consists of two parts, i.e., the vision part
(Figure 3, top left) and the language part (Figure 3, top right).

In the vision part, the original pre-tained VLM image
encoder is frozen, and only the newly added visual adapters
(LoRA in Figure 3, bottom left, in light red) specifically for

the ct new classes are optimized with the guidance from the
outputs of the language part (Figure 3, top middle). Since
a set of unique visual adapters are optimized for the new
classes at each continual learning round, and old knowledge
learned at each previous round is perfectly preserved in the
corresponding old set of unique visual adapters (together with
the frozen VLM’s image encoder), the updated image classifier
model well learns the visual knowledge of new classes without
forgetting any old knowledge. Thus, the image classifier is
enabled with both desired plasticity and stability properties
during continual learning. Note that the visual adapters contain
a relatively small number of parameters compared to the
original VLM’s image encoder, and therefore the whole model
size is increased very slowly over multiple rounds of continual
learning.

The language part is frozen and provides distinctive seman-
tic textual representation for each visual class mainly with the
help of a large language model (LLM, e.g., ChatGPT [42]) and
a pre-trained VLM’s text encoder. The semantic textual space
(i.e., output space of the VLM’s text encoder) is unchanged
over the whole process of continual learning and shared by
all rounds of continual learning tasks. Therefore, guiding the
learning of new visual classes by the distinctive semantic
textual representation of each class in the unchanged textual
space (see Section III-C for details) would make the visual
representations of both old and new classes comparable in the
unchanged textual space. In addition, textual representations
of multiple classes can be mixed together to generate faked
out-of-distribution (OOD) representations which do not belong
to any visual classes. Such faked OOD textual representations
can be also utilized to help improve the model’s performance
in both continual learning and OOD detection. Last but not
least, with the help of the unchanged textual space, integrating
both the textual and visual information can further improve the
prediction accuracy during inference.

B. Task-Specific Visual Adapters

Adapter techniques such as delta tuning [43] and LoRA [24]
have been recently proposed to fine-tune large language
models for various downstream language tasks, and such
techniques have also been extended to fine-tune large vision
models [44], [45]. The main idea is to insert a new module
called adapter into one or more layers of the pre-trained large
model, and the original modules of the pre-trained model are
frozen and only the new adapter(s) are optimized during model
fine-tuning. In our learning framework, when the model learns
the ct new visual classes at the t-th round of continual learning,
a set of new adapters specifically for the ct new classes are
inserted into the pre-trained VLM image encoder (so called
‘task-specific visual adapters’). Specifically, with the default
VLM model CLIP and the ViT backbone for its image encoder,
one pair of LoRA adapters are inserted into each self-attention
head at each self-attention layer of the image encoder, one for
the projection of key tokens and the other for the projection of
value tokens (Figure 3, lower left). Each LoRA adapter simply
consists of two linear layers (without activation function).
Formally, let Al,h ∈ Rd×v denote the learnable LoRA adapter
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Fig. 3. The proposed VLM-based continual learning framework. A set of new visual adapters (LoRA) specifically for the new set of classes are inserted
into the pre-trained VLM image encoder (lower left). It utilizes the powerful textual representation capability of the pre-trained VLM text encoder to guide
the training of visual adapters (upper part). Lower middle: acquisition of rich textual descriptions for each class. Lower right: generation of textual anchors
and fake OOD anchors. ‘L’: the number of layers in the VLM image encoder.

for value token projection in the h-th head at the l-th self-
attention layer, where v and d are respectively the input and
output dimension of the h-th head for value token projection.
Then

Al,h = Aup
l,hAdown

l,h , (1)

where Adown
l,h ∈ Rr×v and Aup

l,h ∈ Rd×r are respectively the
down projection and up projection layers, with r ≪ min(d, v).
This adapter takes each value token at the l-layer as input
and its output is added to the output of the pre-trained value
projection layer (see notation ⊕ in Figure 3, lower left).
Similarly the LoRA adapter for projection of key tokens takes
each key token as input and its output is added to the output
of the key projection layer.

C. Language Guidance on Visual Learning

We propose utilizing the powerful textual representation
ability of the pre-trained VLM text encoder to guide the train-
ing of the visual adapters. When the image classifier learns
ct new visual classes at the t-th task, rich prior knowledge
of each new class in the form of textual description is first
obtained from a LLM model (e.g., ChatGPT [42]), and then
encoded into the semantic textual space (i.e., output space
of the VLM’s text encoder) by the frozen text encoder. The
distinctive semantic textual representation of each class in the
unchanged textual space is used as the anchor to attract visual
representations of the same class from the image encoder
during training of the newly added visual adapters in the frozen
image encoder. The detailed process is described below.

For each new visual class, multiple prompts are employed
respectively as inputs to the LLM model to obtain multiple

descriptive knowledge about the class. The prompt design
is from the CuPL [46], including “Describe a [CLASS]”,
“Describe what a [CLASS] looks like”, and “What are the
identifying characteristics of the [CLASS]?”, where ‘[CLASS]
‘denotes the name of the visual class. Multiple descriptive out-
puts (or sentences) are generated by the LLM model for each
prompt. With multiple prompts from different aspects, it is
expected that (at least part of) the multiple descriptive outputs
from the LLM model would contain distinctive information
about the visual class. Suppose totally M textual descriptions
are generated by the LLM model for each class based on the
prompts. For the k-th class, k ∈ {1, 2, . . . , ct }, after encoding
the M textual descriptions of the class by the frozen text
encoder, we can obtain the set of M textual representations
of the k-th class in the semantic textual space, denoted by
Gk = {gk,1, gk,2, . . . , gk,M }. Considering that each textual
representation may contain only part of class-relevant infor-
mation from certain aspect, all the M textual representations
are aggregated to obtain the overall representation ḡk (aka
‘textual anchor’) of the k-th class with certain aggregation
function ḡk = π(Gk). For simplicity, the average function is
used for aggregation here. Because of the strong representation
power of the text encoder, the class-distinctive information
within multiple textual descriptions is expected to be largely
preserved in the textual anchor ḡk , such that the textual anchor
of each class (including both old and new classes) is distinctive
in the semantic textual space.

In addition, in order to help the outputs of the image encoder
for each visual class k more compactly clustered around the
textual anchor ḡk of the same class k, fake OOD anchors
in the textual space can be generated based on the textual
representation sets {Gk} of all visual classes. Although textual
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representation sets of old classes from previous learning
rounds can also be included for fake OOD anchor generation,
to avoid the storage of old sets, only the representation sets
of new classes at the current t-th round are used. Denote by
Ot the set of fake OOD anchors generated by certain fake
OOD set generation function ψ({Gk}). While the function
ψ({Gk}) can be carefully designed to generate more effective
fake OOD anchors for each class, we leave the function design
as future work and adopt a naive way to generate the fake
OOD set Ot , where one fake OOD anchor om is generated
simply by collecting one textual representation per class and
then averaging the collection, i.e., om =

1
ct

∑ct
k gk,m (also see

Figure 3, lower right). In this way, M fake OOD anchors are
generated and will be used to help train the visual adapters.
Even with such simple average strategy, generated fake OOD
anchors can already help improve the model performance both
in image classification and OOD detection (see Section IV-C
later).

With the help of the textual anchors {ḡ1, ḡ2, . . . , ḡct } and
fake OOD anchors Ot = {o1, o2, . . . , oM }, the LoRA adapters
specifically for the ct new visual classes can be optimized
using the well-known contrastive learning loss. Formally, let
Dt = {(xn, yn)}

N
n=1 represent the training set for the ct new

visual classes, with xn denoting the n-th training image and
yn ∈ {1, 2, . . . , ct } the corresponding class label. Denote by
ft the adapted image encoder (i.e., the original frozen VLM
image encoder plus the inserted LoRA adapters), and ft (xn)

the output of the image encoder for the input image xn . Then
the contrastive learning loss is

L = −
1
N

N∑
n=1

ct∑
k=1

1(yn = k)
[

log
exp{s( ft (xn), ḡk)/τ }

Z(xn)

]
,

(2)

where 1(·) is the indicator function, s(·, ·) denotes the
cosine similarity measurement, and τ is a temperature
hyper-parameter. Z(xn) =

∑ct
j=1 exp{s( ft (xn), ḡ j )/τ } +∑M

m=1 exp{s( ft (xn), om)/τ }. By minimizing the loss L, each
image xn is attracted to the corresponding anchor ḡk of its class
(i.e., k = yn), while pushed away from the textual anchors
of all the other classes and all the fake OOD anchors. Once
the LoRA adapters are well-trained, all the training images
of class k can be fed to the adapted image encoder ft and
the corresponding outputs are averaged to obtain the visual
prototype pt,k for class k. The visual prototypes of all (both
new and old) classes will be used for model inference.

D. Model Inference

After learning the ct new classes at the t-th round of
continual learning, the model can be used to predict the class
of any test image z if the image comes from one of the
Ct = c1 +c2 +. . .+ct learned classes, or to detect whether the
test image is OOD (i.e., not from any of the learned classes).
Both the visual prototypes and textual anchors of all learned
classes are used for model inference. Specifically, the degree
of the test image z belonging to the k-th class of the t-th task

can be measured by

µt,k = s1( ft (z), ḡk)+ λ · s2( ft (z),pt,k) , (3)

where s1(·, ·) and s2(·, ·) are two similarity measurement
functions and, for simplicity, cosine similarity is adopted for
both functions. λ is a constant coefficient to balance the
contribution of two similarities. Similarly, the degree of z
belonging to any class of one previous (e.g., 1st, 2nd, (t − 1)-
th) task can be measured as by Equation 3, except that the
LoRA adapters for the corresponding previous task are used
during image feature extraction. The highest degree µ∗ over
all learned classes can be obtained by

µ∗
= max

t
max

k∈{1,2,...,ct }
µt,k , (4)

The class associated with µ∗ is the final prediction for z.

E. Comparison With Previous Works

Moreover, the proposed framework has several advantages
over existing pre-trained VLM-based methods (i.e., Attri-
CLIP [34], PROOF [35], CIL-PVLM [33]). First, unlike
AttriCLIP, PROOF, and CIL-PVLM, which use a single fixed
template (“A photo of [CLASS NAME]”), the proposed frame-
work designs multiple prompts to query the large language
model, obtaining richer class information that assists classifi-
cation. Second, different from PROOF and CIL-PVLM, this
framework does not require replaying old class samples. Third,
compared to AttriCLIP, PROOF, and CIL-PVLM, which only
add learnable parameters at the feature vector level to adapt
to downstream tasks, this framework uses parameter-efficient
fine-tuning during feature extraction, better adapting to down-
stream tasks, especially when there is a significant domain gap
between pre-training data and downstream task data. Addi-
tionally, each task in this framework has its own task-specific
visual adapters, completely avoiding the plasticity-stability
dilemma. Furthermore, unlike these three methods, this frame-
work uses fake OOD anchors to improve continual learning
performance and OOD detection performance. Finally, the
framework effectively integrates textual and visual information
for inference in a simple manner, further improving continual
learning performance.

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets: Four datasets were used to evaluate the
proposed framework, including CIFAR100 [47], ImageNet-
R [48], Mini-ImageNet100 [49], and Skin40 [50], [51].
CIFAR100 consists of 100 categories of natural images, each
category containing 500 images for training and 100 for
testing. ImageNet-R presents a diverse set of 200 categories
that include various styles such as cartoons, graffiti, and
more challenging examples. It encompasses 30,000 images,
with 24,000 designated for training and 6,000 for testing,
and exhibits an imbalanced distribution of samples across
categories. Mini-ImageNet100, crafted from ImageNet1k [49],
is a natural image dataset featuring 100 classes, providing
1,000 training images and 200 testing images per class. Skin40
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TABLE I
STATISTICS OF FOUR DATASETS. ‘BALANCE’ INDICATES WHETHER THE

DATA IS BALANCED FOR EACH CLASS OF THE DATASET.
‘[19, 7016]’, ‘[24, 6000]’, AND ‘[420, 1640]’: THE RANGE

OF IMAGE WIDTH AND HEIGHT OF IMAGENET-R,
MINI-IMAGENET100, AND SKIN40, RESPECTIVELY

is a subset of 198 skin disease classes collected from the
Internet and consists of 40 classes, with each class containing
50 images for training and 10 images for testing. Each dataset
was partitioned into multiple subsets, each of which contains
the same number of unique classes and is used as one learning
task in the whole process of continual learning on the dataset.
Specifically, CIFAR100 was segmented into sets of 5, 10, or
20 tasks; ImageNet-R was similarly divided into 5, 10, or
20 task groupings, while Mini-ImageNet100 and Skin40 were
organized into 5 or 10 task configurations, respectively. The
detailed statistical information for the four datasets is shown
in Table I.

2) Implementation Details: For all experiments, CLIP’s
ViT-B-16 pre-trained from OpenAI serves as the backbone.
In the training phase, we employ the AdamW optimizer,
setting the learning rate at 0.005 with adjustments via cosine
annealing decay, a weight decay of 0.1, and a batch size of 64.
GPT-3 [52] is queried using three prompts to create 30 text
descriptions per class, i.e., M = 30. The LoRA’s rank r is set
to 24, and λ is set to 1. Each image was resized to 224 ×

224 pixels.
3) Evaluation Metrics: For the balanced datasets

CIFAR100 and Mini-ImageNet100, continual learning
performance is evaluated using two classification accuracies
on test dataset, namely ‘Last-ACC’ and ‘Avg-ACC’. ‘Last-
ACC’ represents the accuracy achieved by the model on all
learned classes finishing the final task. ‘Avg-ACC’ is the
average of model performance over all rounds (tasks), with
the model performance at the t-th round measured by the
accuracy on learned (Ct = c1 + . . . + ct ) classes so far. For
the class-imbalanced dataset ImageNet-R, the mean class
recall (MCR) instead of accuracy is used, resulting in the two
metrics ‘Last-MCR’ and ‘Avg-MCR’. Note that ‘Last-MCR’
and ‘Avg-MCR’ are respectively equivalent of ‘Last-ACC’
and ‘Avg-ACC’ for class-balanced datasets.

For OOD detection evaluation on each test dataset, at the
t-th round, all the learned Ct classes so far are used as
in-distribution (ID) classes, and the remaining classes to be
learned at subsequent rounds are considered as OOD classes.
With the degrees {µt,k} for all learned classes as logits (i.e.,
input to a softmax operator), the maximum softmax probability
(MSP) method [53] is adopted for OOD detection, and the area
under the receiver operating characteristic curve (AUC) can
be obtained after finishing each round of continual learning,
resulting in the ‘Last-AUC’ and ‘Avg-AUC’ as for ‘Last-ACC’
and ‘Avg-ACC’. For each experiment, three runs with distinct

random seeds were performed, and the average and standard
deviation of the three results were reported with each metric.

4) Baselines: Existing methods requiring retaining old
data (including iCaRL [15], DarkER++ [30], DynaER [18],
WA [25], PROOF [35], and CIL-PVLM [33]) and those with-
out needing old data (including L2P [36], DualPrompt [20],
CODA-Prompt [21], and AttriCLIP [34]) are adopted for
comparison. Additionally, the simple continual CLIP [54] that
relies solely on the excellent generalization capability of CLIP
itself was also used as a baseline. For methods that retain old
data, the memory buffer size is set to 2000 for CIFAR100 and
Mini-ImageNet100, 4000 for ImageNet-R, and 80 for Skin40.
The same MSP method is used for OOD detection with each
baseline method.

B. Efficacy Evaluation of the Method

1) Continual Learning: Figure 4, Table II, and Table III
show the continual learning performance of the different meth-
ods on the CIFAR100, ImageNet-R, and Mini-ImageNet100
datasets under different settings, respectively. The results
demonstrate that the continual learning performance of the
proposed framework (‘Ours’) is significantly better than all
baselines, even though some of them use retained old data
during continual learning. For example, among the methods
without retaining old data, our method outperforms the best
baseline DualPrompt by 7.37% and 8.01% in Last-ACC on
CIFAR100 and in Last-MCR on ImageNet-R for 10 tasks,
respectively. In addition, it can be observed that the proposed
framework achieves better results regardless of whether the
dataset is balanced or not, and actually the continual learning
performance improvement on imbalanced dataset ImageNet-R
is even more obvious.

2) OOD Detection: To further demonstrate the improve-
ment in OOD detection performance of the proposed
framework compared to previous work, we evaluated the
OOD detection performance of our method and previous
methods on various settings of the CIFAR100, ImageNet-R,
and Mini-ImageNet100 datasets. According to the results in
Table IV and Table V, our method outperforms all baselines.
For example, in various settings of ImageNet-R, our method
is around 5-8% higher in Last-AUC than that of the best
continual learning method (i.e., DualPrompt) without retaining
old data. On the Mini-ImageNet100 dataset, our method
exhibits outstanding performance with Last-AUCs of 96.29%
and 94.56% for T =5 and T =10 settings, respectively, signif-
icantly outperforming other methods. All the results support
that the proposed framework exhibits better OOD detection
performance.

From these results on CIFAR100, ImageNet-R, and Mini-
ImageNet100, it is clear that our method significantly
outperforms all baselines in continual learning and additionally
in OOD detection.

C. Ablation Study

Extensive ablation studies were performed to confirm the
effect of each component or operation in the proposed frame-
work. According to the results shown in Table VI, the
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Fig. 4. Performance of continual learning on the CIFAR100 and ImageNet-R dataset, respectively. Standard deviation (with range (0.03, 2.89]) is ignored
for clear presentation.

TABLE II
CONTINUAL LEARNING PERFORMANCE OF DIFFERENT METHODS ON CIFAR100 AND IMAGENET-R WITH DIFFERENT NUMBER OF TASKS

(I.E., T =5, 10, 20), RESPECTIVELY. ‘MEMORY’ INDICATES WHETHER DATA OF LEARNED CLASSES ARE REQUIRED

TABLE III
CONTINUAL LEARNING PERFORMANCE OF DIFFERENT METHODS ON

MINI-IMAGENET100 WITH THE DIFFERENT NUMBER OF TASKS
(I.E., T =5, 10). ‘MEMORY’ INDICATES WHETHER DATA

OF LEARNED CLASSES ARE REQUIRED

performance of continual learning is gradually improved as
more components are added, which proves the effectiveness of

each proposed component. Specifically, in Table VI, the results
from the 2nd and 3rd columns demonstrate the effectiveness
of task-specific visual adapters which help solve the plasticity-
stability dilemma. The results in the 3rd and 4th columns
indicate that even a single fake OOD anchor can improve
continual learning performance, such as a 0.7% improvement
on Skin40, fake OOD anchor help each visual class cluster
more compactly around its corresponding text anchor. At the
same time, the results in the 5th and 6th columns show that
multiple fake OOD anchors constructed can further enhance
continual learning performance, such as a 0.97% improvement
on CIFAR100, further proving the effectiveness of fake OOD
anchors. The results in the 3rd and 5th columns present
that multiple text descriptions can improve performance, such
as a 1.00% improvement on Skin40, proving that multiple
text descriptions can provide more class information and
help classification. Moreover, the results in the 4th and 6th
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TABLE IV
OOD DETECTION PERFORMANCE OF DIFFERENT METHODS ON CIFAR100 AND IMAGENET-R WITH DIFFERENT NUMBER OF TASKS

(I.E., T =5, 10, 20), RESPECTIVELY. ‘MEMORY’ INDICATES WHETHER DATA OF LEARNED CLASSES ARE REQUIRED

TABLE V
OOD DETECTION PERFORMANCE OF DIFFERENT METHODS ON

MINI-IMAGENET100 WITH THE DIFFERENT NUMBER OF
TASKS (I.E., T =5, 10). ‘MEMORY’ INDICATES WHETHER

DATA OF LEARNED CLASSES ARE REQUIRED

TABLE VI
ABLATION STUDY OF THE PROPOSED FRAMEWORK ON CIFAR100
(10 TASKS), IMAGENET-R (10 TASKS), AND SKIN40 (10 TASKS).

THE RANGE OF STANDARD DEVIATION IS [0.15, 1.23]

TABLE VII
ABLATION STUDY ON SIMILARITY MEASURES DURING MODEL
INFERENCE. T =10 FOR BOTH CIFAR100 AND IMAGENET-R

columns further demonstrate the effectiveness of multiple text
descriptions, such as a 1.17% improvement on Skin40.

According to the results in Table VII, the proposed frame-
work can already obtain good continual learning performance
when using either of the two similarity measures (s1 and
s2) during inference. This may be attributed to the proposed
language guidance of the visual adapter training through the

Fig. 5. Ablation study of fake OOD anchors for both continual learning (left)
and OOD detection (right). Ten tasks are continually learned on CIFAR100
and ImageNet-R, respectively. ‘O.’ and ‘N.O.’ represent using and not using
fake OOD anchors, respectively.

textual knowledge in the unchanged textual space. Combining
the two similarity measures results in the best performance
(last row), confirming that integrating information from both
image and text modalities can further improve model learning
during inference. In addition, according to Figure 5, it can be
observed that on both datasets, usage of fake OOD anchors
clearly improves the model performance in both continual
learning and OOD detection.

D. Sensitive and Generalizability Studies

1) Sensitive Study: To evaluate the influence of the hyper-
parameter r (see Equation 1 and relevant description) in
task-specific LoRA adapters on the performance of the pro-
posed framework, a sensitivity study was performed by setting
r respectively to {8, 10, 16, 20, 24, 30, 32}. According to
the results shown in Figure 6 (left), Last-ACC is highest at
81.49 when r is set to 24 and lowest at 80.74 when r is
set to 10. Changes in the hyper-parameter r of task-specific
LoRA adapters (see Equation 1 and relevant description) only
bring less than 1% fluctuation in Last-ACC. Therefore, the
performance of the proposed framework is largely robust to
the value choice of the hyper-parameter r .

Furthermore, since the two similarity measures during infer-
ence are important in our method, we perform a sensitivity
study to show the effect of λ in Equation 3. λ is set respec-
tively to {0.5, 0.7, 0.9, 1, 1.1, 1.3, 1.5}. The results shown
in Figure 6 (right) confirm the proposed framework performs
very stable for changes in the hyper-parameter λ within a
certain range.
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Fig. 6. Sensitivity study of rank r of task-specific LoRA adapters and λ in
Equation 3 on CIFAR100 (10 tasks).

TABLE VIII
FEW-SHOT CIL PERFORMANCE (LAST-ACC) ON CIFAR100, WITH

10 ROUNDS OF CONTINUAL LEARNING PERFORMED AT
EACH FEW-SHOT SETTING

TABLE IX
CONTINUAL LEARNING PERFORMANCE OF DIFFERENT METHODS ON

SKIN40 WITH THE DIFFERENT NUMBER OF TASKS (I.E., T =5, 10).
‘MEMORY’ INDICATES WHETHER DATA OF LEARNED CLASSES

ARE REQUIRED

2) Generalizability Study: In addition, to further evaluate
the generalization of the proposed framework, the proposed
framework was performed on different settings of the skin40
dataset (i.e., T = 5, 10). In this case, textual descriptions
generated by ordinary LLM may be unreliable. Therefore the
textual descriptions of the skin40 dataset are generated by
consulting the Internet. According to the results shown in
Table IX, the continual learning performance of the proposed
framework is largely superior to all baselines, proving its
strong generalization ability even if the current data is sig-
nificantly different from the pre-training data domain.

Under the 10 tasks setting on CIFAR100, few-shot
class-incremental learning was performed to evaluate the gen-
eralization ability of the proposed framework. Specifically,
at each round of continual learning, the number of training
images per class was respectively set to 1, 2, 4, 8, and 16.
As Table VIII shows, the proposed framework performs clearly

TABLE X
CONTINUAL LEARNING PERFORMANCE (LAST-ACC/MCR) OF DIFFER-

ENT METHODS BASED ON CLIP AND OPENCLIP UNDER THE 10-TASK
SETTINGS ON IMAGENET-R AND SKIN40. NOTE THAT CIL-PVLM

AND PROOF REQUIRE STORING SMALL DATA FOR EACH OLD
CLASS. ‘ZS’ DENOTES PERFORMANCE OF ZERO-SHOT OF

PRE-TRAINED VLM. THE RANGE OF STANDARD DEVI-
ATION IS [0.15, 1.24]

TABLE XI
CONTINUAL LEARNING PERFORMANCE (LAST-ACC) OF DIFFERENT

METHODS BASED ON MEDCLIP UNDER THE 10-TASK SETTINGS ON
SKIN40. NOTE THAT CIL-PVLM AND PROOF REQUIRE STORING

SMALL DATA FOR EACH OLD CLASS. ‘ZS’ DENOTES PER-
FORMANCE OF ZERO-SHOT OF PRE-TRAINED VLM. THE

RANGE OF STANDARD DEVIATION IS [0.15, 0.45]

better than all baselines, proving that it can be effectively
generalized to few-shot CIL scenarios.

Moreover, we conducted multiple experiments on different
pre-trained VLMs to evaluate whether the proposed framework
can generalize well across various pre-trained VLMs. Table X
presents a comparison of continual learning performance
between our method, CIL-PVLM, and PROOF on CLIP [23]
and OpenCLIP [55] under the 10-task settings on ImageNet-
R and Skin40. CLIP and OpenCLIP are VLMs pre-trained on
no less than 4 million natural data. According to the results
shown in Table X, all three methods show improved continual
learning performance on OpenCLIP, with our method per-
forming the best. This demonstrates that VLM-based continual
learning methods can achieve better performance with stronger
pre-trained VLMs, proving the superiority of the proposed
framework. In addition, Table XI presents a comparison of
continual learning performance between our method, CIL-
PVLM, and PROOF on MedCLIP [56] under the 10-task
settings on Skin40. MedCLIP [56] is a VLM pre-trained on
medical data (i.e., less than 600K X-ray data). According to
the results shown in Table XI, our method’s continual learning
performance in Last-ACC surpasses MedCLIP’s Zero-Shot,
PROOF, and CIL-PVLM by 42.38%, 21.21%, and 41.25%,
respectively. This indicates that our method maintains good
performance even when the pre-training data is limited and
there is a significant domain gap between the pre-training
data and the downstream task data, further confirming the
superiority of the proposed framework.

E. Inference Time Comparison

According to the results shown in Table XII, it can be
observed that the inference time for a single test image using
the proposed framework is comparable to existing methods in
the initial stages of continual learning. However, as the number
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TABLE XII
INFERENCE TIME OF DIFFERENT METHODS FOR A SINGLE TEST IMAGE IN CIFAR100 WITH 10 TASKS. ‘MEMORY’ INDICATES WHETHER DATA OF

LEARNED CLASSES ARE REQUIRED

of continual learning tasks increases, the inference time does
become longer, with the proposed framework performing only
slightly better than AttriCLIP. This is because the framework
employs task-specific visual adapters to address the plasticity-
stability dilemma, effectively enhancing continual learning
performance. However, during inference, it requires sequential
forward passes through each adapted image encoder (i.e., task-
specific visual adapters and the frozen pre-trained VLM’s
image encoder), leading to increased inference time. Nonethe-
less, this inference time is still acceptable as it increases
linearly with the number of training rounds.

V. CONCLUSION

In this study, a novel continual learning framework based
on a pre-trained vision-language model is proposed. This
framework ingeniously utilizes the fixed textual space to guide
the continual learning of visual classes. The rich semantic
knowledge for each visual class can be obtained from a LLM
and obtained by the frozen VLM’s text encoder, which is then
utilized to guide the training of task-specific visual adapters.
The usage of fake OOD textual representations during training
and integration of multi-modality features during inference
further improve the performance particularly in continual
learning. The proposed framework achieves superior perfor-
mance on multiple datasets under various continual learning
settings. In future work, the proposed framework will be
extended to solve more types of tasks, including continual
medical image classification, fine-grained classification, and
continual segmentation and detection tasks.
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